Medians and means in Finsler geometry

Marc Arnaudon, Frank Nielsen

To cite this version:

Marc Arnaudon, Frank Nielsen. Medians and means in Finsler geometry. 2010. hal-00540625v1

HAL Id: hal-00540625 https://hal.science/hal-00540625v1

Preprint submitted on 28 Nov 2010 (v1), last revised 24 Jun 2011 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MEDIANS AND MEANS IN FINSLER GEOMETRY

MARC ARNAUDON AND FRANK NIELSEN

Abstract

We investigate existence and uniqueness of p-means e_{p} and the median e_{1} of a probability measure μ on a Finsler manifold, in relation with the convexity of the support of μ. We prove that e_{p} is the limit point of a continuous time gradient flow. Under some additional condition which is always satisfied for $p \geq 2$, a discretization of this path converges to e_{p}. This provides an algorithm for determining those Finsler center points.

Contents

1. Introduction
2. Preliminaries
3. Forward p-means
4. Forward median
5. An algorithm for computing p-means

References

1. Introduction

The geometric barycenter of a set of points is the point which minimizes the sum of the squared distances to these points. It is the most traditional estimator is statistics that is however sensitive to outliers (12). Thus it is natural to replace the average distance squaring (power 2) by taking the power of p for some $p \in[1,2$). This leads to the definition of p-means. When $p=1$, the minimizer is the median of the set of points, very often used in robust statistics [12]. In many applications, p means with some $p \in(1,2)$ give the best compromise. For existence and uniqueness under convexity conditions on the support of the measure, see Afsari 11.

The Fermat-Weber problem concerns finding the median e_{1} of a set of points in an Euclidean space. Numerous authors worked out algorithms for computing e_{1}. The first algorithm was proposed by Weiszfeld in [26] (see also [25). It has been extended to sufficiently small domains in Riemannian manifolds with nonnegative curvature by Fletcher and al. in [10]. A complete generalization to manifolds with positive or negative curvature (under some convexity conditions in positive curvature), has been recently given by Yang in 28 .

The Riemannian barycenter or Karcher mean of a set of points in a manifold or more generally of a probability measure has been extensively studied, see e.g. [13], 14], 15], [9], [22], [3], [8], where questions of existence, uniqueness, stability, relation with martingales in manifolds, behavior when measures are pushed by stochastic flows have been considered. The Riemannian barycenter corresponds
to $p=2$ in the above description. Computation of Riemannian barycenters by gradient descent has been performed by Le in 17 .

The aim of this paper is to extend to the context of Finsler manifolds the results on existence and uniqueness of p-means of probability measures, as well as algorithms for computing them. Some convexity is needed, and as we shall see the fact that comparison results for triangles as Alexandroff and Toponogov theorems do not exist impose more restrictions on the support of the probability measure. As a consequence, the sharp results on existence and uniqueness established by Afsari (相) and the algorithm for computing means of Yang in [28] do not extend to Finsler manifolds.

The motivation for this work primarily comes from signal filtering and denoising in the context of Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI, 24, (21], [4), Orientation Distribution Function (ODF), active contours (18). Applications with experimental results of an implementation will be reported in forthcoming papers.

2. Preliminaries

Let M be a smooth manifold. On M we consider a Finsler structure $F: T M \rightarrow$ \mathbb{R}_{+}. For any $x \in M, V, X, Y, Z \in T_{x} M$ such that $V \neq 0$, let

$$
\begin{equation*}
g_{V}(X, Y):=\left.\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\right|_{(s, t)=(0,0)} F^{2}(V+s X+t Y) \tag{2.1}
\end{equation*}
$$

(we shall also use the notation $<X, Y>_{V}=g_{V}(X, Y)$) and

$$
\begin{equation*}
<X, Y, Z>_{V}:=\left.\frac{1}{4} \frac{\partial^{3}}{\partial r \partial s \partial t}\right|_{(r, s, t)=(0,0,0)} F^{2}(V+r X+s Y+t Z) \tag{2.2}
\end{equation*}
$$

We have

$$
\begin{equation*}
<X, Y, Z>_{V}=\left.\frac{1}{2} \frac{\partial}{\partial r}\right|_{r=0} g_{V+r X}(Y, Z) \tag{2.3}
\end{equation*}
$$

and in particular since F^{2} is 2-homogeneous and $V \mapsto g_{V}(X, Y)$ is 0-homogeneous,

$$
\begin{equation*}
<V, Y, Z>_{V}=0 \tag{2.4}
\end{equation*}
$$

Let V be a non-vanishing vector field on M. The Chern connection ∇^{V} is torsionfree and almost metric, and can be characterized by

$$
\begin{equation*}
X<Y, Z>_{V}=<\nabla_{X}^{V} Y, Z>_{V}+<Y, \nabla_{X}^{V} Z>_{V}+2<\nabla_{X}^{V} V, Y, Z>_{V} \tag{2.5}
\end{equation*}
$$

More precisely, parameterizing locally $T M$ by coordinates

$$
\left(x^{1}, \ldots, x^{m}, y^{1}=d x^{1}, \ldots, y^{m}=d x^{m}\right)
$$

defining the geodesic coefficients as

$$
\begin{equation*}
G^{i}(y)=\frac{1}{4} g^{i k}(y)\left(2 \frac{\partial g_{j k}}{\partial x^{l}}-\frac{\partial g_{j l}}{\partial x^{k}}\right) y^{j} y^{l}, \quad y \in T M \backslash\{0\} \tag{2.6}
\end{equation*}
$$

letting

$$
\begin{equation*}
N_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}, \quad \frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{k}(y) \frac{\partial}{\partial y^{k}} \in T_{y}(T M \backslash\{0\}), \tag{2.7}
\end{equation*}
$$

then the Christoffel symbols of the Chern connection are given by

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\frac{\delta g_{l j}}{\delta x^{i}}+\frac{\delta g_{i l}}{\delta x^{j}}-\frac{\delta g_{i j}}{\delta x^{l}}\right) \tag{2.8}
\end{equation*}
$$

(see [7]). Note that defining

$$
\begin{equation*}
\delta y^{i}=d y^{i}+N_{j}^{i}(y) d x^{j} \tag{2.9}
\end{equation*}
$$

we have for a smooth function $f: T M \backslash\{0\} \rightarrow \mathbb{R}$

$$
\begin{equation*}
d f=\frac{\delta f}{\delta x^{i}} d x^{i}+\frac{\partial f}{\partial y^{i}} \delta y^{i} . \tag{2.10}
\end{equation*}
$$

The Chern curvature tensor is defined by the equation

$$
\begin{equation*}
R^{V}(X, Y) Z:=\nabla_{X}^{V} \nabla_{Y}^{V} Z-\nabla_{Y}^{V} \nabla_{X}^{V} Z-\nabla_{[X, Y]}^{V} Z \tag{2.11}
\end{equation*}
$$

and the flag curvature is

$$
\begin{equation*}
\mathscr{K}(V, W):=\frac{<R^{V}(V, W) W, V>}{\left\langle V, V>_{V}<W, W>_{V}-<V, W>_{V}^{2}\right.}, \tag{2.12}
\end{equation*}
$$

for two non collinear $V, W \in T_{x} M$.
We say that M has nonpositive flag curvature if for all $V, W, \mathscr{K}(V, W) \leq 0$.
The tangent curvature of two vectors $V, W \in T_{x} M$ is defined as

$$
\begin{equation*}
\mathscr{T}_{V}(W)=<\nabla_{W}^{W} \tilde{W}-\nabla_{W}^{V} \tilde{W}, V>_{V} \tag{2.13}
\end{equation*}
$$

where \tilde{W} is a vector field satisfying $\tilde{W}_{x}=W$. For a nonnegative constant $\delta \geq 0$ we say that $\mathscr{T} \geq-\delta$ or $\mathscr{T} \leq \delta$ if respectively

$$
\begin{equation*}
\mathscr{T}_{V}(W) \geq-\delta F(V) F(W)^{2} \quad \text { or } \quad \mathscr{T}_{V}(W) \leq \delta F(V) F(W)^{2} . \tag{2.14}
\end{equation*}
$$

For $x \in M$ we define

$$
\begin{equation*}
\mathscr{C}(x)=\sup _{v, w \in T_{x} M \backslash\{0\}} \sqrt{\frac{\left\langle v, v>_{v}\right.}{<v, v>_{w}}}, \quad \mathscr{D}(x)=\sup _{v, w \in T_{x} M \backslash\{0\}} \sqrt{\frac{<v, v>_{w}}{<v, v>_{v}}} . \tag{2.15}
\end{equation*}
$$

A geodesic in M is a curve $t \mapsto c(t)$ satisfying for all $t, \nabla_{\dot{c}(t)}^{\dot{c}(t)} \dot{c}=0$. It is well known that a geodesic has constant speed, and that it locally minimizes the distance ([7]). If so, letting $\rho(x, y)$ the forward distance from x to y, then

$$
\begin{equation*}
\rho^{2}(x, y)=<\dot{c}(0), \dot{c}(0)>_{\dot{c}(0)} \tag{2.16}
\end{equation*}
$$

where $t \mapsto c(t)$ is the minimal geodesic satisfying $c(0)=x$ and $c(1)=y$. By definition, the backward distance from x to y is $\rho(y, x)$.

For $x \in M$ and $v \in T_{x} M$, we let whenever it $\operatorname{exists}^{\exp _{x}(v)}:=c(1)$ where $t \mapsto c(t)$ is the geodesic satisfying $\dot{c}(0)=v$.

If M is complete, analytic, simply connected and has nonpositive flag curvature (we say that M is an analytic Cartan-Hadamard manifold), then $\exp _{x}: T_{x} M \rightarrow M$ is an homeomorphism ((5) theorem 4.7). Under these assumption, letting for $x, y \in$ $M, \overrightarrow{x y}=\exp _{x}^{-1}(y)$, we have

$$
\begin{equation*}
\rho^{2}(x, y)=<\overrightarrow{x y}, \overrightarrow{x y}>_{\overrightarrow{x y}} . \tag{2.17}
\end{equation*}
$$

For $x_{0} \in M$ and $R>0$, let us denote by $B\left(x_{0}, R\right)$ (resp. $\bar{B}\left(x_{0}, R\right)$) the forward open (resp. closed) ball with center x_{0} and radius R :
$B\left(x_{0}, R\right)=\left\{y \in M, \rho\left(x_{0}, y\right)<R\right\} \quad\left(\right.$ resp. $\left.\bar{B}\left(x_{0}, R\right)=\left\{y \in M, \rho\left(x_{0}, y\right) \leq R\right\}\right)$
Now let $(t, s) \mapsto c(t, s)$ a family of minimizing geodesics $t \mapsto c(t, s), t \in[0,1]$, parametrized by $s \in I, I$ an interval in \mathbb{R}. Define

$$
\begin{equation*}
E(s)=\frac{1}{2} \rho^{2}(c(0, s), c(1, s)) \tag{2.19}
\end{equation*}
$$

The computation of $E^{\prime}(s)$ and $E^{\prime \prime}(s)$ is well-known, see e.g. [6]. We recall it here since it is essential for the sequel.

$$
\begin{aligned}
E^{\prime}(s) & =\frac{1}{2} \partial_{s} \int_{0}^{1}<\partial_{t} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)} d t \\
& =\frac{1}{2} \int_{0}^{1} \partial_{s}<\partial_{t} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)} d t \\
& =\int_{0}^{1}<\nabla_{\partial_{s} c(t, s)}^{\partial_{t} c(t, s)} \partial_{t} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)} d t \\
& =\int_{0}^{1}<\nabla_{\partial_{t} c(t, s)}^{\partial_{t} c(t, s)} \partial_{s} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)} d t \\
& =\int_{0}^{1} \partial_{t}<\partial_{s} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)} d t \\
& =\left[<\partial_{s} c(t, s), \partial_{t} c(t, s)>_{\partial_{t} c(t, s)}\right]_{t=0}^{t=1}
\end{aligned}
$$

where we used (2.4) in line 3 and in line 4 the fact that ∇ is torsionfree. Finally

$$
\begin{equation*}
E^{\prime}(s)=<\partial_{s} c(1, s), \partial_{t} c(1, s)>_{\partial_{t} c(1, s)}-<\partial_{s} c(0, s), \partial_{t} c(0, s)>_{\partial_{t} c(0, s)} \tag{2.20}
\end{equation*}
$$

As for the second derivative we have, letting $T=\partial_{t} c(t, s)$ and $J=\partial_{s} c(t, s)$:

$$
\begin{aligned}
E^{\prime \prime}(s) & =\partial_{s} \int_{0}^{1}<\nabla_{T}^{T} J, T>_{T} d t \\
& =\partial_{s} \int_{0}^{1} \partial_{t}<J, T>_{T} d t \quad \text { since } \nabla_{T}^{T} T=0 \\
& =\int_{0}^{1} \partial_{t} \partial_{s}<J, T>_{T} d t \\
& =\int_{0}^{1} \partial_{t}<\nabla_{J}^{T} J, T>_{T} d t+\int_{0}^{1} \partial_{t}<J, \nabla_{J}^{T} T>_{T} d t+\int_{0}^{1} \partial_{t}<J, T, \nabla_{J}^{T} T>_{T} d t .
\end{aligned}
$$

But $<J, T, \nabla_{J}^{T} T>_{T}=0$ and $\nabla_{T}^{T} J=\nabla_{J}^{T} T$ (since $[T, J]=0$), so

$$
\begin{aligned}
E^{\prime \prime}(s) & =\int_{0}^{1} \partial_{t}<\nabla_{J}^{T} J, T>_{T} d t+\int_{0}^{1}\left(F^{2}\left(\nabla_{T}^{T} J\right)+<J, \nabla_{T}^{T} \nabla_{J}^{T} T>_{T}\right) d t \\
& =\int_{0}^{1} \partial_{t}<\nabla_{J}^{T} J, T>_{T} d t+\int_{0}^{1}\left(F^{2}\left(\nabla_{T}^{T} J\right)-<R^{T}(J, T) T, J>_{T}\right) d t
\end{aligned}
$$

Finally, letting $c=c(\cdot, 0)$, and for X, Y vector fields along c

$$
\begin{equation*}
I(X, Y)=\int_{0}^{1}\left(<\nabla_{T}^{T} X, \nabla_{T}^{T} Y>_{T}-<R^{T}(X, T) T, Y>_{T}\right) d t \tag{2.21}
\end{equation*}
$$

the index of X and Y, we get

$$
\begin{align*}
E^{\prime \prime}(0) & =\left\langle\nabla_{\partial_{s} c(1,0)}^{\partial_{t} c(1,0)} \partial_{s} c(1, \cdot), \partial_{t} c(1,0)>_{\partial_{t} c(1,0)}-<\nabla_{\partial_{s} c(0,0)}^{\partial_{t} c(0,0)} \partial_{s} c(0, \cdot), \partial_{t} c(0,0)>_{\partial_{t} c(0,0)}\right. \tag{2.22}\\
& +I\left(\partial_{s} c(\cdot, 0), \partial_{s} c(\cdot, 0)\right) .
\end{align*}
$$

Assuming $s \mapsto c(0, s)$ and $s \mapsto c(1, s)$ are geodesics, we obtain

$$
\begin{equation*}
E^{\prime \prime}(0)=\mathscr{T}_{\partial_{t} c(0,0)}\left(\partial_{s} c(0,0)\right)-\mathscr{T}_{\partial_{t} c(1,0)}\left(\partial_{s} c(1,0)\right)+I\left(\partial_{s} c(\cdot, 0), \partial_{s} c(\cdot, 0)\right) \tag{2.23}
\end{equation*}
$$

We are interested in the situation where $c(1, s) \equiv z$ a constant. In this case we have

$$
\begin{equation*}
E^{\prime \prime}(0)=\mathscr{T}_{\partial_{t} c(0,0)}\left(\partial_{s} c(0,0)\right)+I\left(\partial_{s} c(\cdot, 0), \partial_{s} c(\cdot, 0)\right) . \tag{2.24}
\end{equation*}
$$

For $p \geq 1$, define

$$
\begin{equation*}
D_{p}(s)=\rho^{p}(c(0, s), z) \tag{2.25}
\end{equation*}
$$

Proposition 2.1. Assume $\mathscr{K} \leq k, \mathscr{T} \geq-\delta, \mathscr{C} \leq C$ for some $k, \delta \geq 0, C \geq 1$. Let $p>1$. Then

$$
\begin{equation*}
D_{p}^{\prime \prime}(0) \geq p r^{p-2}\left(\min \left(p-1, \frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}\right) C^{-2}-\delta r\right) \tag{2.26}
\end{equation*}
$$

If z and $x=c(0,0)$ satisfy $\rho(x, z)<R(p, k, \delta, C)$ with

$$
\begin{equation*}
R(p, k, \delta, C)=\min \left(\frac{p-1}{C^{2} \delta}, \frac{1}{\sqrt{k}} \arctan \left(\frac{\sqrt{k}}{C^{2} \delta}\right)\right) \tag{2.27}
\end{equation*}
$$

and the injectivity radius at x is strictly larger than $R(p, k, \delta, C)$, then $D_{p}^{\prime \prime}(0)>0$.
Remark 2.2. Note if $p \geq 2$ then

$$
R(p, k, \delta, C)=R(2, k, \delta, C)=\frac{1}{\sqrt{k}} \arctan \left(\frac{\sqrt{k}}{C^{2} \delta}\right) .
$$

Proof. Define $T(t)=\partial_{t} c(t, 0), J(t)=\partial_{s} c(t, 0)$,

$$
J^{T}(t)=\frac{1}{F(T(t))^{2}}<J(t), T(t)>_{T(t)} T(t), \quad J^{N}(t)=J(t)-J^{T}(t)
$$

Using successively [6] Lemma 9.5.1 which compares the index $I(J, J)$ with the one of its "transplant" into a manifold with constant curvature k^{2} and the index lemma [6] Lemma 7.3.2 which compares the index of the transplant to the one of the Jacobi field with same boundary values, we get, letting $r=\rho(x(0), z)=D_{1}(0)$,

$$
\begin{equation*}
I(J, J) \geq \frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}<J^{N}(0), J^{N}(0)>_{T(0)}+<J^{T}(0), J^{T}(0)>_{T(0)} \tag{2.28}
\end{equation*}
$$

Using the expression (2.24) for $E^{\prime \prime}(0)$ we obtain

$$
\begin{equation*}
E^{\prime \prime}(0) \geq-\delta r+\frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}<J^{N}(0), J^{N}(0)>_{T(0)}+<J^{T}(0), J^{T}(0)>_{T(0)} \tag{2.29}
\end{equation*}
$$

We have from (2.20)

$$
\begin{equation*}
E^{\prime}(0)^{2}=r^{2}<J^{T}(0), J^{T}(0)>_{T(0)} \tag{2.30}
\end{equation*}
$$

Now from $D_{1}(s)=\sqrt{2 E(s)}$ we get

$$
\begin{equation*}
D_{1}^{\prime}(s)=\frac{E^{\prime}(s)}{D_{1}(s)}, \quad D_{1}^{\prime \prime}(s)=\frac{E^{\prime \prime}(s)}{D_{1}(s)}-\frac{E^{\prime}(s)^{2}}{D_{1}^{3}(s)} \tag{2.31}
\end{equation*}
$$

and this yields

$$
\begin{aligned}
& D_{p}^{\prime \prime}(0) \\
& =p D_{1}(0)^{p-2}\left((p-1) D_{1}^{\prime}(0)^{2}+D_{1}(0) D_{1}^{\prime \prime}(0)\right) \\
& =p r^{p-2}\left((p-2)<J^{T}(0), J^{T}(0)>_{T(0)}+E^{\prime \prime}(0)\right) \\
& \geq p r^{p-2}\left((p-1)<J^{T}(0), J^{T}(0)>_{T(0)}-\delta r+\frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}<J^{N}(0), J^{N}(0)>_{T(0)}\right) \\
& \geq p r^{p-2}\left(\min \left(p-1, \frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}\right)<J(0), J(0)>_{T(0)}-\delta r\right) \\
& \geq p r^{p-2}\left(\min \left(p-1, \frac{\sqrt{k} r \cos (\sqrt{k} r)}{\sin (\sqrt{k} r)}\right) C^{-2}-\delta r\right)
\end{aligned}
$$

From this bound the rest of the proof follows easily.
Similarly, we can obtain an upper bound for $D_{p}^{\prime \prime}(0)$:
Proposition 2.3. Assume the sectional curvatures \mathscr{K} have a lower bound $-\beta^{2}$ for some $\beta>0$, and $\mathscr{T} \leq \delta^{\prime}$ for some $\delta^{\prime}>0, \mathscr{D} \leq D$ for some $D \geq 1$. Again let $r=\rho(x(0), z)$, assume that the injectivity radius at $x(0)$ is larger than r. Then

$$
\begin{equation*}
D_{p}^{\prime \prime}(0) \leq p r^{p-2}\left(D^{2} \max (p-1, \beta r \operatorname{coth}(\beta r))+\delta^{\prime} r\right) \tag{2.32}
\end{equation*}
$$

Proof. We have by (2.24) and (2.31) together with the fact that

$$
\begin{gather*}
I(J, J)=<J^{T}(0), J^{T}(0)>+I\left(J^{N}, J^{N}\right) \tag{2.33}\\
\left.D_{p}^{\prime \prime}(0)=p r^{p-2}(p-1)<J^{T}(0), J^{T}(0)>_{T(0)}+I\left(J^{N}, J^{N}\right)+\mathscr{T}_{T}(J)\right) .
\end{gather*}
$$

Let $t \mapsto X(t)$ the parallel vector field along $t \mapsto c(t, 0)$ with initial condition $J^{N}(0)$, and for $t \in[0,1]$, let

$$
G(t)=\cosh (r \beta t)-\operatorname{coth}(r \beta) \sinh (r \beta t)
$$

This is the solution of $G^{\prime \prime}=r \beta G$ with conditions $G(0)=1$ and $G(1)=0$. The vector field $t \mapsto Y(t)$ along $t \mapsto c(t, 0)$ defined by

$$
\begin{equation*}
Y(t)=G(t) X(t) \tag{2.34}
\end{equation*}
$$

has same boundary values as $t \mapsto J^{N}(t)$, so by the index lemma (6) Lemma 7.3.2 we have

$$
\begin{equation*}
I\left(J^{N}, J^{N}\right) \leq I(Y, Y) \tag{2.35}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
& I(Y, Y) \\
& =\int_{0}^{1}\left(G^{\prime}(t)^{2}<J^{N}(0), J^{N}(0)>_{T(0)}-G(t)^{2}<R^{T}(X(t), T(t)) T(t), X(t)>_{T(t)}\right) d t \\
& \leq<J^{N}(0), J^{N}(0)>_{T(0)} \int_{0}^{1}\left(G^{\prime}(t)^{2}+r^{2} \beta^{2} G(t)^{2}\right) d t \\
& =<J^{N}(0), J^{N}(0)>_{T(0)}\left(\left[G^{\prime}(t) G(t)\right]_{0}^{1}+\int_{0}^{1} G(t)\left(-G^{\prime \prime}(t)^{2}+r^{2} \beta^{2} G(t)\right) d t\right) \\
& =<J^{N}(0), J^{N}(0)>_{T(0)} r \beta \operatorname{coth}(r \beta) .
\end{aligned}
$$

So

$$
\begin{align*}
& D_{p}^{\prime \prime}(0) \tag{2.36}\\
& \leq p r^{p-2}\left((p-1)<J^{T}(0), J^{T}(0)>_{T(0)}+r \beta \operatorname{coth}(r \beta)<J^{N}(0), J^{N}(0)>_{T(0)}\right)+\delta^{\prime} r \\
& \leq p r^{p-2}\left(\max ((p-1), r \beta \operatorname{coth}(r \beta))<J(0), J(0)>_{T(0)}+\delta^{\prime} r\right) \\
& \leq p r^{p-2}\left(D^{2} \max ((p-1), r \beta \operatorname{coth}(r \beta))+\delta^{\prime} r\right)
\end{align*}
$$

since $F(J(0))=1$.

For $x \in M$, let $\ell_{x}: T_{x} M \rightarrow T_{x}^{*} M$ be the Legendre transformation, defined as

$$
\begin{equation*}
\ell_{x}(V)=g_{V}(V, \cdot) \quad \text { if } \quad V \neq 0, \quad \ell_{x}(0)=0 \tag{2.37}
\end{equation*}
$$

It is well-known that ℓ_{x} is a bijection. The global Legendre transformation on $T M$ is defined as

$$
\begin{equation*}
\mathscr{L}(V)=\ell_{\pi(V)}(V) \tag{2.38}
\end{equation*}
$$

where $\pi: T M \rightarrow M$ is the canonical projection. If we define the dual Minkowski norm F^{*} on $T_{x}^{*} M$ as

$$
\begin{equation*}
F^{*}(\xi)=\max \left\{\xi(y), y \in T_{x} M, F(y)=1\right\} \tag{2.39}
\end{equation*}
$$

then

$$
\begin{equation*}
F=F^{*} \circ \mathscr{L} \tag{2.40}
\end{equation*}
$$

and for non zero $V \in T M$ and $\alpha \in T^{*} M$,

$$
\begin{equation*}
\langle\mathscr{L}(V), V\rangle=F(V)^{2}, \quad\left\langle\alpha, \mathscr{L}^{-1}(\alpha)\right\rangle=F^{*}(\alpha)^{2} \tag{2.41}
\end{equation*}
$$

(see e.g. [2]).
For f a C^{1} function on M we may define the gradient of f

$$
\begin{equation*}
\operatorname{grad} f=\mathscr{L}^{-1}(d f) \tag{2.42}
\end{equation*}
$$

3. Forward p-MEANS

Let μ be a compactly supported probability measure in M. For $p>1$ and $x \in M$ we define

$$
\begin{equation*}
\mathscr{E}_{\mu, p}(x)=\int_{M} \rho^{p}(x, z) \mu(d z) . \tag{3.1}
\end{equation*}
$$

The (forward) p-mean of μ is the point e_{p} of M where $\mathscr{E}_{\mu, p}$ reaches its minimum whenever it exists and is unique.

Proposition 3.1. Assume there exists $C>0$ such that $\mathscr{C}(x) \leq C$ for all $x \in M$, where $\mathscr{C}(x)$ is defined in (2.15). Assume furthermore that $\operatorname{supp}(\mu) \subset B\left(x_{0}, R\right)$ for some $x_{0} \in M$ and $R>0$. Then $x \mapsto \mathscr{E}_{\mu, p}(x)$ has at least one global minimum in $\bar{B}\left(x_{0}, C(1+C) R\right)$.

Proof. We begin with establishing that for all $y_{1}, y_{2} \in M$,

$$
\begin{equation*}
\frac{1}{C} \rho\left(y_{2}, y_{1}\right) \leq \rho\left(y_{1}, y_{2}\right) \leq C \rho\left(y_{2}, y_{1}\right) \tag{3.2}
\end{equation*}
$$

It is sufficient to establish the second inequality and then to exchange y_{1} and y_{2}. If $t \mapsto \varphi(t)$ is a path from $y_{1}=\varphi(0)$ and $y_{2}=\varphi(1)$ then its length $L(\varphi)$ satisfies

$$
\begin{aligned}
L(\varphi) & =\int_{0}^{1} \sqrt{\left\langle\dot{\varphi}(t), \dot{\varphi}(t)>_{\dot{\varphi}(t)}\right.} d t \\
& =\int_{0}^{1} \sqrt{\frac{<-\dot{\varphi}(t),-\dot{\varphi}(t)>_{\dot{\varphi}(t)}}{<-\dot{\varphi}(t),-\dot{\varphi}(t)>_{-\dot{\varphi}(t)}} \sqrt{<-\dot{\varphi}(t),-\dot{\varphi}(t)>_{-\dot{\varphi}(t)}} d t} \\
& \leq \int_{0}^{1} \mathscr{C}(\varphi(t)) \sqrt{<-\dot{\varphi}(t),-\dot{\varphi}(t)>_{-\dot{\varphi}(t)}} d t \\
& \leq C \int_{0}^{1} \sqrt{<-\dot{\varphi}(t),-\dot{\varphi}(t)>_{-\dot{\varphi}(t)}} d t \\
& =C L(\hat{\varphi})
\end{aligned}
$$

where $\hat{\varphi}$ is the path from y_{2} to y_{1} defined by $\hat{\varphi}(t)=\varphi(1-t)$. Minimizing over all paths $\hat{\varphi}$ from y_{2} to y_{1} we get

$$
\begin{equation*}
\rho\left(y_{1}, y_{2}\right) \leq C \rho\left(y_{2}, y_{1}\right) . \tag{3.3}
\end{equation*}
$$

Now if $\operatorname{supp}(\mu) \subset B\left(x_{0}, R\right)$ then $\mathscr{E}_{\mu, p}\left(x_{0}\right) \leq R^{p}$. On the other hand, if $x \notin$ $\bar{B}\left(x_{0}, C(1+C) R\right)$ then for all $y \in B\left(x_{0}, R\right)$

$$
\begin{aligned}
\rho(x, y) & \geq \rho\left(x, x_{0}\right)-\rho\left(y, x_{0}\right) \\
& \geq \frac{1}{C} \rho\left(x_{0}, x\right)-C \rho\left(x_{0}, y\right) \\
& \geq(1+C) R-C R=R
\end{aligned}
$$

and this clearly implies that $\mathscr{E}_{\mu, p}(x) \geq R^{p}$. From this we get the conclusion.

Concerning the uniqueness of the global minimum of $\mathscr{E}_{\mu, p}$, we also have the following easy result.

Proposition 3.2. Assume that μ is supported by a compact forward ball $\bar{B}\left(x_{0}, R\right)$, and that for all $z \in \bar{B}\left(x_{0}, R\right)$, the function $x \mapsto \rho^{p}(x, z)$ is strictly convex in $\bar{B}\left(x_{0}, C(1+C) R\right)$. Then μ has a unique forward p-mean in $\bar{B}\left(x_{0}, C(1+C) R\right)$.

Proof. If $x \mapsto \rho^{p}(x, z)$ is strictly convex for all z in the support of μ then $\mathscr{E}_{\mu, p}$ is strictly convex, and this implies that it has a unique minimum, which is attained at a unique point e_{p}.

Corollary 3.3. Assume $\mathscr{K} \leq k, \mathscr{T} \geq-\delta, \mathscr{C} \leq C$ for some $k, \delta \geq 0, C \geq 1$. Let $p>1$. Again let

$$
R(p, k, \delta, C)=\min \left(\frac{p-1}{C^{2} \delta}, \frac{1}{\sqrt{k}} \arctan \left(\frac{\sqrt{k}}{C^{2} \delta}\right)\right)
$$

If μ is supported by a geodesic ball $B\left(x_{0}, R\right)$ with

$$
\begin{equation*}
R \leq \frac{1}{C(C+1)^{2}} R(p, k, \delta, C) \tag{3.4}
\end{equation*}
$$

and the injectivity radius at any $x \in B\left(x_{0}, C(1+C) R\right)$ is strictly larger than $R(p, k, \delta, C)$ then μ has a unique p-mean e_{p} satisfying

$$
\begin{equation*}
e_{p} \in \bar{B}\left(x_{0}, \frac{1}{C+1} R(p, k, \delta, C)\right) \tag{3.5}
\end{equation*}
$$

Proof. If $x, z \in B\left(x_{0}, C(1+C) R\right)$ then

$$
\rho(x, z) \leq \rho\left(x, x_{0}\right)+\rho\left(x_{0}, z\right) \leq(1+C)^{2} C R \leq R(p, k, \delta, C)
$$

Using proposition 2.1, we obtain that $\mathscr{E}_{\mu, p}$ is strictly convex on $B\left(x_{0}, C(1+C) R\right)$. So by proposition 3.2μ has a unique p-mean in $\bar{B}\left(x_{0}, C(1+C) R\right)$.

Remark 3.4. Letting $x_{0} \in M, D$ be a relatively compact neighborhood of x_{0}, then \mathscr{K} and \mathscr{C} are bounded above on D by, say k_{D} and C_{D}, and \mathscr{T} is bounded below on D by $-\delta_{D}$. Using these bounds instead of k, C and δ, we can find R sufficiently small so that the conditions of corollary 3.3 are fulfilled. So we can say any measure μ with sufficiently small support has a unique p-mean.

Remark 3.5. If M is a Cartan-Hadamard manifold, we recover the fact that we can take $R(p, k, \delta, C)$ as large as we want.

Proposition 3.6. Let $a \mapsto x(a)$ solve the equation

$$
\begin{equation*}
x(0)=x_{0} \quad \text { and for } a \geq 0 \quad x^{\prime}(a)=\operatorname{grad}_{x(a)}\left(-\mathscr{E}_{\mu, p}\right) \tag{3.6}
\end{equation*}
$$

Under the conditions of Corollary 3.5, the path $a \mapsto x(a)$ converges as $a \rightarrow \infty$ to the p-mean of μ.
Proof. If $f(a)=\left(-\mathscr{E}_{\mu}\right)(x(a))$ we have as soon as $\operatorname{grad}_{x(a)}\left(-\mathscr{E}_{\mu, p}\right) \neq 0$,

$$
\begin{aligned}
f^{\prime}(a) & =\left\langle d_{x(a)}\left(-\mathscr{E}_{\mu, p}\right), x^{\prime}(a)\right\rangle \\
& =\left\langle d_{x(a)}\left(-\mathscr{E}_{\mu, p}\right), \operatorname{grad}_{x(a)}\left(-\mathscr{E}_{\mu, p}\right)\right\rangle \\
& =\left\langle d_{x(a)}\left(-\mathscr{E}_{\mu, p}\right), \mathscr{L}^{-1}\left(d_{x(a)}\left(-\mathscr{E}_{\mu, p}\right)\right)\right\rangle \\
& =F^{*}\left(d_{x(a)}\left(-\mathscr{E}_{\mu, p}\right)\right)^{2}
\end{aligned}
$$

by (2.40) and (2.41).
On the other hand, we have $f(0) \geq-R^{p}$ and f is nondecreasing. This implies that for all $a \geq 0, x(a) \in \bar{B}\left(x_{0}, C(1+C) R\right)$, since for all $x \notin \bar{B}\left(x_{0}, C(1+C) R\right)$, $\mathscr{E}_{\mu, p}(x) \geq R^{p}$. As a consequence $x(a)$ has limit points as a goes to infinity, and since $f(a)$ converges, any limit point is a critical point of $x \mapsto \mathscr{E}_{\mu, p}(x)$. But by Proposition $3.2 \mathscr{E}_{\mu, p}$ has a unique critical point in $\bar{B}\left(x_{0}, C(1+C) R\right)$ which is the mean e_{p} of μ. So we can conclude that $x(a)$ converges to e_{p}.

4. Forward median

Let μ be a compactly supported probability measure in M. For $x \in M$ we define

$$
\begin{equation*}
\mathscr{F}_{\mu}(x)=\int_{M} \rho(x, z) \mu(d z) . \tag{4.1}
\end{equation*}
$$

The forward median of μ is the point in M where \mathscr{F}_{μ} reaches its minimum whenever it exists and is unique.

Again we have the following result.

Proposition 4.1. Assume there exists $C>0$ such that $\mathscr{C}(x) \leq C$ for all $x \in M$. Assume furthermore that $\operatorname{supp}(\mu) \subset B\left(x_{0}, R\right)$ for some $x_{0} \in M$ and $R>0$. Then $x \mapsto \mathscr{F}_{\mu}(x)$ has at least one global minimum in $\bar{B}\left(x_{0}, C(1+C) R\right)$.
Proposition 4.2. Assume that μ is supported by a compact forward ball $\bar{B}\left(x_{0}, R\right)$, that the support of μ is not contained in a single geodesic and that for all $z \in$ $\bar{B}\left(x_{0}, R\right)$, the forward distance to z is convex, and strictly convex in any geodesic of $\bar{B}\left(x_{0}, C(1+C) R\right)$ which does not contain z. Then μ has a unique forward median $m \in \bar{B}\left(x_{0}, C(1+C) R\right)$.

Proof. Clearly under these assumptions \mathscr{F}_{μ} is strictly convex, so it has a unique local minimum, this minimum is global and is attained at a unique point $m \in$ $\bar{B}\left(x_{0}, C(1+C) R\right)$.

Remark 4.3. Contrarily to the case of p-means for $p>1$, we cannot say at this stage that any probability measure μ with sufficiently small support has a unique median, since we don't know whether \mathscr{F}_{μ} is strictly convex or not. In the next proposition we give a sufficient condition for strict convexity of \mathscr{F}_{μ}.
Proposition 4.4. Assume $\mathscr{K} \leq k$ and $\mathscr{T} \geq-\delta$ for some $k, \delta>0$. Assume that the injectivity radius at any point of $\bar{B}\left(x_{0}, C(1+C) R\right)$ is larger than $\left(C^{2}+C+1\right) R$. Define

$$
\begin{align*}
\eta=\min \{ & \int_{M} \sqrt{k} \cot (\sqrt{k} \rho(\pi(v), z))<v^{N}, v^{N}>\overrightarrow{\pi(v) z} \mu(d z), \tag{4.2}\\
& \left.v \in T M \text { satisfying } \pi(v) \in \bar{B}\left(x_{0}, C(1+C) R\right), F(v)=1\right\}
\end{align*}
$$

where v^{N} is the normal part of v with respect to the vector $\overrightarrow{\pi(v) z}$ and the scalar product $\left\langle\cdot, \cdot>\overrightarrow{\pi(v) z}\right.$. If $\eta-\delta>0$ then \mathscr{F}_{μ} is strictly convex on $\bar{B}\left(x_{0}, C(1+C) R\right)$. More precisely, for all $x \in B\left(x_{0}, C(1+C) R\right)$ and for all unit speed geodesic γ starting at x,

$$
\begin{equation*}
\left(\mathscr{F}_{\mu} \circ \gamma\right)^{\prime \prime}(0) \geq \eta-\delta \tag{4.3}
\end{equation*}
$$

Proof. With the notations of section 2, from (2.31) we have

$$
\begin{equation*}
D_{1}^{\prime \prime}(0)=r^{-1}\left(E^{\prime \prime}(0)-<J^{T}(0), J^{T}(0)>_{T(0)}\right) \tag{4.4}
\end{equation*}
$$

Let $\gamma(s)=c(0, s)$, the unit speed geodesic with initial condition $v=J(0)$, and $f(s)=\mathscr{F}_{\mu}(\gamma(s))$. Equation (4.4) together with (2.29) gives

$$
\begin{equation*}
f^{\prime \prime}(0) \geq-\delta+\int_{M} \sqrt{k} \cot (\sqrt{k} \rho(\pi(v), z))<v^{N}, v^{N}>\underset{\pi(v) z}{ } \mu(d z) \geq \eta-\delta \tag{4.5}
\end{equation*}
$$

¿From this we get the condition for the strict convexity of \mathscr{F}_{μ}.

For $x \in M$ define the measure $\mu_{x}=\mu-\mu(\{x\}) \delta_{x}$. Then the map $y \mapsto \mathscr{F}_{\mu_{x}}(y)$ is differentiable at $y=x$.

Since

$$
\begin{equation*}
\mathscr{F}_{\mu}(y)=\mathscr{F}_{\mu_{x}}(y)+\mu(\{x\}) \rho(y, x) \tag{4.6}
\end{equation*}
$$

and for $v \in T_{x} M, \mathscr{F}_{\mu}$ is differentiable in the direction v with derivative

$$
\begin{equation*}
\left\langle d \mathscr{F}_{\mu}, v\right\rangle=\left\langle d \mathscr{F}_{\mu_{x}}, v\right\rangle+\mu(\{x\}) F(-v), \tag{4.7}
\end{equation*}
$$

we see that x is a local minimum of \mathscr{F}_{μ} if and only if for all nonzero $v \in T_{x} M$

$$
\begin{equation*}
\mu(\{x\}) F(-v) \geq\left\langle d \mathscr{F}_{\mu_{x}},-v\right\rangle \tag{4.8}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\mu(\{x\}) \geq \frac{\left(F^{*}\left(d \mathscr{F}_{\mu_{x}}\right)\right)^{2}}{F\left(\mathscr{L}^{-1}\left(d \mathscr{F}_{\mu_{x}}\right)\right)} \tag{4.9}
\end{equation*}
$$

(take $\left.-v=\frac{\mathscr{L}^{-1}\left(d \mathscr{F}_{\mu_{x}}\right)}{F\left(\mathscr{L}^{-1}\left(d \mathscr{F}_{\mu_{x}}\right)\right)}\right)$. But since $F^{*}=F \circ \mathscr{L}^{-1}$, we get
Proposition 4.5. A point x in M is a local minimum of \mathscr{F}_{μ} if and only if

$$
\begin{equation*}
\mu(\{x\}) \geq F^{*}\left(d \mathscr{F}_{\mu_{x}}\right) \tag{4.10}
\end{equation*}
$$

Note that for the Riemannian case this result is due to Le Yang (28).
Define the vector

$$
\begin{equation*}
H(x)=\left.\operatorname{grad}_{y}\left(\mathscr{F}_{\mu_{x}}(y)\right)\right|_{y=x} . \tag{4.11}
\end{equation*}
$$

Alternatively,

$$
\begin{equation*}
H(x)=\mathscr{L}^{-1}\left(\int_{M \backslash\{x\}} \mathscr{L}\left(-\frac{1}{\rho(x, z)} \overrightarrow{x z}\right) \mu(d z)\right) . \tag{4.12}
\end{equation*}
$$

Let $a \mapsto x(a)$ be the path in M defined by $x(0)=x_{0}$ and

$$
\begin{array}{lc}
\dot{x}(a)= & -H(x(a)) \\
\dot{x}(a)= & \text { if for all } a^{\prime} \leq a, \mu\left(\left\{x\left(a^{\prime}\right)\right\}\right)<F^{*}\left(d \mathscr{F}_{\mu_{x\left(a^{\prime}\right)}}\right) \tag{4.13}\\
0 & \text { if for some } a^{\prime} \leq a, \mu\left(\left\{x\left(a^{\prime}\right)\right\}\right) \geq F^{*}\left(d \mathscr{F}_{\mu_{x\left(a^{\prime}\right)}}\right)
\end{array}
$$

Define

$$
\begin{equation*}
f(a)=\mathscr{F}_{\mu}(x(a)) . \tag{4.14}
\end{equation*}
$$

We have for the right derivative of f when $x(a)$ is not a minimal point of \mathscr{F}_{μ} :

$$
\begin{aligned}
f_{+}^{\prime}(a)= & \left\langle d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right), \dot{x}(a)\right\rangle+\mu(\{x(a)\}) F(-\dot{x}(a)) \\
= & -\left\langle d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right), \mathscr{L}^{-1}\left(d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right)\right)\right\rangle \\
& +\mu(\{x(a)\}) F\left(\mathscr{L}^{-1}\left(d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right)\right)\right) \\
= & -F^{*}\left(d_{x(a)}\left(\mathscr{F}_{\left.\mu_{x(a)}\right)}\right)\right)^{2}+\mu(\{x(a)\}) F\left(\mathscr{L}^{-1}\left(d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right)\right)\right) .
\end{aligned}
$$

We get

$$
\begin{equation*}
f_{+}^{\prime}(a)=-F^{*}\left(d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right)\right)\left(F^{*}\left(d_{x(a)}\left(\mathscr{F}_{\mu_{x(a)}}\right)\right)-\mu(\{x(a)\})\right) \tag{4.15}
\end{equation*}
$$

which is negative as soon as $x(a)$ is not a minimal point of \mathscr{F}_{μ}. ¿From this we get the following

Proposition 4.6. Assume that μ is supported by a compact forward ball $\bar{B}\left(x_{0}, R\right)$, that the support of μ is not contained in a single geodesic and that for all $z \in$ $\bar{B}\left(x_{0}, R\right)$, the forward distance to z is convex, and strictly convex in any geodesic of $\bar{B}\left(x_{0}, C(1+C) R\right)$ which does not contain z. Then the path $a \mapsto x(a)$ converges to the median m of μ.

Proof. Similar to the proof of proposition 3.6

5. An algorithm for computing p-means

Lemma 5.1. Assume $\mathscr{K} \geq-\beta^{2}$, $\mathscr{T} \leq \delta^{\prime}, \mathscr{D} \leq D$ with $\beta>0, \delta^{\prime} \geq 0 D \geq 1$. For $p>1, r>0$, define

$$
\begin{equation*}
H(r)=H_{p, \beta, D, \delta^{\prime}}(r):=p r^{p-2}\left(D^{2} \max ((p-1), r \beta \operatorname{coth}(r \beta))+\delta^{\prime} r\right) \tag{5.1}
\end{equation*}
$$

If μ is a probability measure on M with bounded support and $x \in M$, define

$$
\begin{equation*}
H_{\mu}(x)=H_{\mu, p, \beta, D, \delta^{\prime}}(x):=\int_{M} H_{p, \beta, D, \delta^{\prime}}(\rho(x, y)) d \mu . \tag{5.2}
\end{equation*}
$$

If $t \mapsto \gamma(t)$ is a unit speed geodesic then for all t

$$
\begin{equation*}
\left(\mathscr{E}_{\mu, p} \circ \gamma\right)^{\prime \prime}(t) \leq H_{\mu}(\gamma(t)) \tag{5.3}
\end{equation*}
$$

Proof. For $x, y \in M, r=\rho(x, y), s \mapsto \gamma(s)=c(0, s)$ a unit speed geodesic started at $x=c(0,0), t \mapsto c(t, s)$ the geodesic satisfying $c(1, s)=y$, we have

$$
D_{p}^{\prime \prime}(0) \leq p r^{p-2}\left(D^{2} \max ((p-1), r \beta \operatorname{coth}(r \beta))+\delta^{\prime} r\right)
$$

Integrating with respect to y this equation gives the result.

Remark 5.2. If $p \geq 2$ or μ has a smooth density then the function H_{μ} is bounded on all compact sets.

The main result is the following (see 17] for a similar result in a Riemannian manifold).

Proposition 5.3. Assume $-\beta^{2} \leq \mathscr{K} \leq k,-\delta \leq \mathscr{T} \leq \delta^{\prime}, \mathscr{C} \leq C$ and $\mathscr{D} \leq D$ for some $\beta, k, \delta, \delta^{\prime}>0$ and $C, D \geq 1$. Let $p>1$. Assume the support of μ is contained in $B\left(x_{0}, R\right)$ and $\mathscr{E}_{\mu, p}$ is strictly convex on $\bar{B}\left(x_{0}, C(C+1) R\right)$. Assume furthermore that the function $H_{\mu}=H_{\mu, p, \beta, D, \delta^{\prime}}$ is bounded on $\bar{B}\left(x_{0}, C(C+1) R\right)$ by a constant $C_{H}>0$, and that the injectivity radius at any point of $\bar{B}\left(x_{0}, C(C+1) R\right)$ is larger than $C^{2}+C+1$. Define the gradient algorithm as follows:

Step 1 Start from a point $x_{1} \in B\left(x_{0}, C(C+1) R\right)$ such that $\mathscr{E}_{\mu, p}\left(x_{1}\right) \leq R^{p}$ (take for instance $x_{1}=x_{0}$) and let $k=1$.

Step 2 Let

$$
\begin{equation*}
v_{k}=\frac{\left.\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}{F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}, \quad \quad t_{k}=\frac{F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}{C_{H}} \tag{5.4}
\end{equation*}
$$

and let γ_{k} be the geodesic satisfying $\gamma_{k}(0)=x_{k}, \dot{\gamma}_{k}(0)=v_{k}$. Define

$$
\begin{equation*}
x_{k+1}=\gamma_{k}\left(t_{k}\right) \tag{5.5}
\end{equation*}
$$

then do again step 2 with $k=k+1$.
Then the sequence $\left(x_{k}\right)_{k \geq 1}$ converges to e_{p}.

Proof. We first prove that the sequence $\left(\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)_{k \in \mathbb{N}}$ is nonincreasing. For this we write

$$
\begin{align*}
\mathscr{E}_{\mu, p}\left(\gamma_{k}\left(t_{k}\right)\right) & \leq \mathscr{E}_{\mu, p}\left(\gamma_{k}(0)\right)+\left\langle d \mathscr{E}_{\mu, p}, v_{k}\right\rangle t_{k}+C_{H} \frac{t_{k}^{2}}{2} \\
& \leq \mathscr{E}_{\mu, p}\left(\gamma_{k}(0)\right)-F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right) \frac{1}{C_{H}} F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right) \\
& +\frac{C_{H}}{2}\left(\frac{F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}{C_{H}}\right)^{2} \tag{5.6}\\
& =\mathscr{E}_{\mu, p}\left(\gamma_{k}(0)\right)-\frac{C_{H}}{2}\left(\frac{F\left(\operatorname{grad}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}{C_{H}}\right)^{2}
\end{align*}
$$

This proves that the sequence is nonincreasing. As a consequence, for all $k \geq 1$, $x_{k} \in \bar{B}\left(x_{0}, C(C+1) R\right)$, since $\mathscr{E}_{\mu, p}\left(x_{k}\right) \leq R^{p}$ and for all $x \notin \bar{B}\left(x_{0}, C(C+1) R\right)$, $\mathscr{E}_{\mu, p}(x)>R^{p}$.

Next we prove that $\mathscr{E}_{\mu, p}\left(x_{k}\right)$ converges to $\mathscr{E}_{\mu, p}\left(e_{p}\right)$. We know that $\mathscr{E}_{\mu, p}\left(x_{k}\right)$ converges to $a \geq \mathscr{E}_{\mu, p}\left(e_{p}\right)$. Extracting a subsequence $x_{k_{\ell}}$ converging to some $x_{\infty} \in$ $\bar{B}\left(x_{0}, C(C+1) R\right)$, this implies that $t_{k_{\ell}}$ converges to 0 . But this is possible only if $x_{\infty}=e_{p}$, which implies that $a=\mathscr{E}_{\mu, p}\left(e_{p}\right)$. As a consequence, any converging subsequence has e_{p} as a limit, and this implies that x_{k} converges to e_{p}.

Remark 5.4. For this result we need the Hessian of $\mathscr{E}_{\mu, p}$ to be bounded, and the subgradient algorithm in Riemannian manifolds as developed in 28 does not work. The reason is that for this algorithm, we would need to take

$$
v_{k}=\frac{\left.\operatorname{grad}_{\overrightarrow{x_{k} e_{p}}}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}{F\left(\operatorname{grad}_{\overrightarrow{x_{k} \overrightarrow{e p}_{p}}}\left(-\mathscr{E}_{\mu, p}\left(x_{k}\right)\right)\right)}
$$

where $\operatorname{grad}_{\overrightarrow{x_{k} e_{p}}}$ denotes the gradient with respect to the metric $<\cdot, \cdot>_{\overrightarrow{x_{k} e_{p}}}$. So we would need to know e_{p} !
Corollary 5.5. Let $p=2$. If $R \leq \frac{1}{C(C+1)^{2} \sqrt{k}} \arctan \left(\frac{\sqrt{k}}{C \delta^{2}}\right)$ or M has nonpositive flag curvature, then the algorithm of Proposition 5.3 can be applied with the appropriate constants
Proof. With this assumption, by Proposition 2.1 the function $\mathscr{E}_{\mu, 2}$ is strictly convex on $\bar{B}\left(x_{0}, C(C+1) R\right)$.

References

[1] B. Afsari, Riemannian L^{p} center of mass : existence, uniqueness, and convexity, Proceedings of the American Mathematical Society, S 0002-9939(2010)10541-5, Article electronically published on August 27, 2010.
[2] J.C. Alvarez Paiva, Some problems on Finsler geometry, Handbook of differential geometry, Vol. II, pp. 1-33, Elsevier/North-Holland, 2006.
[3] M. Arnaudon and X.M. Li, Barycenters of measures transported by stochastic flows, The Annals of Probability, 33 (2005), no. 4, 1509-1543
[4] L. Astola and L. Florack, Finsler geometry on higher oredre tensor fields and applications to high angular resolution diffusion imaging, Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings (SSVM), pp. 224-234, 2009
[5] L. Auslander, On curvature in Finsler geometry, Transactions of the American Mathematical Society; Vol. 79, No. 2 (Jul. 1955), pp. 378-388
[6] D. Bao, S.S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, Springer, 2000
[7] S.S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, 2005
[8] J.M. Corcuera and W.S. Kendall, Riemannian barycentres and geodesic convexity Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 2, 253269.
[9] M. Emery and G. Mokobodzki, Sur le barycentre d'une probabilité dans une variété, Séminaire de Probabilités XXV, Lecture Notes in Mathematics 1485 (Springer, Berlin, 1991), pp. 220233
[10] P.T. Fletcher, S. Venkatasubramanian, S. Joshi, The geometric median on Riemannian manifolds with application to robust atlas estimation, NeuroImage, 45 (2009), pp. S143-S152
[11] R. Gallego Torrome, On the generalization of theorems from Riemannian to Finsler geometry I: Metric Theorems, arXiv:math/0503704v3, [math.DG] 3 Apr 2008
[12] F.R. Hampel, P.J. Rousseeuw, E.M. Ronchetti, W.A. Stahel, Robust Statistics The Approach Based on Influence Function, Wiley, New York, 1986
[13] H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, vol XXX (1977), 509-541
[14] W.S. Kendall, Probability, convexity and harmonic maps with small image I: uniqueness and fine existence, Proc. London Math. Soc. (3) 61 no. 2 (1990) pp. 371-406
[15] W.S. Kendall, Convexity and the hemisphere, J. London Math. Soc., (2) 43 no. 3 (1991), pp. 567-576
[16] H.W. Kuhn, A note on Fermat's problem, Mathematical Programmming, 4 (1973), pp. 98107
[17] H. Le, Estimation of Riemannian barycentres, LMS J. Comput. Math. 7 (2004), pp. 193-200
[18] J. Melonakos, E. Pichon, S. Angenent and A. Tannenbaum, Finsler active contours, IEEE Trans. Pattern Anal. Marc. Intell. 30(3), pp. 412-423, 2008.
[19] S-i Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann. 343 (2009), pp. 669-699
[20] L.M.JR. Ostresh, On the convergence of a class of iterative methods for solving Weber location problem, Operation. Research, 26 (1978), no. 4
[21] M. Pchaud, R. Keriven and M. Descoteaux, Brain connectivity using geodesics in hardi, IEEE International Conference on Medical Image Computing and Computed Assisted Intervention (MICCAI), London, Sept. 2009
[22] J. Picard, Barycentres et martingales dans les variétés, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), pp. 647-702
[23] A. Sahib, Espérance d'une variable aléatoire à valeurs dans un espace métrique, Thèse de l'université de Rouen (1998)
[24] Z. Shen, Riemann-Finsler geometry, with applications to information geometry, Chinese Annals of Mathematics, Series B, 27, pp. 73-94, 2006
[25] Vardi, Y. and Zhang, C.H. The multivariate $L_{1}-m e d i a n ~ a n d ~ a s s o c i a t e d ~ d a t a ~ d e p t, ~ P r o c . ~ N a t l . ~$ Acad. Sci, USA, 97, (2000), pp.1423-1426.
[26] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnés est minimum, Tohoku Math. J. 43 (1937), pp. 355-386
[27] B.Y. Wu and Y.L. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann. 337 (2007), pp. 177-196
[28] L.Yang, Riemannian median and its estimation, to appear in LMS Journal of Computation qnd Mathematics

[^0]
[^0]: Laboratoire de Mathématiques et Applications
 CNRS: UMR 6086
 Université de Poitiers, Téléport 2 - BP 30179
 F-86962 Futuroscope Chasseneuil Cedex, France
 E-mail address: marc.arnaudon@math.univ-poitiers.fr
 Laboratoire D'informatique (LIX)
 École Polytechnique
 91128 Palaiseau Cedex, France
 Sony Computer Science Laboratories, Inc
 Tokyo, Japan
 E-mail address: Frank.Nielsen@acm.org

