
Touchstone: Exploratory Design of Experiments

Wendy E. Mackay1,2, Caroline Appert2,1, Michel Beaudouin-Lafon2,1,
Olivier Chapuis2,1, Yang Zhou Du2,1, Jean-Daniel Fekete1,2, Yves Guiard3

 1INRIA 2LRI, Univ. Paris-Sud & CNRS 3LMP, CNRS & Univ. Méditerrannée
 F-91405 Orsay, France F-91405 Orsay, France F-13288 Marseille, France

{mackay, appert, mbl, chapuis, du, fekete}@lri.fr, yves.guiard@univmed.fr

ABSTRACT
Touchstone, an open-source experiment design platform,
is designed to help establish a solid research foundation
for HCI, especially in the area of novel interaction
techniques, by providing a repository and a set of tools to
design, run and analyze controlled experiments..
Touchstone includes a design platform for exploring
alternative designs of controlled laboratory experiments, a
run platform for running subjects and a limited analysis
platform for advice and access to on-line statistics
packages. Designed for HCI researchers and their
students, the goal is to facilitate the process of replicating
and extending experiments in the research literature as
well as creating new ones. We tested Touchstone by
designing two controlled experiments. One replicates and
extends a previous study of multiscale pointing
interaction techniques: OrthoZoom was fastest, followed
by bi-manual Pan & Zoom; SDAZ and traditional Pan &
Zoom were significantly slower. The other illustrates how
to create a new experiment.
Author Keywords: Benchmarking, Experimental Design,
Platform, Fitts' Law, Interaction Techniques

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools & Technique
–User interfaces, H.1.2 [Models & Principles]:
User/Machine Systems – Human factors, H.5.2 [User
Interfaces]: User-centered design

INTRODUCTION
In well-established empirical fields such as biology and
experimental psychology, with over a century of
experience conducting experiments, graduate students are
taught that experiments build upon each other and that no
individual experiment provides the ultimate answer to the
question being studied. Researchers form theories,
operationalize hypotheses based on those theories and
perform controlled experiments to determine cause and
correlation. Individual studies are published in the
literature; other researchers repeat those experiments to
confirm or refute them, and then extend them. No one

experiment is ever definitive, although obtaining
significant results provides strong support for the theory
in question. This type of research is what Kuhn [15] refers
to as the puzzle-solving aspect of “normal science”.
Gaines [10] describes the evolution of Science
Technology as beginning with breakthroughs and
replication of ideas before progressing to empirical
models, then theories and finally automation and
maturity. Human-Computer Interaction (HCI) is a very
young research area and is, for the most part, still at the
breakthrough and replication stages, despite Card et al.'s
[5] ground-breaking theoretical work in the 1980's. Great
value is still placed on novelty and innovation, as when
developing novel interaction techniques, and research is
not always based on either theoretical or empirical
foundations. MacKenzie et al. [17] argue that, despite the
abundance of published evaluations in the HCI and
human factors literature, the methodologies are ad hoc
and the experimental procedures are inconsistent from
one study to the next, which “greatly diminishes our
ability to understand the results or to undertake
comparisons between studies”.
Replicating and extending experiments is very difficult in
practice, even for experienced researchers. In order to
compare a new interaction technique to existing ones,
they must not only program their own techniques, but also
re-implement or obtain running versions of the existing
techniques based on the information published in the
literature. This is time-consuming and does not guarantee
generalizability, since tiny differences in the details of the
implementation may have major effects on performance.
As a result, the most common practice is to compare a
new interaction technique to a single ‘standard’ technique
on a single task and ignore other possible contenders.

The goal of Touchstone1 is to help establish a solid
research foundation for HCI, especially in the area of
novel interaction techniques, by providing a repository
and a set of tools to design, run and analyze controlled
experiments. We first present related work and the

1 Historically, a “touchstone” is a black stone on which soft
metals leave a visible trace. A goldsmith would compare the
trace left by a new gold coin against a standard stripe of known
quality. Wikipedia also defines a Touchstone as “Any physical
or intellectual measure by which the validity or otherwise of a
concept can be tested”.

Submitted to CHI2007

describe the main components of Touchstone. We then
illustrate the use of the design and run platforms with two
experiments. We describe the results of the first
experiment and conclude with a discussion of Touchstone
and directions for future research.

RELATED WORK
Several on-line ‘experiment generators’, e.g., WeXtor and
EDGAR2 are designed to help students learn how to
design specified types of experiments. While they offer a
start, none provide researchers with the ‘what-if’ style of
experiment design exploration that we sought. As
researchers, we would like to see what happens, e.g., if
we add extra values to a particular factor: What is the
effect on how many subjects are required for a properly
counter-balanced experiment? What is the effect of
replicating trials on the overall length of the experiment
for any individual subject?
Some statistical analysis packages, such as JMP (SAS
Institute) include experiment design modules. We have
also found websites3 that provide code for implementing
particular designs. Unfortunately, these assume that the
experimenter has already made all the relevant design
decisions and is just plugging in the factors. In addition,
modules from statistics packages are very comprehensive,
covering a huge variety of possible experimental designs
that go far beyond the scope of most HCI studies and are
often confusing for non-specialists.
Finally, we have found many on-line courses and
textbooks on experimental design4. Some are excellent,
but they are rarely presented with HCI experiments as
examples. Understandably, they tend to specialize
according to a particular application domain and
differences in terminology and assumptions about what
constitutes a typical experiment may create a significant
barrier. For example, the HCI literature uses the terms
within-subjects and repeated measures, which are
common in psychology, but rarely correlated samples,
from engineering statistics. Yet all mean the same thing.
We also find confusion about terms within the HCI
literature. For example, a repeated measures design refers
to a single measure being repeated once for each subject;
replicated measures refer to multiple presentations of the
same trial to the same subject. Since few standard
introductory psychology courses involve repeated
measures experiments that also replicate trials per subject,
many researchers find it difficult to obtain appropriate
advice on the design and analysis this type of experiment.
With respect to the actual running of experiments, despite
the large number of user interface toolkits, the only
systems we know that share Touchstone's goals are the
Generalized Fitts’ Law Model Builder [20] and the

2 Wextor: http://psychwextor.unizh.ch/wextor/
 EDGAR: http://www.uea.ac.uk/nrp/jic/edgar
3 http://home.nc.rr.com/schabenb/Designs.html
 http://statpages.org/#WhichAnalysis
4 For example: http://faculty.vassar.edu/lowry/webtext.html

Shakespeare platform [13]. Both are specifically targeted
at Fitts experiments and could be used in the context of
ISO standard 9241 [21] on input devices. Neither support
interactive, exploratory experiment design and we need
more general tools that help a wider range of HCI
researchers to design, run and analyze HCI experiments.

TOUCHSTONE ARCHITECTURE
We developed Touchstone as an open-source tool for
creating controlled, counterbalanced experiments,
especially (but not solely) for comparing interaction
techniques. The design is modular, with three main
components that can be used independently, although they
are designed to work together.
The design platform provides a simple web-based
interface to guide experimenters through all phases of
designing a controlled experiment, including blocking,
counterbalancing, and estimating the timing. It produces
an XML script that describes the experiment, as well as
text descriptions of different aspects of the experiment
design and sample data logs. The current version of the
design platform covers the most common experimental
designs used in HCI. If needed, users can edit the script
file or use their own counterbalancing strategies.

Fig. 1. Touchstone architecture:

design, run and analysis platforms

The run platform consists of the experiment launcher and
the Touchstone Development Environment (TDE). The
experiment launcher is a Java-based application
framework that loads experiment components (blocks,
factors, etc.) from a repository and then runs the
experiment, presenting trials to the user according to the
experimental protocol defined by the above XML script
and collecting data into data logs. The Touchstone
Development Environment is used to implement new
experiment components and register them with the design
and run platforms. The current set of experiment
components implements pointing and navigation

techniques and the building blocks to create Fitts
experiments [9]. New components can easily be added to
handle other types of experiments, e.g., how task context
affects the efficacy of interaction techniques [16] or
comparisons of non-traditional interaction techniques
such as computer vision [8].
The analysis platform helps the user analyze the data logs
produced by the run platform and provides input to well-
known statistical packages. The current version provides
only limited advice about which statistical techniques are
appropriate for the design chosen by the experimenter.
We refer users to two statistics packages, R and JMP,
which can read the table logs directly.

Design Platform
Touchstone’s design platform supports exploratory
experiment design by enabling the experimenter to
examine the consequences of alternative design decisions
through a ‘what if’ style of interaction. For example:
What if I add a new value to this factor: how many
additional subjects will I need? What if I treat this factor
as secondary and only present it to some subjects rather
than to all subjects? How many trial replications can I
afford, without making the experiment too long? A help
facility, with pointers to other on-line resources, provides
advice about the advantages and disadvantages of each
choice and the issues that should be considered in the
subsequent analysis of the chosen design.
The challenge in creating the design platform was to find
the appropriate balance between simplicity, i.e., targeting
the optimal subset of possible experiment designs with a
minimalist, efficient interface for creating them, and
power, i.e., enabling researchers to conduct the necessary
range of experiments with minimum additional
programming or design adjustments. Table 1 shows our
distillation of the experiment design process into six key
steps, each with one or more design decisions (Table 1).

Step Decisions
1 Identify experiment
2 Specify factors
 How many and which factors and values?
 Which factors are primary?

3 Specify blocks
 Which block type (complete, mixed or pure)?
 How many replications?

4 Specify timing
 Which experiment components to include?
 What time estimates for events, trials, pauses?
 Which end-criteria for trials, blocks, practice?

5 Specify ordering
 How to order trials and blocks?

6 Specify measures
 Which measures to include in which form?

Table 1: Summary of Touchstone design decisions

The Touchstone interface presents the six design steps as
tabs to encourage iterative design. The experimenter can
move among these tabs at any time and changes within a
tab propagate to other tabs as necessary. We now
illustrate the design process using the experiment we ran
to evaluate the platform. It compares four multiscale
navigation techniques (unimanual and bimanual Pan &
Zoom, OrthoZoom, SDAZ) with two indices of difficulty
(ID=10, 15) and two target widths (W=200, 400 pixels).
Step one: The experimenter provides basic information
about the experiment: name, filename for summary files,
authors and a brief description of the experiment.

Fig. 2. Step 2: Specifying factors and values

Step two: The experimenter specifies the desired factors
and their values (Fig. 2). As a convenience, the design
platform can list the factors defined by the run platform
(see TDE below), but experimenters can also specify their
own. In this example, the experimenter adds the technique
factor and specifies its values. Each value has a short code
for the log files (PZ = unimanual Pan & Zoom, PZB =
bimanual Pan & Zoom, OZ = OrthoZoom, SDAZ =
Speed-Dependent Automatic Zooming) with an optional
long name. The experimenter adds the ID factor and
specifies its values (10, 15). She then adds the W factor
and specifies its values (200, 400).
The experimenter must now decide which of these factors
are primary and which are secondary. Primary factors are
presented within subjects, i.e. every subject receives all
values of each primary factor, whereas secondary factors
are presented between subjects, i.e. only one value of a
factor is presented to a particular subject. If the
experiment has at least one primary and one secondary
factor, the design is mixed. Touchstone’s help facility
describes the different design types (within-subjects,
between-subjects and mixed), the advantages and
disadvantages of each and how the choice affects the
recommended minimum number of subjects required and
the type of analyses to perform.

Step three: Touchstone feeds back the results of step two,
specifying the experiment design, here a 4x2x2 within-
subjects design, and generating the list of unique trial
types (the experimental conditions) with the suggested
minimum number of subjects (Fig. 3). Touchstone lists all
possible ways of blocking factors within-subject, from a
complete-block design, in which a single block contains
all the conditions for that subject, to a pure-block design,
in which there is one block per condition. In our example,

we block by Technique to ensure that all trials for a single
technique are presented in sequence to the subjects. This
grouping typically reduces negative skill transfer in
within-subject designs. The corresponding design is listed
as "Block[Technique] x ID x Width". Since it is a within-
subjects design, it has a single subject group with four
blocks, corresponding to the generic (i.e., not yet counter-
balanced) run for each subject (Fig. 4).

Fig. 3. Subset of possible block structures.

Block 1 Block 2 Block 3 Block 4
PZ-10-200 PZB-10-200 OZ-10-200 SDAZ-10-200
PZ-10-400 PZB-10-400 OZ-10-400 SDAZ-10-400
PZ-15-200 PZB-15-200 OZ-15-200 SDAZ-15-200
PZ-15-400 PZB-15-400 OZ-15-400 SDAZ-15-400

Fig. 4. Detail of block structure.

This step also allows the experimenter to define the
number of replications of trials, blocks and subjects, again
with advice on the consequences of different decisions.
For example, replicating trials for an individual subject
decreases the overall variability of the results and thus
increases the likelihood of obtaining a significant result (if
the difference is in fact significant). On the other hand, it
increases the running time of the experiment and requires
a modified statistical analysis. In our example, we chose
to replicate each trial four times per block.
Step four: The experimenter estimates the running time
for each subject, including pre- and post-experiment
events. For example, the experimenter may decide to give
a background questionnaire and a practice session before
the experiment and a satisfaction questionnaire and a
debriefing session after the experiment. The experimenter
also estimates the average length of experimental trials,
the inter-trial and inter-block intervals and specifies the
end criteria for ending trials and blocks. Together, this
information provides a rough estimate of how long it will
take each subject to go through the experiment. If the
experiment, including pre- and post-experiment events

lasts more than an hour, the experimenter is encouraged to
reconsider some earlier design decisions, such as the
number of replications, the number of factors or values or
the choice of primary and secondary factors.
Step five: The experimenter decides the counterbalancing
strategy for the order of trials and blocks within and
across subjects (Fig. 4). Counterbalancing helps assure
that possible order effects, such as practice or fatigue, are
evenly distributed throughout the experiment. The most
common choice is a Latin square which ensures that each
subject receives each condition in a different order and
that the orders appear exactly once. Our algorithm also
ensures that pairs of trials are counterbalanced across
subjects. If the experiment has a very small number of
conditions, the experimenter can specify a complete
design that presents each subject with all possible orders
of trials. With very large numbers of conditions, usually
when a factor has many possible values, the experimenter
can present trials in random order. The experimenter can
also specify that replicated trials are presented serially.
This is a common choice for Fitts experiments that focus
on motor tasks, such as reciprocal pointing.

Fig. 5. Counter balancing

Based on these choices, Touchstone generates the
complete set of counterbalanced trials required for each
subject and displays it as a comma-separated list that can
be easily loaded into analysis software such as Excel, R or
JMP. This allows the experimenter to test Touchstone’s
counter-balancing strategy, e.g., to assess the distribution
of certain trials across particular blocks. The experimenter
may also decide to apply a different counterbalancing
strategy and paste the result back into the Touchstone
XML file, for use by the run platform. Making the results
of the experimenter’s design decisions transparent assures
that even experimenters with different experimental
design philosophies or training can take advantage of
Touchstone’s exploratory design facility.
Step six: The experimenter specifies the measures
(dependent variables) and the type of data log to record
them in. As for factors, the design platform can list the

measures defined in the run platform, but experimenters
can also specify their own.
Touchstone provides two types of logs: a table log and a
cinematic log. The table log is designed to be analyzed by
a statistics package such as JMP or R. Each line is
independent and lists the subject, block and trial numbers,
the condition (value of each factors) and the measures
chosen. The cinematic log is designed to ‘replay’ the
experiment and enables a more fine-grained analysis of
each trial. Touchstone produces samples of both log files,
which the experimenter can compare to the actual data
produced by the run platform. In our example, we specify
the movement time, hit/miss and distance-to-target
measures to be included in the table log5 and the x/y
position of the cursor and current scale of the view to be
included in the cinematic log.
Note that, although we presented this process linearly, the
platform is designed to be iterative, making it easy to
revisit and change earlier decisions. For example, if step 4
shows that the average running time of the experiment is
about 90 minutes, we can return to step 2 and make W
(target width) into a secondary factor, shifting from a
within-subjects to a mixed-subjects design and cutting the
number of experimental trials per subject in half. (This
would, however, increase the number of subject groups.)
The resulting XML experiment script (Fig. 6) is available
in the Result tab and can be interpreted directly by the run
platform to run the experiment. It can also be saved to a
local file or into the Touchstone repository, enabling an
experimenter to reuse or modify existing experiments.
The current version of Touchstone provides several
sample experiments and we hope that future users will
make their experiment designs available in this format.
The design platform can generate, from the XML script, a
text summary of the experiment, using the format of a
standard procedure section that includes experiment
design type, number of subjects, a complete list of the
experimental conditions, the blocking and counter-
balancing strategies, as well as an ordered list of trials per
subject and sample logs. These summary files capture the
design rationale for each experiment which not only helps
experimenters remember why they made certain decisions
in earlier experiments, but also provides a teaching aid,
facilitating design trade-off discussions between senior
researchers and students. Touchstone’s help facility also
discusses basic design concepts and trade-offs, links to
relevant on-line courses, a glossary of technical terms,
and explanations of Touchstone’s naming conventions
and counterbalancing strategy.

Run Platform
The run platform is a 10,000-line Java program that runs
experiments created with the design platform. The details

5 Fitts experiments typically manipulate three counfounded
variables: target Width, target Distance and index of difficulty
(ID). The Fitts components of the run platform are designed so
that when any two of these are specified as factors (here, ID and
Width) the third one (here, Distance) is generated as a measure.

of the experiment, including the precise conditions for
presenting each trial, are defined in the XML script
generated by the design platform (or possibly edited by
the experimenter). Fig. 6 shows an excerpt of the script
generated by the example in the previous section.
1 <interblock class=“Message({New block})”
 criterion=“Key(Space)”>
2 <block values=“TQ=SDAZ” criterionTrial=
 “Dwell(1000) | (TimeOut(180000)=>{Too Long})” >
3 <intertrial class= “Message({Touch the target
 as quickly as possible!})” …>
4 <trial values=“ID=15, W=400”
 class=“PointingBlock” />
5 <trial values=“ID=10, W=200”
 class=“PointingBlock” />
6 <trial …/>
7 </intertrial>
8 </block>
9 <block …> ... </block>
10 </interblock>

Fig. 6. Excerpt from experiment script.

The run platform includes an experiment launcher and the
Touchstone development environment (TDE). The
experiment launcher reads the XML script, loads the
experiment components mentioned in the script and runs
the experiment. Touchstone comes with a set of
preexisting components available in an on-line repository.
New components can be created using the TDE.

Experiment Launcher
The experiment launcher is a Java-based graphical
application that presents the trials to the subjects and
collects data measures. When launched, it displays a
window with three tabs: Run, Summary and Input.

Fig. 7. Experiment launcher (Run tab).

The experimenter begins by entering the subject id and
the name of the script file in the Run tab (Fig. 7) and
clicks the Run button. The experiment launcher fetches
the run corresponding to this subject from the XML script
(Fig. 6). A run is organized into one or more blocks, each
with a specified sequence of trials. The condition for each
trial is specified by the "values" attributes (lines 2 and 4).
Values specified at the block level (line 2) are valid for
the whole block. Interblocks and intertrials separate the
successive blocks and trials that appear within their scope
(lines 1-10 for interblock, 3-7 for intertrial). Usually, they
display instructions or provide a rest period for the

subject. The script may contain references to experiment
components such as Message (line 3) or PointingBlock
(line 4). These components are Java objects that
implement trials, inter-titles (interblock or intertrial) and
end criteria. They are loaded dynamically by the
experiment launcher and are the primary mechanism for
extending the run platform.
The core of the experiment launcher executes a state
machine (Fig. 8) whose events come both from the human
subject and the XML script. Each block (line 2),
interblock (line 1), trial (lines 4-5) and intertrial (line 3)
specifies a class and end criterion that reference
components. The state machine calls these components'
methods during state transitions, e.g., when a trial starts
and ends, and in guards to decide if a trial is over.

Fig. 8. State Machine running the experiment
(plain text: script events, italic: user events).

For example, lines 1 and 3 use the Message component to
display a message before each trial ("Touch the target as
quickly as possible") and each block ("New block"). The
end criterion specifies which action the user has to
perform to get to the next step, i.e. to start a block, to start
a trial or to end a trial. Several criteria are predefined and
can be freely combined with boolean operators. For
example, line 1 specifies waiting until the user presses the
space bar to start a block, while line 2 specifies that any
trial in the block is terminated either when the user dwells
on an object for one second (1000 ms) or if the trial lasts
more than three minutes (180 000 ms). In the latter case, a
fail condition and the measure "Too Long" will be output
to the table log.
The run platform supports factors and measures in a
flexible way. A factor is a value set by the script when a
block or trial starts, whereas a measure is a value updated
by one or more components as the experiment is run. Any
experiment component can export measures. For example,
a block typically provides the measures end time and
success (hit or miss) for the current trial.
As the experiment is run, the experiment launcher collects
the available measures and outputs them to a table log and
a cinematic log as specified in the XML script (not shown

in Fig. 6). Both files are created when the experiment
begins with a name that includes the current date and
time. Each file starts with comments describing the
experiment and the different measures logged. The rest of
the table log has one line per trial listing the experimental
setting (experiment name, subject, block number, trial
number) and the values of the factors and the measures
(Fig. 9). The rest of the cinematic log has one line per
change of value of a cinematic measure (Fig. 10). The two
log files can be readily loaded into most statistical
analysis tools, including Excel, R and JMP.

MSnav:Compare multiscale navigation techniques
TQ:technique
ID:Index of Difficulty
W: Target Width
MT:Movement Time
HIT:end trial
D:distance
Date: 2006-09-22-11-00-10
exp subject block trial TQ W D ID MT HIT

MSnav S1 1 1 OZ 200 204600 10 12094 dwell

MSNav S1 1 2 OZ 400 12094 15 6578 dwell

Fig. 9. Example table log.

Experiment: MSnav
Subject: S1
scale:zoom factor
x: x-cursor
y:y-cursor
Date: 2006-09-22-11-00-10

block trial time scale x y
1 1 213386 1.0 56.0 92.0
1 1 213401 1.0 69.0 114.0
1 1 213329 1.0 68.0 108.0

Fig. 10. Example cinematic log.

Clicking on the Summary tab shows which subjects have
been run. A separate file stores subject ids mapped to
subject names, which keeps data logs anonymous.
The Input tab of the experiment launcher specifies the
mapping of input devices to virtual controllers (Fig. 11).
We designed a generalized input library (GIL) to access
any input device and specify virtual ones because the Java
input libraries are limited to a standard mouse and
keyboard. Components do not have to use GIL: they can
manage input devices directly if needed.

GIL is implemented on top of the JInput system6 and
offers simple and flexible naming and configuration
mechanisms. JInput describes input devices in terms of
controller devices, e.g., a mouse, and components that
generate values, e.g., mouse buttons or a mouse’s X
displacement. JInput can query which controllers are
available and generate events when any component
changes state. GIL provides access to these physical
components values using a syntax of the form <controller
name>.<component name>. For example, for a laptop
computer with a USB mouse connected, JInput defines
three controllers: TRACKPAD, KEYBOARD and USB MOUSE,

6 http://jinput.dev.java.net/

with several components for each, e.g., X or BUTTON1.
Available physical components are listed in the left pane
of the Input tab (Fig. 11).

Fig. 11. Experiment launcher (Input tab).

Virtual controllers are defined in the right pane as a set of
virtual axes. Each axis is specified by an expression using
operators such as add, multiply, min, max, exp, if-then-
else, integration, which transforms relative values sent by
an axis into an absolute value and difference, which does
the opposite. For example, the relative input from a
mouse can be transformed into an absolute screen position
as follows: x=integrate(Mouse.x, 0, Window.width).
A major benefit of using GIL is the ability to test different
input devices for the same interaction technique without
changing or even recompiling it. For example, a generic
Pan & Zoom component could be programmed to use a
virtual “scale” axis. Bi-manual Pan & Zoom [4] could
then be obtained by defining “scale” as a function of a
joystick slider while the Zliding technique [19] would
define “scale” as a function of stylus pressure.

TDE: Touchstone Development Environment
The run platform is designed to facilitate the reuse of
existing components and the development of new ones. In
the previous section, we assumed that the experiment
components referenced by the script were already
available in the Touchstone repository. This section
describes how to create new components (intertitles,
blocks, criteria, factors and measures) with Touchstone’s
Development Environment (TDE).
The implementation of the run platform uses the factory
design pattern [11] so that each experiment component
can be referenced by a simple name. Touchstone contains
three factories: one for blocks, one for intertitles and one
for criteria. To create new components, the experimenter
extends Java classes such as Block and overrides some
methods such as those called by the state machine from
Fig. 8. To register components with the factories, the
experimenter annotates the Java code with comment tags
such as @touchstone.block. A TDE tool then generates
the appropriate code to register the components with the
factories and an XML description file that makes them
available to the design platform.
Fig. 12 shows how to define a block consisting of a series
of pointing tasks. First, the tag @touchstone.block
registers this class with the block factory so this block can
be referenced by one of the two names PointingBlock or

FittsBlock (Fig. 12, lines 1 and 2). Next, the methods
begin/endBlock and begin/endTrial are overridden to
create/delete the view and the object representing the
target (Fig. 12, lines 6-8).

1 /** @touchstone.block FittsBlock
2 @touchstone.block PointingBlock
3 */
4 public class FittsBlock extends Block {
5 public FittsBlock() { super(); }
6 public void beginBlock() { /* create view */ }
7 public void beginTrial() { /* create target */}
8 public void endTrial(EndCondition ec) { ... }
9 public void endBlock() { ... }
10 }

Fig. 12. PointingBlock code

For graphical output, Touchstone provides a scene graph
and a zoomable viewer similar to but simpler than those
of Piccolo [3] and ZVTM [18]. However the experimenter
can use any Java toolkit such as Swing or, e.g., an
OpenGL-based toolkit for graphically demanding
techniques such as perspective pointing [12] or Fisheye
views [6]. Non-graphical output (and input) can also be
used: the launcher does not depend in any way on the use
of a graphical display or input device to run the
experiment.
Factors and measures are registered by the components
with a global Platform object. For example, the FittsBlock
class above queries the Platform object to get the values of
the ID and W factors and create an object representing the
target of the right size at the right location (Fig. 12, line
7). It also queries the Platform object for measures such as
movement time and hit/miss and updates them when the
end condition of the trial is met. By default, the values are
simple strings, but new factor types and values can be
created. For example, Fig. 13 shows the definition of the
Technique (TQ) categorical factor and one of its values
(SDAZ). The tags @touchstone.factor and
@touchstone.value are used to export this factor to the
design platform. Measures are created similarly.
1 /** @touchstone.factor TQ
2 name: "Technique"
3 */
4 public class TechniqueFactor extends Factor {
5 public TechniqueFactor() { super("TQ"); }
6 public void setValue(Object value) {
7 // init technique parameters
8 }
9 }
10
11 /** @touchstone.value SDAZ
12 factor: TQ
13 name : "SpeedDependantAutomaticZooming"
14 help: "rate-based scrolling with zoom factor
15 adapted to the scrolling speed"
16 */
17 public class SDAZTechnique {
18 public SDAZTechnique() { … }
19 // methods for SDAZ
20 }

Fig. 13. The technique factor (TQ) and the SDAZ value

It is often convenient to be able to access factors and
measures when using the design platform, even if they
have not yet been implemented. This is easily achieved by
specifying empty Java classes for the corresponding
components but specifying the proper @touchstone tags.
The TDE tool generates the proper input to the design
platform so that, e.g., the Technique factor displays a
menu with the proper list of techniques.
In summary, the heart of the run platform is the state
machine: it runs the experiment by interpreting the XML
script and user input and calls components. This makes
Touchstone very general, applicable to a wide variety of
experiments, as long as they can be implemented in Java.

Analysis Platform
The analysis platform is provided as a convenience for the
experimenter and provides limited advice on appropriate
statistical tests for the current experiment. It refers to R
and JMP7, two data analysis packages that can read the
table logs generated by the run platform.

EVALUATION
Evaluating Touchstone involves determining whether or
not it effectively supports experimenters in the design and
implementation of controlled experiments. We used
Touchstone to create two experiments: the first replicates
and extends a published experiment and the second
illustrates how to create a new experiment.

Replicating and Extending an Experiment
We first used Touchstone to replicate the design of a
recent experiment [2] comparing OrthoZoom Slider (OZ)
and Speed-Dependent Automatic Zooming (SDAZ) [14].
We then extended it, adding two additional techniques:
standard unimanual Pan & Zoom (PZ) and a bimanual
version of Pan & Zoom (PZB) that had been tested in a
different experiment [4].

Method
We conducted a 4x2x2 within-subjects experiment to
compare the relative efficiency of four interaction
techniques on a 1-dimensional multistage pointing task.
The original experiment [2] had three independent
variables: technique, index of difficulty (ID) and target
width (W). We used these same factors, but added two
new values for technique (PZ and PZB). Once entered
into the design platform, we quickly realized that we had
to reduce the number of IDs and Ws to keep the
experiment length and number of subjects manageable.
We settled for 16 unique trial types: 4 techniques (PZ,
PZB, OZ, SDAZ8) x 2 IDs (10, 15) x 2 W (200, 400).
Experimental trials were organized into four technique-
specific blocks to avoid disturbing subjects with
successive changes among techniques. The block
presentation order was counterbalanced across subjects

7 R (open-source): http://www.r-project.org;
 JMP (SAS Institute, Inc): http://www.jmp.com.
8 To calibrate SDAZ, we used Cockburn’s formula with k=0.05
and threshold = 20 [7].

using a Latin square. All four combinations of ID and W
appeared in each block. We tried several numbers of
replications and checked its effect on the length of the
experiment. We selected four replications, i.e. 32 trials
per block, counterbalanced with a Latin square.
In an ideal world, we would simply use Touchstone's
recommendation of 16 subjects, with all orders of all
values of each factor counterbalanced for order via a
Latin Square. But we were interested in seeing whether or
not Touchstone could help an experimenter who faced a
constraint, in this case, access to 12 instead of 16 subjects.
Touchstone allows ‘what if’ exploration of alternative
solutions. For example, if we omit W (target width) as a
factor, giving it a constant value for all four combinations
of technique and ID, it would limit our ability to make
claims about other values of W, but would require only
four subjects for a complete Latin square, which could be
replicated three times to get 12 subjects. A better
alternative is to ‘devalue’ W at the block level. This
results in a well-distributed, but not complete set of orders
of each W value. Before the experiment, we used
Touchstone’s experiment summary to test the resulting
distribution of trials in JMP to ensure they were balanced.
We also ran post-hoc analyses of the experimental data to
ensure that there were indeed no order effects due to W.
We measured two dependent variables: task completion
time and target hit/miss. A miss was recorded when the
subject did not end the trial within 3 minutes. This never
occurred during the experiment. At the end of the
experiment, we asked subjects to rank the techniques by
preference order, using a questionnaire.

Subjects
Twelve unpaid adult volunteers, 9 male and 3 female,
aged 26 years on average, served in the experiment.

Apparatus
We used Touchstone to design the experiment and create
the XML script used by the run platform. We used an HP
workstation with a 2 GHz Pentium 4, using a 1280×1024
LCD monitor and an optical mouse. Window size was set
to 600×800 pixels and the document length was
600×800×230 pixels.

Procedure
We gave a 2-minute introduction and demonstration of
the task to each subject. Prior to each experimental block,
subjects practiced eight randomly-chosen trials of the
technique from the upcoming block. Subjects were asked
to point as quickly as possible at a series of targets that
appeared sequentially in a document too large to be
viewed at its natural size without scrolling. Subjects had
to scroll vertically to bring the target into view, indicated
by a horizontal black line. An arrow indicated the
direction where to look for the target. A horizontal orange
line, insensitive to the zoom factor, always indicated the
target location. The target was also surrounded by
concentric circles sensitive to the zoom factor. The task
was complete when the cursor remained over the target

for one second at a zoom factor of 1, and the target
changed from blue to green.
As soon as the target became blue, the ending time of the
current trial was logged. Another trial began as soon as
the subject pressed the mouse button on the target that had
just been reached. This target disappeared and a new
target appeared at another location and the beginning time
of a new trial was logged.

Hypotheses
We expected our results to be consistent with those
reported in the literature: the original experiment
comparing OZ with SDAZ [2] reported that OZ
outperforms SDAZ, while Bourgeois and Guiard [4]
showed that PZB is more efficient than PZ because it
allows parallel input. Therefore our hypotheses are: OZ <
SDAZ (H1) and PZB < PZ (H2). We have no hypotheses
about the other paired comparisons.

Results
As in the OZ vs. SDAZ experiment [2], there was no
significant interaction effect of technique×W on MT
(F3,173<1). We also verified that there was no presentation
order effect since there was no significant interaction
effect on MT of block number per technique. Finally,
analyzing the effect on MT for replication number by
technique showed that there was no learning effect except
for SDAZ (F3,177=3.36, p=0.02).

Fig. 14. Mean movement time for each technique and each ID

Analysis of variance with the REML method for repeated
measures revealed a significant simple effect on
movement time (MT) for technique (F3,177=44.9,
p<0.0001) and a significant simple effect on MT for ID
(F1,179=12.4, p<0.0005) but no significant interaction
technique×ID effect (F3,173<1). Tukey post-hoc paired
comparisons reveal three groups (Fig. 14): OrthoZoom is
the fastest technique, Bimanual Pan & Zoom comes next,
SDAZ and Unimanual Pan & Zoom come last, i.e., OZ <
PZB < {PZ, SDAZ}. Subjects' subjective preferences
follow a similar pattern: OZ comes first (average rank
1.6), then PZB (2.1), SDAZ (2.8), and PZ (3.6). These
results support hypotheses H1 and H2, reinforcing the
performance comparisons reported in the literature.
Furthermore, they indicate that OrthoZoom is still the

fastest technique for multiscale navigation in one
dimension, and that Unimanual Pan & Zoom performs
comparably to SDAZ, although there seems to be a
stronger effect of ID for SDAZ.

Designing and Running a New Experiment
We wanted to test how well Touchstone supports the
design and running of a new experiment. We chose to
measure user reaction time. The steps of a generic run are
illustrated in the scenario below (Fig. 15).

interblock
Message(...)

1

criterion
Key(Space)

intertrial
StartButton

2

criterion
PressOnTag(start)

trial
ReactionBlock

3

trial's criterion
PressOnTag(target)
| (PressOnTag(distractor)
=>
{Distractor})

intertrial
StartButton

4

criterion
PressOnTag(start)

Fig. 15. Scenario of an experiment to measure reaction time.

A set of shapes, including a red target and a set of black
distractors, appears on the screen. All shapes are equi-
distant from the cursor, so movement time (estimated
using Fitts’ law) can be subtracted from total time to
define a reaction time measure. Using TDE, we created
the intertitles, blocks, trials and end criteria components
listed in the right column that were not already in
Touchstone's repository: StartButton, an intertitle that
waits until the subject clicks on the start shape;
ReactionBlock, which displays a target and distractors,
and provides a measure of reaction time. Each trial ends
with a hit (click on target) or a miss (click on distractor);
PressOnTag(<tag>), a criterion triggered when the subject
clicks on a tagged shape, used by StartButton and
ReactionBlock to start and end a trial, respectively.
These components were then made available to the design
platform. We chose a simple, one-factor design (number

of shapes) with one measure (RT), which took only a few
minutes to design with Touchstone. The detailed behavior
of the new components was implemented with
SwingStates [1], and totaled about 80 lines. The
experiment was then ready to run with the Launcher.

CONCLUSION AND FUTURE WORK
Touchstone is an exploratory experiment design platform
with the goal of improving the scientific foundations of
research in HCI. It enables experimenters to design and
run controlled experiments, encouraging replication and
extension of prior research by making experiment
designs, components and results available in a repository.
Touchstone’s modular structure includes design, run and
analysis platforms; researchers may use only those
components relevant to their particular work and extend
Touchstone with their own components. Touchstone can
handle a significant proportion of controlled experiments
found in the HCI literature, especially those related to the
evaluation and comparison of interaction techniques. We
hope that sharing experiment designs, run-time
components and data logs within the HCI community will
help build a repository of techniques, corpora, and device
configurations, and in turn improve the state of the art.
This paper describes the architecture and use of
Touchstone and demonstrates that we can both replicate
and extend experiments from the literature and generate
new experiments from scratch. The results of the
experiment we replicated are consistent with previous
findings: we found that OrthoZoom is significantly faster
than bimanual Pan & Zoom, and both are significantly
faster than SDAZ and unimanual Pan & Zoom.
Touchstone is an open source project available to the HCI
community. We hope it will provide a resource for
experimenters, students and educators, from initial
experiment design to running experiments and final
analysis. Our future work will focus on supporting
additional experiment types in the design platform,
supporting questionnaires, e.g., for pre-testing and
debriefing, enriching the run platform with a wider choice
of components and extending the analysis platform.

REFERENCES
1. Appert, C., and Beaudouin-Lafon, M. SwingStates:

Adding state machines to the swing toolkit. Proc.
UIST 2006, ACM Press (2006), 319-322.

2. Appert, C., and Fekete, J. OrthoZoom Scroller: 1D
multi-scale navigation. Proc. CHI 2006, ACM Press
(2006), 21-30.

3. Bederson, B.B., Grosjean, J., and Meyer, J. Toolkit
design for interactive structured graphics. IEEE Trans.
Software Eng. 30, 8 (2004), 535-546.

4. Bourgeois, F., and Guiard, Y. Multiscale pointing:
facilitating pan-zoom coordination. Ext. Abstracts CHI
2002, ACM Press (2002), 758-759.

5. Card, S., Moran, T., and Newell, A. The Psychology of
Human-Computer Interaction, Erlbaum, 1983.

6. Carpendale, M.S., and Montagnese, C. A framework
for unifying presentation space. Proc. UIST 2001,
ACM Press (2001), 61-70.

7. Cockburn, A., Savage, J., Wallace, A. Tuning and
testing scrolling interfaces that automatically zoom.
Proc. CHI 2005, ACM Press (2005), 71-80.

8. Eisenstein, J., and Mackay, W.E. Interacting with
communication appliances: An evaluation of two
computer vision-based selection techniques. Proc.
CHI 2006, ACM Press (2006), 1111-1114.

9. Fitts, P.M. The information capacity of the human
motor system in controlling the amplitude of
movement. J. Exp. Psychology 47 (1954), 381-391.

10. Gaines, B. Modeling and forecasting the information
sciences. Information Sciences 57-58 (1991), 3-22.

11. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, USA, 1995.

12. Guiard, Y., Chapuis, O., Du, Y., and Beaudouin-
Lafon, M. (2006). Allowing camera tilts for document
navigation in the standard GUI: A discussion and an
experiment. Proc. AVI 2006, ACM Press (2006), 241-
244.

13. Guiard, Y., Du, Y., Fekete, J.D., Beaudouin-Lafon, M.
Appert, C., and Chapuis, O. Shakespeare’s complete
works as a benchmark for evaluating multiscale
document-navigation techniques. Proc. BELIV 2006,
AVI Workshop on Visual Interfaces, ACM Press
(2006), 65-70.

14. Igarashi, T., and Hinckley, K. Speed-dependent
automatic zooming for browsing large documents.
Proc. UIST 2000, ACM Press (2000), 139-148.

15. Kuhn, T. The Structure of Scientific Revolutions.
Univ. Chicago Press, 1962.

16. Mackay, W.E. Which interaction technique works
when? Floating palettes, marking menus and
toolglasses support different task strategies. Proc. AVI
2002, ACM Press (2002), 203-208.

17. MacKenzie, I.S., and Jusoh, S. An evaluation of two
input devices for remote pointing. Proc. EHCI 2001,
Springer-Verlag (2001), 235-250.

18. Pietriga, E. A Toolkit for addressing HCI issues in
visual language environments. Proc. VL/HCC 2005,
IEEE (2005), 145–152.

19. Ramos, G., and Balakrishnan, R. Zliding: Fluid
zooming and sliding for high precision parameter
manipulation. Proc. UIST 2005, ACM Press (2005),
143-152.

20. Soukoreff, R.W., and MacKenzie, I.S. Generalized
Fitts' law model builder. Conference Companion, CHI
1995, ACM Press (1995), 113-114.

21. Soukoreff, R.W., and MacKenzie, I.S. Towards a
standard for pointing device evaluation: Perspectives
on 27 years of Fitts’ law research in HCI. Int. J.
Human-Computer Studies 61 (2004), 751-789.

