
HAL Id: inria-00531496
https://inria.hal.science/inria-00531496

Submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Package Fingerprint: a visual summary of package
interfaces and relationships

Hani Abdeen, Stéphane Ducasse, Damien Pollet, Ilham Alloui

To cite this version:
Hani Abdeen, Stéphane Ducasse, Damien Pollet, Ilham Alloui. Package Fingerprint: a visual summary
of package interfaces and relationships. Information and Software Technology, 2010, pp. 1312-1330.
�10.1016/j.infsof.2010.07.005�. �inria-00531496�

https://inria.hal.science/inria-00531496
https://hal.archives-ouvertes.fr

Package Fingerprints: a visual summary of package interface usage

Hani Abdeena, Stéphane Ducassea, Damien Polleta, Ilham Allouib

a RMoD, INRIA Lille Nord Europe / USTL LIFL / CNRS UMR 8022 – 40 avenue Halley, 59650 Villeneuve d’Ascq, France
b LISTIC, Université de Savoie – 5, chemin de Bellevue, Domaine universitaire d’Annecy-le-Vieux, France

c Print version accepted to Information and Software Technology

Abstract

Context: Object-oriented languages such as Java, Smalltalk, and C++ structure their programs using packages.
Maintainers of large systems need to understand how packages relate to each other, but this task is complex because
packages often have multiple clients and play different roles (class container, code ownership. . .). Several approaches
have been proposed, among which the use of cohesion and coupling metrics. Such metrics help identify candidate
packages for restructuring; however, they do not help maintainers actually understand the structure and interrelation-
ships between packages.

Objectives: In this paper, we use pre-attentive processing as the basis for package visualization and see to what
extent it could be used in package understanding.

Method: We present the package fingerprint, a 2D visualization of the references made to and from a package.
The proposed visualization offers a semantically rich, but compact and zoomable views centered on packages. We
focus on two views (incoming and outgoing references) that help users understand how the package under analysis is
used by the system and how it uses the system.

Results: We applied these views on four large systems: Squeak, JBoss, Azureus, and ArgoUML. We obtained
several interesting results, among which, the identification of a set of recurring visual patterns that help maintainers:
(a) more easily identify the role of and the way a package is used within the system (e.g., the package under analysis
provides a set of layered services), and, (b) detect either problematic situations (e.g., a single package that groups
together a large number of basic services) or opportunities for better package restructuring (e.g., removing cyclic
dependencies among packages). The visualization generally scaled well and the detection of different patterns was
always possible.

Conclusion: The proposed visualizations and patterns proved to be useful in understanding and maintaining the
different systems we addressed. To generalize to other contexts and systems, a real user study is required.

Key words: Software package, Visualization, Cohesion, Coupling

This paper uses colors in the figures.
Please read a color printout of this paper to better understand the ideas presented in it.

1. Introduction

To cope with the complexity of large object-oriented software, developers organize classes into packages or
modules. This organization usually follows conceptual interrelationships between classes, that the stake-holders
would like to maintain over ineluctable system evolution. As the system modular structure changes, its mainte-
nance is required. However, where approaches of system remodularization succeed in proposing system refactorings
[Wig97, AL99, MMCG99, MM06, AGa01], they do not provide good ways for understanding and assessing the
changes they propose. There is a wide range of work to define new modularization algorithms but little support to
understand the proposed results and their impact on existing systems.

Email addresses: hani.abdeen@inria.fr (Hani Abdeen), stephane.ducasse@inria.fr (Stéphane Ducasse),
damien.pollet@inria.fr (Damien Pollet), ilham.alloui@univ-savoie.fr (Ilham Alloui)
Preprint submitted to Information and Software Technology November 2, 2010

In this context, it is important to understand the concrete organization of packages and their interrelationships.
Ideally, packages should be kept as less coupled and as much cohesive as possible [BDW99b, ABF04]. We distinguish
two main approaches of package cohesion in the existing literature [RC92, MT07, AGa01, PN06]. The first approach
defines the cohesion of a package in terms of the interconnections between its internal classes. The second approach
defines cohesion according to how the system uses the package classes. For instance, if two classes of a package
are used from the same client package, then they are considered as conceptually related, regardless of the explicit
relationships that exist between them [PN06]. This second approach is more meaningful to us, because we consider
a package as a functionality provider and not only a structural grouping of coupled classes. Many metrics of package
cohesion have been defined [BDW99b, ABF04, MT07, AGa01, PN06] and help maintainers determine packages that
are candidates for restructuring. However, those approaches do not help maintainers of large systems when they face
the problem of understanding how packages are structured in general and how packages are in relation with each other
in their provider/client roles.

Several previous works on software visualization provide information on packages and their relationships, by
visualizing software artifacts or metrics about their structure or evolution [DPS+07, DL06, DLP05, LLG06, PGFL05,
SJSJ05, SWFM97, Hau02]. While these approaches are valuable, they fall short of providing a fine-grained view of
packages that would help maintainers understand the structure of packages, their interrelationships within the system,
and identify their roles within a system.

In this article, we present the Package Fingerprint, a compact, rich and zoomable visualization to better support the
understanding of a package and its relationships. The goal of this visualization is to help maintainers during their early
contacts with unknown packages. We propose two complementary variants of the Package Fingerprint, structured
around the distribution of references from or to the classes of the analyzed package: the incoming fingerprint shows
how the system uses the package classes, and highlights the cohesion of the analyzed package, as defined in [PN06];
the outgoing fingerprint shows how the package classes use the system.

This article is an extension of previous work [AAD+08]. The new contributions presented here are: (1) the
description of the outgoing fingerprints and their use, (2) the application of fingerprints to large industrial systems,
and (3) additional fingerprint patterns.

In Section 2, we discuss the challenges for understanding packages. Then we present the principles of the incoming
and the outgoing fingerprints in Section 3. In Section 4 we show how to use the incoming fingerprint for analyzing
and understanding packages in practice. Section 5 presents the different zoom levels of a fingerprint and shows how to
read a fingerprint from far away. Section 6 presents the outgoing fingerprint via a simple example, and Section 7 lists
the relevant visual patterns in fingerprints. Finally, we discuss our approach and related works in Sections 8 and 9.

2. Challenges in Understanding Packages

Parnas introduced information-hiding as a criterion of the decomposition of systems into modules [Par72]. The
idea is to improve the quality of software, e.g., adaptability and changeability, by decoupling design elements that
are likely to change so that they can be changed independently. This idea has been largely adopted in object-oriented
design and in software architecture [SGCH01]. Object-oriented languages, such as Java and C++, provide the notion
of packages, or namespaces, to support the decomposition of systems into subsystems [Mar96, Mar00].

Packages, however, are not mere class containers: they are complex entities that have different usage patterns,
often depending on the clients that use them. Packages often represent code ownership, feature containment, team
organization or deployment entities. Packages play different roles, some central to the system, others peripheral:
Some packages act as reference hubs, others as authorities.

These multiple facets of packages do not ease the understanding of inter-package relationships nor even quick
identification of a package clients or providers [DPS+07]. Although languages such as Java make dependencies
between packages explicit (i.e., via the import statement), developers lack tool support to really understand packages
within their context.

To understand the structure and the roles of packages within a system, we need both raw size information (the size
of elements and their relationships), and coupling and cohesion related information. In this section, we summarize
the information that a solution supporting package understanding should provide.

2

2.1. Raw size information

To understand the packages of a system and their relevance in the general picture, gathering quantitative informa-
tion is a good way to offer a mental picture to the [Pet95, LD03]. Here is a list of relevant questions:

• How many classes are packaged within a given package?

• How many classes are visible to the rest of the system or communicate with it?

• How many packages depend upon a given package?

• How many packages does a given package depend upon?

• What is the ratio of internal/external class references and inheritance definitions?

2.2. Cohesion and coupling

Robert Martin discussed principles of architecture and package design, addressing package cohesion and package
coupling [Mar00]. The package cohesion principles are:

Release Reuse Equivalency (REP): Since packages are the unit of release, they are also the unit of reuse. Therefore
a good package should only contain a group of classes that are reusable together.

Common Closure (CCP): To minimize the number of packages that are changed in any given release cycle, it is
better to group classes that change together into the same package.

Common Reuse (CRP): Since a dependency upon a package is a dependency upon everything within the package,
classes that are reused together should be grouped together. This way, in any given release, changing any class
within a considered package will have the same impact-propagation if maintainers change another class within
the same package. Thus the impact-propagation of the package changes is always constrained to one graph.

Coupling is always used with cohesion to determine package quality and it is generally defined as: if changing
one package in a program requires changing another package, then coupling between these two packages exists
[BDW98, Fow01]. Robert Martin defines two types of coupling: Efferent Coupling and Afferent Coupling [Mar00]
taking into account the sense of the reference (namely incoming and outgoing).

Cohesion and coupling metrics are among the most used metrics during perfective maintenance, because they
help identify which packages should be restructured [MT07, AGa01, RC92, BDW99a, ABF04, LM06]. In general,
good packages should group classes that are needed for the same task [PN06], and they should have a few clear
dependencies to other packages: they should be highly cohesive and lightly coupled. However, cohesion and coupling
alone do not help maintainers understand the structure, roles, or relationships of packages. In particular, they do not
indicate whether, why and how a package respects Martin’s cohesion principles, nor do they help decide what to do if
such principles are not respected.

For this, maintainers need more detailed information. For example, it is important to know if some classes in
a package are always used together or not, and conversely the proportion of package classes that uses the same
set of classes/packages. Knowing about the usage relations between a package and its clients and providers offers
another perspective on package cohesion, since that gives the maintainer information on the package role and cohesion
according to Common Reuse Principle [PN06].

2.3. Package Maintenance Scenarios

There are a couple of package centric maintenance scenarios that a good visualization should support. We give
here a first open list based on our experience as maintainers of some large software systems such as Squeak [DD07].
These scenarios set the context we use to detail how we applied fingerprints to real software systems (Sections 4
to 7). In particular, we show that fingerprints offer fine information on package use. We limit ourselves to package
maintenance actions since this is the focus of fingerprints.

3

Basic Understanding. When working on a package, we want to get an idea of the importance of the package in terms
of its size, but also in terms of its actual place and its role within the system. A package that is mainly using
other packages will certainly be easier to change than a central package used by many others.

Merging related packages. When maintaining a group of packages, it is interesting to know the coupling of each
package, as well as the scope of the coupling and the classes that contribute to it. This helps decide whether
the package can be split, or on the contrary whether it should be merged with others. In our experience, we
saw that a group of highly coupled packages is also an indication that the group as a whole should probably
be repackaged, and that a fine grained decomposition may be counter productive or artificial. To determine
whether it is worth merging related packages, we have to look at how some specific classes of these packages
are used. In this scenario, we gain valuable information by identifying which classes of a package are used
externally, and by grouping these classes according to their users.

Splitting Packages. Correlated to the previous point, splitting a package is a useful task since it supports lower
memory footprint and easier replacement of functionality. Often, before splitting a package, it can be enough to
simply move misplaced classes. We identify such classes by examining the users of the class as well as the inter-
nal package cohesion. Class co-use also indicates that the classes may form a coherent package. Nevertheless,
co-usage is just a partial view, and it should be complemented with the identification of helper classes and with
inheritance constraints (superclasses or subclasses induce diverse situations and may be packaged differently).

3. Package Fingerprint Principles

Our aim is to provide an approach that helps maintainers understand packages in their context, regardless of
what happens inside packages – since this is considered as a hidden-information from the point of view of its system
[PN06]. We will focus on a package as a provider and/or client offering and/or requiring functionalities to/from other
packages within a system.

To meet some of the requirements mentioned in Section 2, we propose two complementary views for incoming
and outgoing references through the Fingerprints. The objective of Package Fingerprints is to provide an overview of
package cohesion and coupling by stressing the client/provider relationships of the classes contained in the considered
package. As such it is complementary to traditional coupling/cohesion metrics [BDW98, ABF04]. Before going in
detail, we setup the vocabulary and the intention of Fingerprints.

3.1. Terminology

Figure 1 illustrates the terminology we use in the rest of the paper. First, by reference, we mean that a class A
refers to a class B that A statically uses the name of, or invokes methods of B. It is worth to note that we extract inter
class references using static analysis the concerned software system. This way, method invocations are linked to the

P2
P1

P3

A1

B1

C1

D1 E1

client
packages

In-Interface

A2

A3

P4

A4
B4

F1

H1

I1

G1

P5

A5
B5

P6
A6

B6

C6

provider
packages

Out-Interface
package under analysis

Legend:
Internal
reference
External
reference

Figure 1: Terminology — An example of references between packages: P1 contains 9 classes, it has 3 clients (P2, P3 and P4) and 2 providers (P5
and P6). Both In-Interface and Out-Interface of P1 contain 5 classes, with C1 in common.

4

P1

A1

B1

C1 D1 E1

client
packages In-Interface

… and from
P4 and P3

classes referenced
from P2 only

… from P3 and P2

P2

P3

P4

S1

S2

S3

(a) Grouping the classes of the In-Interface of P1
by common client packages.

P1

F1

H1C1

I1 G1

provider
packagesOut-Interface

classes referring
to P5 only

… to P5
and P6

P5

P6
… and to
P6 only

R1

R2

R3

(b) Grouping the classes of the Out-Interface of P1
by common provider packages.

Figure 2: Grouping incoming and outgoing references into In-Interface and Out-Interface interfaces.

declared type (i.e., class) of the objects whose methods are invoked in run-time. As a consequence, our approach full
short of support method late-binding in the presence of polymorphic invocations. In addition, in the case of dynamic
typed languages (e.g., Smalltalk) we often can not statically determine the declared type or the class of the invocation
target object in the run-time. In such a case, our strategy consists in creating a reference for every potential candidate
class (i.e., every class within it there is a method that has the invoked method signature). These limitations can be
addressed with additional dynamic analysis of method invocations.

We mean by internal references the references which are among classes packaged in the same package. Otherwise,
references are external. In this context we mean that a package Pi refers to another P j if Pi contains a class Ci that
refers to another class C j packaged in P j. In the same vein, we say that Pi refers to C j, Ci refers to P j, and P j is
referenced by Ci and by Pi. As a shortcut, when we say that a package P refers to another package Q, we mean that
classes contained in P refer to classes of Q. In this context we say that P and Q are coupled [Mar00].

Definition 1 (In-Interface). The In-Interface of a package P is the set of classes of P which are referenced by classes
packaged outside P.

Definition 2 (Out-Interface). The Out-Interface of a package P is the set of classes of P that refer to classes packaged
outside P.

As shown in Figure 1 and 2, the size (i.e., number of classes) of the In-Interface gives maintainers a quantified
information about the dependency of the system on the package under-analysis P1, while the number of referencing
packages shows the importance of P1 for the system. Similarly, the size of the Out-Interface of P1 gives maintainers
a quantified information about the dependency of P1 on other packages, while the number of referenced packages
shows how much P1 depends on the system.

Since referencing a class is an indicator of the usage of that class functionalities, referencing a group of classes in
a consistent way is an indicator of the usage consistency of those classes. Such a referenced group, that we name a
service, represents classes whose functionalities are consistently used together.

Definition 3 (Service). In the context of a package P, we mean by Service, the set of classes of P In-Interface which
are referenced together by the same group of packages. This is related to the Release Reuse Equivalency (REP)
principle (see Section 2.2) where good package should only contain a group of classes that are reusable together.

Martin [Mar02] defines a class responsibility as a reason for change. From the view point of inter-class references,
if a class A refers to another one B, changes in B may be a reason for changes in A. At a high level of abstraction, if
A refers to a package P, changes in P may be a reason for changes in A. In this context, we define a package reason
for changing as follows:

Definition 4 (Reason for Changing). In the context of a package P, we mean by Reason for Changing, the set of
classes of P Out-Interface which refer together to the same group of packages. This is related to the Common Closure
(CCP) principle (see Section 2.2) where a good package should group together classes that change together.

5

3.2. Fingerprints Intention
To understand the multiple facets of a package, we group its classes according to their usage by other packages

and their usage of other packages. Figure 2(a) shows the In-Interface classes of P1 grouped into clusters as well as the
references that point to those clusters, while Figure 2(b) shows the Out-Interface classes of P1 grouped into clusters
as well as the references that go out from those clusters. Figure 2(a) shows that P1 provides three services (S 1, S 2 and
S 3): the service S 3 is used by the client packages P3 and P4; additionally, P3 with P2 use the service S 2; the service
S 1 is used by the client package P2 only. Figure 2(b) shows that P1 involves three reasons for changing (R1, R2 and
R3): R1 represents the class F1 which refers to P5, R2 represents the classes C1 and H1 which refer to P5 and P6, while
R3 represents the classes I1 and G1 which refer to P6.

Clustering the In-Interface and Out-Interface helps identifying the inter-dependencies between the package under
analysis and the system, and thus which classes are conceptually coupled and which classes are not. At a higher level
of abstraction, this helps answering the following questions:

• What services does the package provide?

• Which packages use those services?

• Does the package include classes that are always used together or not?

• Does the package include classes that use the same services/packages or not?

• Which are the reasons for changing the package?

• How are those reasons for changing distributed over the package classes?

The incoming fingerprint shows how the package under analysis is used by the system and how this use is dis-
tributed over its classes. The outgoing fingerprint shows how the package under analysis uses the remainder of the
system. Since we use the same approach for both views, we only present the incoming fingerprint in details and briefly
sketch the outgoing fingerprint further on.

Fingerprints have the four following properties: they are compact (only the references are shown), zoomable (dif-
ferent levels of information are proposed), entity-based in the sense that they focus on one package, and semantically
rich since they present multiple types of information at a glance.

3.3. Fingerprint Skeleton
Figure 3 depicts the key visualization principles of an incoming Fingerprint with P1 from Figure 1 as the package

under analysis. We first present the basic layout before introducing additional features we give to convey more
information on package relationships. The skeleton layout of a Fingerprint is the following:

Analyzed Package. The top left corner cell indicates global information about the package under analysis (here P1):
the size of its In-Interface and the internal references between its classes. Internal references are explained and
illustrated in Section 3.4.

Referencing Packages. The cells at the borders of the fingerprint, i.e., the leftmost column and the topmost row,
both represent the referencing packages placed in the same order horizontally and vertically (i.e., there is a
symmetry). Packages are sorted according to the importance of their references: the more referenced classes
a package refers to, the closer it is to the top left corner. Figure 3 shows the three packages that refer to P1 in
Figure 1: P3, P4, and P2, referencing respectively four, three, and two classes inside P1.

If two packages make the same number of references, we then group them using a similarity criterion. We
define this latter in an incoming fingerprint, as the number of shared referenced classes among packages. For
example, in Figure 2, we consider that P4 is more similar to P3 (3 referenced classes in common) than to P2
(no referenced class in common). Conversely, we define the similarity of referenced classes by the number of
referencing packages they share. Figure 2 shows that the similarity between C1 and D1 (2 common referencing
packages P3 and P4) is higher than the similarity between C1 and B1 (1 common referencing package P3).
In any case, the ordering algorithm we have implemented always respects the number of references prior to
similarity.

6

P3 → P1
∩

P2 → P1

P3 → P1
∩

P4 → P1

P2 → P1
∩

P4 → P1

P2 → P1
∩

P3 → P1

P4 → P1
∩

P2 → P1

P4 → P1
∩

P3 → P1

P1 P3 P4 P2

P3

P4

P2

P3 → P1

P4 → P1

P2 → P1

Diagonal
 distribution of references from P2 to P1

over classes in In-Interface of P1

Borders
packages referencing P1 sorted by
number of referenced classes in P1

Analyzed
package

Co-Using
 classes in In-Interface of P1
used from both P2 and P3

P3 → P1
P3 references to P1

1
class

3
classes

01
class

03
classes

5
classes P3 P4 P2

P3

P4

P2

4
classes

3
classes

2
classes

P1 In-Interface
classes

P2's
references to

P1

P2 → P1
∩

P3 → P1

Figure 3: Skeleton of the Incoming Fingerprint for P1 (Figure 2(a)).

Cells. The body cells of an incoming fingerprint, i.e., all cells except those on the leftmost column and the topmost
row, each represents a subset of the In-Interface of the package under analysis. This subset contains the classes
that are referenced by both packages placed at the heads of the cell’s row and column. For a package P that is
referenced by P1, . . . , Pn, a cell on row i and column j, cell(i, j), represents the subset of classes of P that are
referenced by both Pi and P j (i.e., cell(i, 1) and cell(1, j)). Two situations occur: either a cell is on the main
diagonal or not.

• The main diagonal presents the distribution of the In-Interface on the client packages. Figure 4 shows that
cell(3, 3) represents the classes (C1, D1, E1) referenced by P4, i.e., cell(3, 1) and cell(1, 3).
• The other cells present the classes referenced in common by both packages represented by the row and

column heads. Figure 4 shows that cell(2, 4) contains the class B1, referenced by both P3 and P2.

We define the size of a cell as the number of classes it represents. Hence, in Figure 4, cell(2, 2) has size 4 and
cell(3, 3) has size 3: classes C1, D1, and E1 are represented in both cells, but class B1 in cell(2, 2) only.

3.4. Enriching the Fingerprint Skeleton Layout
We enrich the skeleton of Figure 3 to convey extra information such as the amount of referenced classes in the

analyzed package. For this purpose we use color intensity for cells, cell borders, and the position of classes within
cells.

We selected those visual properties according to several research works that address the characteristics of efficient
visualizations [Tuf01, War00]. Particularly, as our focus is on providing a first impression of a package and its context,
we expect that preattentive processing will occur but we do not know to what extent 1 as much as possible to help
spotting important information [HBT93, War00, Tre85].

1 Researchers in psychology and vision have discovered a number of visual properties that are preattentively processed. They are detected
immediately by the visual system: viewers do not have to focus their attention on a specific region in an image to determine whether elements with
the given property are present or absent. An example of a preattentive task is detecting a filled circle in a group of empty circles. Commonly used
preattentive features include hue, curvature, size, intensity, orientation, length, motion, and depth of field. However, combining them can destroy
their preattentive power. Some of the features such as motion are not relevant in our context.

7

Left Border:
Referencing packages

D1 E1

Cell(3, 2)

C1

Cell(4, 3)

B1

Cell(4, 2)

Cell(1, 2) Cell(1, 3) Cell(1, 4)

Main
 Diag

on
al

2

3

P1
D1

A1 C1

E1

B1

Cell(1, 1)
B1

Cell(2, 4)

Cell(3, 4)

A1 B1

Cell(4, 4)

Cell(3, 3)

Cell(2, 2)

E1

Cell(2, 3)

D1 E1

C1

D1 E1

C1

Cell(3, 3)

Cell(2, 1)

Cell(3, 1)

Cell(4, 1)

P3

P4

P2

Cell(3, 1)

Cell(4, 1)

P3 P4 P2

Cell(1, 2) Cell(1, 3) Cell(1, 4)
B1

D1

C1

E1

Cell(2, 2)

Top Border:
Referencing
packages

2

Top Left Corner:

1 Analyzed package
In-Interface

Figure 4: Showing the Incoming Fingerprint of P1 (Figure 3) with the classes involved in the relations inside each cell.

Cell Internals. Inside a cell, we visualize the package referenced classes as small filled squares.

To enable preattentive processing [HBT93], we give each class a fixed place which is the same in all the cells of
a fingerprint. When a cell represents a package reference to a class of the analyzed package, the location of this
class is colored: in Figure 4, since the class B1 is referenced by packages P3 and P2, the position corresponding
to the class B1 is colored in the cell(2, 4). This way all the cells will have the same geometrical size (i.e., height
and width), but the number of classes represented by the cell is given by the number of the colored squares
inside that cell.

Information on Internal References. Information on internal references among classes of the analyzed package is
visualized on the top left corner (cell(1, 1)). In Figure 4 we see that among the five referenced classes of P1,
only C1 is referenced internally (as it is colored). Additionally, since not all classes will appear in all cells,
we use this corner cell to show all the placeholders for the classes that have incoming references, as bordered
squares.

Colors. We use color hues to distinguish different entities in the fingerprint (e.g., classes, packages), and to give more
information about the references. The colors we use are: (1) shades of grey for all the cells in a fingerprint
except the top left corner, (2) blue for the classes (3) red for the top left corner and for highlighting the borders
of the main diagonal cells (4) orange to highlight the fingerprint borders, (5) gold to highlight borders of the
referencing packages that are outside the scope of the system under analysis (called stubs thereafter).

Color Intensity. In addition to color hues, we use color intensity to give more information on the visualized entity:
(1) for the top left corner, the darker the package, the bigger its In-Interface; (2) for the fingerprint borders, the
darker a referencing package, the more classes it references in the analyzed package; (3) for the body, on a given
row, the darker the cell, the more classes it represents. The darkness of a cell is calculated relatively to the size
of the diagonal cell of that row. As consequence, the cells of the diagonal are black. On the fingerprint borders,
we consider the color intensity for a referencing package as an additional visual information: as referencing
packages are sorted according to the importance of referenced classes and similarity criteria (Section 3.3), we
use a same color intensity for referencing packages with a same number of referenced classes. Indeed, those
packages are placed in different order but have the same color intensity. Figure 4 shows that P3 is darker than
P4: the first package refers to 4 classes in P1 while P4 refers to 3 classes in P1.

The color of the top left corner is based on an In-Interface size ratio: the size of the In-Interface of P1 is 5
(Figure 2(a)) while the size of P1 itself is 9 (Figure 1). Thus the color intensity of this cell equals 5/9.

8

In Figure 4, cell(2, 3) is darker than cell(2, 4), because the first contains 3 classes while the latter contains 1
class; cell(4, 3) is white (i.e., the color intensity is zero) because no referenced class inside. cell(3, 2) is darker
(it is black) than cell(2, 3) although they both contain the same set of classes: the reason is that the darkness of
the former is relative to the size of cell(3, 3) while the darkness of the latter is relative to the size of cell(2, 2).
This darkness relativity informs us that: for P1, all the classes referenced by P4 are also referenced by P3 but
some classes referenced by P3 (i.e., B1) are not referenced by P4.

4. Detailling a Fingerprint

In this section we present an example that illustrates how a fingerprint is used to analyze package references.
Figure 5 shows the incoming fingerprint of the JBoss render::renderer package (referred to as P here), visualized
in the context of his subsystem, named them. As a whole, Jboss is composed of 544 packages; theme is composed
15 packages totaling up 119 classes.

No Internal Reference. As depicted by Figure 5, none of the small squares on the top left corner cell (P) is filled: this
means that there is no internal reference within the considered package. Actually, this package only contains
Java interfaces.

Big Number of External Incoming References. The top left cell P is dark red, therefore most of the classes of
render::renderer have incoming references from other packages. By looking at the number of squares in cell P
we can estimate the size of its In-Interface (11 classes here).

Small Number of Referencing Packages. The fingerprint has a relatively small number of rows and columns: only
8 other packages reference classes of the package under analysis.

Two external packages, P4 and P7, have a gold border color, rather than orange. This means that they are stubs,
i.e., they are not part of the system under analysis theme. Indeed, when moving the cursor over these cells a fly-
by-help reveals their names test::theme and test::theme::renderer. Thus those two packages are part of the test
subsystem rather than theme, and probably mainly contain test classes. Moreover, since P (render::renderer) is
only used by 6 of the 15 packages of his subsystem and 2 external test packages, it does not have a direct role
outside the subsystem theme. Thus we can qualify render::renderer as a peripheral package.

Commonly Referenced Classes. Since the small squares representing classes keep their positions in every cell, they
make it possible to spot patterns. For instance, most cells in the rows of P6 and P7 show the same 3-square
shape, highlighting commonly referenced classes.

Interfaces that are
for the rendering of

some graphical
items (e.g., Page,

Window, etc.)

Interfaces that are for the
rendering "context" of some
graphical items (e.g., Page,

Window, etc.)

C

render P5

P2

B

D DB

DB

No internal
references

P2

P5

tag::basic

P1

P1

P

stubs

CD

CB

CD CB

impl::render::
dynamic

tag P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Figure 5: The Incoming Fingerprint of the package render::renderer, from the them subsystem of Jboss.

9

Dominant Package. As P1 is the top/left-most package, we know that it makes the most references to P. We can
also see that all cells in the column of P1 are black; this means that the corresponding packages (P3, P4, P6, P7
and P8) refer to subsets of the classes that are referenced by P1: P1 is thus a dominant referencer of P.

Classes with different reasons for changing. At a first glance, the fingerprint body looks quite filled up: only one
cell of the main diagonal (B) breaks the fill and causes a white cross hair shape. A white cell means that there
is no shared reference to P between the two packages for this cell, e.g., there is no shared reference between P1
and P5, nor between P3 and P5, etc.

The cell B contains 5 squares, for the 5 classes referenced by the package P5. Cells denoted by DB represent
the non empty intersection of cell D with cell B, i.e., the four classes referenced from both P5 (cell B) and P2
(cell D).

Examining cell CD, which represents the common referenced classes from both P1 (cell C represents 6 refer-
enced classes) and P2 (cell D represents 6 referenced classes), reveals that P1 and P2 have only 2/6 referenced
classes in common. For this reason cell CD is lighter than cells C and D. Similarly, cell CB, which represents
the common referenced classes from both P1 and P5 (cell B), reveals that P1 and P5 do not have common
referenced classes. For this reason cell CB is clearly lighter (i.e., white) than cells C and B.

Thus we learn that the analyzed package contains two disjointed subsets of classes: the first one with 6 classes
(cell C) represents the subset which is referenced by all the client packages except P5; the second one with
5 classes (cell B) represent the subset which is referenced only by P5 and P2. P2 refers to classes of both
subsets, but it refers to 4 classes from B (DB) and just 2 from C (CD). These subsets (C and B) hint at a
possible way to split P into two more cohesive packages.

Based on that, we suspect that it is possible to re-modularize the package, for example by moving C classes
to a new package. This will make the package under analysis (P) conceptually more cohesive while provid-
ing one group of classes (B) used together by P5 and P2. We check this hypothesis by reading the code of B
and C classes. We learn that B classes represent the interfaces of item renderings (e.g., PageRenderer, Win-
dowRenderer, etc.), while C classes are the interfaces of item rendering contexts (e.g., PageRendererContext,
WindowRendererContext, etc.). The referencing package impl::render::dynamic (P2) contains classes that im-
plement some of the interfaces of B. The referencing package render (P5) contains the class renderContext
that refers to B interfaces. This class renderContext, which implements the facade pattern, is responsible of
the communication with different objects whose types are declared via the interfaces (e.g., PageRenderer, Win-
dowRenderer, etc.). C interfaces are implemented by classes contained in different packages (e.g., tag::basic,
tag) which are responsible of different contexts of item rendering.

Reading the code reinforced the difference in the usage of both interface collections (B and C) the fingerprint
revealed. It consequently reinforced our idea to move C classes to a new package, named for example ren-
der::rendererContext, for better modularization.

5. Reading and Interacting With an Incoming Fingerprint

Even if we use the same mechanisms for both incoming and outgoing fingerprints, we detail in this section incom-
ing fingerprints. Outgoing fingerprints are briefly described in Section 6. We introduce two levels of zoom-outs to:
(a) keep the visualization compact and scalable over a number of referencing packages or the size of the interface; (b)
support global visual patterns as presented in Section 7, while minimizing information loss compared to the details
presented in Section 4.

Zoom-out level 1. We do not visualize the cell internals. We only visualize in the main diagonal the size of each cell,
i.e., the number of referenced classes.

Zoom-out level 2. We visualize the fingerprint without the cell internal information and the size of main diagonal
cells.

10

Figure 6 shows the fingerprint of the renderer package, illustrated in Figure 5, zoomed-out twice. In the first
zoom-out we do not see the information about the classes represented by cells, but we can estimate the size of any cell
using its darkness and the size of the main diagonal cell which is located on its row. This last information is hidden in
the second zoom-out.

Interacting with the Fingerprint.

To help users detect quickly information within the Fingerprint, we have introduced an interaction mechanism to
the visualization, as shown in Figure 7.

Figure 7(a) shows that the selection of a cell makes its fill color gold and its border color green. In addition it
automatically selects all cells that display a subset of classes presented by the first selected cell. This highlights a
family of packages based on their co-referencing of the analyzed package classes. The fill’s color of the cells which
are automatically selected is also gold but with different intensity. The cell which contains the biggest number of
classes, is the cell with the darkest fill color. We do the same at the class level: The classes that are contained in
the selected cell get their fill color green. This highlights a family of the analyzed package classes based on their
co-usage.

In addition to the selection and marking mechanisms, we have introduced a new interaction with the fingerprint:
by moving the cursor over any cell a fly-by-help shows us the size of the cell and the set of the classes it represents
(Figure 7(b)).

Reading the Fingerprint.

We believe that a package fingerprint, as described in Section 4, helps developers understand and analyze a given
package, while the fingerprint zoom-outs help visualize large number of packages, easily navigate in the system
and detect global information (e.g., patterns, anomalies, etc.). To understand and analyze any package in detail, the
developer can select it and zoom to its full fingerprint at any time.

Examples. Figure 8 shows the incoming fingerprint of the package utils of the subsystem plugins, taken from
Azureus system. In the following section we illustrate how to read this incoming fingerprint, and which relevant
information we can get.

Size. At first glance, the size (i.e., width or height) of the fingerprint is relatively large and all referencing packages
are golden bordered. That means the utils package is referenced by a big number of packages that all are located
outside the subsystem plugins.

Spread of external incoming references. The top left cell (P) is dark red, which means that most of the package
classes are referenced from the outside, i.e., the size of its In-Interface is relatively big.

Zoom-out level 1 Zoom-out level 2

Figure 6: The Incoming Fingerprint of renderer package (Figure 5) zoomed-out twice.

11

C

P5

P2

B

P2

P5P1

P1

P

P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Selected
cell

Marked
package

(a) Interacting with the Fingerprint of renderer package (Figure 5). P5 is
marked in Yellow and the cell C is selected (gold fill and green border).
Thus, all the classes of C are highlighted in green. In consequence, each
cell that represents only a subset of those classes is also selected.

B

(b) Interacting with the zoomed-out Fingerprint of renderer package (Figure 5). The
cursor is over the cell B and a fly-by-help shows us B size and the set of the classes it
represents.

Figure 7: Interacting with the Fingerprint.

Distinct part users. The fingerprint fill shows that some cells on the main diagonal (circled in green) are isolated
within their row: i.e., the rows are nearly completely white. These cells identify services provided by the
analyzed package for only a couple of packages. Classes represented by those cells are considered as lightly
coupled in the context of the package, and their presence degrades the package cohesion.

Systematic package external usage. The fingerprint fill shows a black filled rectangle Z3 at the intersection of the
rows and columns of the packages Pkgs3. This indicates that the cells within Z3 represent the same collection
of classes that are referenced together by all packages Pkgs3. In the same way, we can deduce that those classes
are also referenced together by the packages Pkgs2 and Pkgs1: see the black filled rectangles Z3,2 and Z3,1.
These set of classes are referenced together from most of the referencing packages: they are highly coupled
within the package under analysis. Furthermore, the presence of dark/black rectangles within the fingerprint
body is an indicator of the package cohesion: the more black space, the more cohesive the package is.

Strength of use-based class cohesion. Comparing black filled rectangles according to their size also provides an-
other useful information related to the cohesion based on usage: the larger a rectangle size is, the higher the
coupling between the classes represented by it –since more client packages used them together. For example,
classes represented by the cells within the rectangle Z2 are less coupled than the classes represented by the cells
within the rectangle Z3.

User heterogeneous references. The fingerprint body is not symmetrically dark. While the classes that are together
referenced by the packages Pkgs1 and Pkgs3 are respectively represented by the rectangles Z1,3 and Z3,1, the

12

Pkgs1 Pkgs2 Pkgs3

Pkgs1

Pkgs2

Pkgs3

P

Z3Z3,2Z3,1

Z2,1 Z2 Z2,3

Z1 Z1,2 Z1,3

Figure 8: The Incoming Fingerprint of utils package, from plugins subsystem (Azureus Application).

former is light grey while the latter is completely black. We deduce then that the classes referenced by Pkgs3
form a small portion of the classes referenced by Pkgs1. Thus, the dissymmetrical darkness of the fingerprint
body indicates that the package In-Interface contains classes that are loosely coupled in the context of the
package under analysis. As consequence, this is an indicator of a bad organization of classes.

6. Outgoing Fingerprint

Up to this point we limited our presentation to incoming references; now we also propose the symmetrical view.
The Package Outgoing Fingerprint helps maintainers coarsely evaluate the package coupling with the rest of the
system and the potential impact of changes on the package, and understand how the package under analysis uses the
rest of the system. Also, it focuses on the similarity/coupling between the referencing classes and the cohesion of the
considered package, from the point of view of a given provider.

Figure 9 and Figure 10 depict the key visualization principles of an outgoing Fingerprint with P1 from Figure 1
as the package under analysis. The principles we described above for an incoming Fingerprint (Section 3.3 and
Section 3.4) are used exactly in the same way, except that we take into account outgoing references instead of incoming
ones and referenced packages instead of referencing ones: the referenced packages and the Out-Interface of the
package under analysis. In an outgoing fingerprint, the package under analysis is located on the top right most corner,
i.e., the top right corner, and the diagonal is crossing in the other direction. Also the referenced packages form the
right border of the package outgoing fingerprint.

Examples. Figure 11 shows the outgoing fingerprint of impl::api::user package. The fingerprint shows several
important pieces of information:

A misplaced class. The package Out-Interface involves only two classes, UserEventBridge and UserEventInter-
cepter. In the top most corner, the square presenting the class UserEventIntercepter is not filled, which means
that this class does not refer to classes inside the package under analysis impl::api::user. On the another hand,
this class refers to classes packaged into three packages, the group Pkgs2. We suppose then that it is better
to move the class UserEventIntercepter to one of its provider packages. Inspecting UserEventIntercepter, we
found that it has neither incoming references nor inheritance inside its own package; it inherits from the class
ServerIntercepter, which is packaged in portal::server, which in turn is one of the provider packages. That
enforced our estimation and we think that moving UserEventIntercepter to the package portal::server will
optimize the cohesion of both packages.

13

Borders
packages referenced by P1, sorted by

number of referencing classes in P1
Analyzed
package

P1 → P6
∩

P1 → P5

P1 → P5
∩

P1 → P6

P1P5 P6

P5

P6P1 → P6

P1 → P5

Diagonal
 distribution of references from P1 to P5

over classes in Out-Interface of P1

P1's
references to

P5

Co-Using
 classes in the Out-Interface of P1

using both P5 and P6

P1 → P6:
P1 references to P6

2
classes

2
classes

5
classesP5 P6

P5

P64
classes

3
classes

Classes in P1's
Out-Interface

P1 → P5
∩

P1 → P6

Figure 9: Skeleton of the Outgoing Fingerprint for P1 (Figure 2(b)).

Cell(1, 3)

Top Border:
Referenced
packages

M
ain D

iagonal

2

3

P1

Top Right Corner:
Analyzed Package
Out-Interface

1

I1

C1 H1

G1

F1

Cell(1, 3)

C1 H1

Cell(3, 2)Cell(3, 3)

Right Border:
Referenced
packages

Cell(2, 3)

Cell(3, 1)

2

Cell(3, 3)

P5 P6

Cell(1, 1)

P6

P5

Cell(1, 2)

Cell(2, 2)

I1

C1 H1

G1

Cell(2, 1)

C1 H1

Cell(3, 3)

C1 H1F1

Figure 10: Showing the Outgoing Fingerprint of P1 (Figure 2(b)) with the classes involved in the relations inside each cell.

14

The Out-Interface
of the analyzed

Package

Pkgs1

Pkgs2

UserEventBridge

UserEventIntercepter

Referenced
Packages

Referenced
Packages

UserEventBridge class
referencing classes inside the package

UserEventIntercepter class
does not referencing classes inside the package

Zoom-Out level 1

core::event

api::event

api::user::event

java::lang

java::util

core::impl::api

java::security

common::invocation

portal::server

Figure 11: The Outgoing Fingerprint of impl::api::user package, from the subsystem Jboss.portal.core.

Distinct providers used by the package. The classes of the analyzed package reference two distinct groups of pack-
ages (Pkgs1 and Pkgs2 on the figure). Since the cells form two distinct squares of uniform color around the
main diagonal, both groups of referenced packages are uniformly accessed.

Distinct reasons for changing the package. The view also reveals the input source for each class of the package
Out-Interface. The view shows that each class refers to distinct groups of packages/classes. Changes within the
group Pkgs1 directly impacts only the class UserEventBridge, while changes within the group Pkgs2 directly
impacts only the class UserEventIntercepter. Here we deduce that the package under analysis has two distinct
reasons for changing (Definition 4).

7. Visual Patterns

While applying Fingerprints to large systems (Squeak, Azureus, Jboss, ArgoUML) we identified some recurring
visual patterns. We present here the most frequent ones, knowing that several patterns could occur within a single
fingerprint. We describe the systems we selected and the reasons why we selected them. We conducted these experi-
ences to show what can be deduced from fingerprints, and how fingerprints help focusing on the code while browsing
it. We provide several VisualWorks Smalltalk images with the case studies data presented in this paper loaded, at
http://rmod.lille.inria.fr/archives/demos/PackageFingerprints.

System Release Packages Classes Methods

Squeak 3.8Basic 223 1659 37952
Jboss Portal 2.6 454 1889 15498

Azureus 2.5 337 1646 19745
ArgoUML 0.22 76 2222 11467

Table 1: Overall system data.

7.1. Characterizing the systems under analysis

Table 1 presents some measures about the systems we selected for our experience. The number of packages has
been computed by counting only the packages containing the name of the project. For Java projects, we ignore inner
classes.

15

http://rmod.lille.inria.fr/archives/demos/PackageFingerprints

Squeak. Squeak is an open-source Smalltalk environment developed by the team of Alan Kay since 1996. It involves
around 20 active developers and 200 committers. It is a really large and complex system containing more than 1600
classes and 32,000 methods in its latest public release (3.8 basic). Squeak includes support for different application
domains: two large graphical user-interface frameworks, a complete IDE (including an incremental compiler, debug-
ger and several advanced development tools), a complete language core and its libraries, multimedia support (images,
video, sound, voice generation), eToy (an advanced scripting programming environment for children), various libraries
(compression, encryption, networking, XML support).

Our hypothesis: Squeak is based on a monolithic design and was not really engineered with modularity in mind.
In addition, it is a large and complex system which evolved over a time span of 15 years. We expect to see co-use,
packages with too many responsibilities, as well as some tangling between groups of packages. We are really familiar
with the code.

Jboss. JBoss is a widely used Java application server. The domain is more restricted than the one of the previous
system. It has a large base of developers. JBoss was also designed in presence of a package system so it should be
more modular.

Our hypothesis: JBoss is an industrial standard and we expect it to be of good quality and modularity and to get
fingerprints showing cohesive packages. We were not familiar with the code.

ArgoUML. ArgoUML is an UML editing tool. It is a small application, mainly developed by a couple of core
developers and several committers. Its design suffers from large facades, but otherwise we were not familiar with the
code.

Our hypothesis: ArgoUML has known problems with large classes and we want to see if fingerprints help us to
understand how they could be split.

Azureus. Azureus is a peer-to-peer client. It represents a middle size application with a large number of classes.
Our hypothesis: We expect it to be normal application quality and to get fingerprints showing small or medium

cohesive packages. We were not familiar with the code.

7.2. Black Fill Pattern
This pattern is characterized by a complete black fill of the fingerprint as shown in Figures 12 and 12(c). This

pattern occurs when all the package interface classes are conceptually coupled: for an incoming fingerprint, all the
In-Interface classes are referenced together by every referencing package, while for an outgoing fingerprint, all the
Out-Interface classes refer together to every referenced package.

SMSqueakMap

(a) The Incoming Fingerprint
of domain package of the
Squeak38::SMBase subsystem.

ServerConfigServiceServerConfig

(b) The Incoming and the Outgoing
Fingerprints of config package of the
jboss::portal::sever subsystem.

NotationProvider

(c) The Incoming Fingerprint of notation
package of the argouml::uml subsystem.

Figure 12: Examples of Black Fill Fingerprints.

In our case studies, and in the context of the incoming fingerprint, this pattern occurs for small size In-Interface
packages, particularly when they export only one class, or when the package is referenced by a small number of
packages. Peripheral packages often present this pattern.

16

Referenced as a single service. In this pattern, the classes of the package In-Interface are always referenced together
as a single service. Thus, such a package is often characterized by a high degree of cohesion because all its
classes tend to fulfill a single service, and the package design respects the package cohesion principles REP and
CRP (described in Section 2.2).

Referencing all the same services. For outgoing fingerprints, this pattern occurs also for small size package Out-
Interface, or when the package refers to a small number of packages. Exhibiting a black fill pattern reveals
that all the classes of the package Out-Interface refer together to the same group of packages i.e., same reasons
for change. Thus we can conclude that they have a high degree of similarity in terms of required services and
responsibility —since all the package classes refer to the same group of packages, they have the same source of
changes impact.

In consequence, packages that exhibit the black fill pattern for incoming and outgoing fingerprints, may repre-
sent a good architecture design since: (1) they respect the three cohesion principles, (2) it is easy to know which
services the package provides and it provides them to which packages, and (3) maintainer can see quickly which ser-
vices/packages the package uses. Note that when several classes are doing consistently several and similar references
to external classes, leading to an outgoing black fill, this pattern may reveal a lack of factorization within the package
violating the DRY (Don’t Repeat Yourself) principle [FBB+99].

Examples. Figure 12 shows some fingerprints that present this pattern.

A well encapsulated package. Figure 12(a) shows the incoming fingerprint of the package SMBase::domain of
Squeak38, which defines the domain model of a source management system. It shows that SMBase::domain
exports only one class (SMSqueakMap) to only four packages of Squeak38 system. Thus we know that the ser-
vices provided by this package are exactly the role of SMSqueakMap class and we know that this class provides
specific services – since it is referenced by only four packages within the system. Note that SMBase::domain
contains 14 classes, but understanding its role requires understanding only one class of those classes. In such a
context we say that the package design respects the hidden-information principle.

A provider of abstract service. Figure 12(c) shows the incoming fingerprint of notation package of argouml::uml
subsystem. It shows that uml::notation exports only one class NotationProvider. By reading this class and
its hierarchy we found that it is the interface which is implemented by every UML’s element notation (e.g.,
AttributeNotation, MessageNotation, ObjectNotation, etc.). notation package includes all those classes (18
classes) but it provides them to the system via their top superclass NotationProvider.

A package with a single reason for changing. Figure 12(b) shows the incoming and outgoing fingerprints of config
package of the jboss::portal::server subsystem. Both fingerprints present the Black Fill pattern. The outgoing
fingerprint shows that the package Out-Interface contains only one class: ServerConfigService. By reading this
class we found that it implements the interface ServerConfig which is the only class provided by the package:
the incoming fingerprint shows that the package In-Interface contain only ServerConfig. Thus we deduce that
the package has a single reason for changing, which is the class ServerConfigService. On the another hand, to
understand the package role is enough to understand the interface ServerConfig or its implementation provided
by the class ServerConfigService.

Variation. The package invocation, shown in Figure 13, illustrates a variation of this pattern: the fingerprint fill
appears as gray layers: under the main diagonal the cells are black and above it, they are in progressively lighter
shades of gray. We call this variation Black-White Fill. The fingerprints that present this pattern are usually larger
than those presenting Black Fill. Note that the presence of gray layers indicates a degradation of the package cohesion.

Providing a set of layered services. In incoming fingerprints, the Black-White Fill pattern indicates that the package
In-Interface involves several groups of classes, where each group contains classes that are referenced together,
as a single service, by a set of referencing packages. In this pattern, the services are ordered (layered) top-down
in the fingerprint: each one uses the services that are layered below it. Figure 13 shows that the bottommost

17

Service1:
class PortletInvocation

Service2: classes
PortletInvocation (Service1)
and ActionInvocation

Service3:
classes PortletInvocation,
ActionInvocation (Service2),
and RenderInvocation

Pk
gs
3

core::controller::portlet
test::wsrp::v1::consumer

faces::component::portlet
portlet::test

wsrp::producer

Pk
gs
2 test::core::state

test::core::model::instance
test::portlet::state

Pk
gs
1

wsrp::invocation
wsrp::aspects::portlet

wsrp::consumer
bridge

portlet::test::support
portlet::impl::jsr168::taglib

core::admin::ui::portlet
core::impl::model::instance

portlet::management
portlet::federation::impl
portlet::impl::jsr168::api
portlet::aspects::portlet

portlet::container
core::aspects::portlet

portlet::state::producer
portlet::state::consumer

portlet::impl::jsr168

Figure 13: An example of the Black-White pattern: the Incoming Fingerprint of invocation package, from Jboss system.

service Service1, which contains the class PortletInvocation, is a sub-service of Service2 and Service3: Service2
augments Service1 with class ActionInvocation, and Service3 augments Service2 with class RenderInvocation.
Relating the importance of a service to the number of packages that refer to it, the provided services are ver-
tically ordered by importance, with the most important package at the bottom. In Figure 13, the bottommost
service Service1 is referenced by all referencing packages (all cells into that layer are black). In contrast, the
three classes of Service3 are referenced together only by the packages in Pkgs3: within the Service3 layer, only
cells in the columns of Pkgs3 are completely black.

Involving a set of layered reasons for changing. For outgoing fingerprints, the Black-White Fill pattern indicates
that the package Out-Interface involves several group of classes, where each group present classes that refer
together to a set of packages. Thus we deduce that each group involves a distinct reason for changing. As with
services, those groups are layered top-down by the importance of each group’s reason-for-changing, i.e., the
number of packages the group refers to.

7.3. Arrow Pattern
When the only non white cells are the diagonal cells, the fingerprint looks like an arrow.

Providing particular non-coupled services. For incoming fingerprints, this pattern occurs when the package In-
Interface involves several independent groups of classes, where the classes in each group are referenced together,
as a single service, by only one client package. In other words, each client package refers to only one service:
the relationship between provided services and client packages is one-to-one.

This means that the package under study provides non-coupled services to the system. Since each service
is used by only one client package, we also deduce that the provided services are particular and of minimal
importance, i.e., they are neither general nor core services from the point of view of the package system, and
few packages use them.

18

MCVersionInspector

MCSaveVersionDialog

MCMergeBrowser

MCChangeSelector MCFileRepositoryInspector

MCSnapshotBrowser

MCPatchBrowser

MCRepositoryInspector

Monticello::Versioning

Monticello::Repositories

Monticello::Tests

Monticello::Patching

Figure 14: Arrow Pattern: the Incoming Fingerprint of UI package of the Squeak38::Monticello subsystem.

Figure 14 shows the incoming fingerprint of UI package of the Squeak38::Monticello subsystem. It shows that
the package services are used separately, by individual packages from the same subsystem Squeak38::Monticello:
the client package Monticello::Versioning uses the top service which contains the classes MCVersionInspector,
MCSaveVersionDialog, MCMergeBrowser and MCChangeSelector; the client package Monticello::Repositories
uses another service containing classes MCFileRepositoryInspector and MCRepositoryInspector; the last two
client packages Monticello::Tests and Monticello::Patching each use a one-class service.

Involving particular non-coupled reasons for changing. For outgoing fingerprints, the strict occurrence of this pat-
tern appears when the package Out-Interface involves several groups of classes, where the classes in each group
refer together, as a single reason-for-changing, to only one provider package. Like with the incoming finger-
print, there is a one-to-one relationship between the provider packages and reasons for changing. The concerned
package has thus several non coupled/mixed reasons for changing, and since these reasons for changing each
use only one provider package, they are relatively simple or clear.

Package may be a candidate for splitting. Since the occurrence of Arrow pattern indicates that the concerned pack-
age provides particular services that are used separately or/and it has several non coupled reasons-for-changing,
the pattern indicates that such a package could be a candidate for splitting: moving some classes of the package
In-Interface/Out-Interface to their referencer/referenced packages may optimize package internal cohesion and
reasons for changing.

For example, Figure 14 shows that the UI package has a typical Arrow incoming fingerprint: the four services
provided by package UI are never referenced together. Moreover, the service containing the classes MCFil-
eRepositoryInspector and MCRepositoryInspector could be moved out, because they are not referenced from
within UI (they appear as hollow squares in the top left cell). In fact, further inspection of these two classes
revealed that they participate in circular dependancies, and that moving them to Monticello::Repositories would
improve its internal cohesion as well as that of UI, while freeing UI of these circular dependancies.

Variant: Non-coupled services (reasons-for-changing) with distinct importances. A frequent variation of the Ar-
row pattern is when the fingerprint’s main diagonal shows black squares, rather than individual cells, as in
Figure 15(a). Again, the presence of squares around the diagonal only is a good indication that the functionality
of the packages is not cohesive from the client/provider point of view. For instance, looking at the outgoint
fingerprint in Figure 15(a), we see that the package under study has two non-coupled reasons-for-changing, the
most important one coming from the references made by the class B3DPrimitiveRasterizer to the 5 packages in
Pkgs2.

Variant: Providing loosely-coupled services. A variation of the Arrow pattern occurs for incoming fingerprints
when some of the provided services, if not all, are used together by a few number of referencing packages.
In this case, we say that the package services are loosely coupled and some of the referencing packages appear
as dominant over the other referencing packages.

19

Balloon3D::Wonderland::Morphs
Balloon3D::Kernel::Engine

Balloon3D::Morphic
Balloon3D::Kernel::Meshes
Balloon3D::Tutorial::Demos
Balloon3D::Kernel::Lights

Balloon3D::Wonderland-Lights Balloon3D::Kernel::Lights
Balloon3D::Kernel::Vectors
Collections::Unordered
Graphics::Primitives
Squeak38::Stubs
Collections::Streams
Graphics::DisplayObjects

B3DPrimitiveRasterizer

B3DPrimitiveLightB3DPrimitiveEngine

B3DPrimitiveTransformer

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

(a) The Incoming and Outgoing Fingerprints of Kernel::PrimitiveEngine package of the Squeak38::Balloon3D subsystem.

Morphic::Kernel
Morphic::Books

Morphic::Widgets
Tools::FileList

System::Support
Morphic::Worlds
Kernel::Objects

Service2: class SqueakPage

Service3: classes SqueakPage (Service2)
and URLMorph

Service4: classes URLMorph,
SqueakPage (Service3),
and SqueakPageCache (Service1)

Service1: class SqueakPageCache

(b) The Incoming Fingerprint of SqueakPage package of the Squeak38::Network subsystem.

Figure 15: The variations of Arrow pattern.

Figure 15(b) shows the incoming fingerprint of Network::SqueakPage package of the Squeak38 system. The
incoming fingerprint has the described pattern variation. It shows that the packages Morphic::Kernel and Mor-
phic::Books are dominant referencing packages. They refer to all the classes provided by Network::SqueakPage
package (3 classes: SqueakPageCache, SqueakPage and URLMorph). The rest of referencing packages refer
to distinct groups of those classes: The referencing packages Kernel::Objects and Morphic::Worlds refer to the
class SqueakPageCache (Service1); the referencing packages System::Support and Tools::FileList refer to the
class SqueakPage (Service2); the referencing package Morphic::Widgets refers, in addition to (Service2), to the
class URLMorph. Thus the classes of the package In-Interface are used together by only two packages, while
the package has seven referencing packages. We then deduce that the provided services are loosely coupled in
the context of Network::SqueakPage package.

7.4. Mosaic Pattern

In this pattern, mosts cells are gray but they do not have an homogenous darkness, e.g., the incoming fingerprints
of the Basic package in Squeak38::Morphic or the model package in Argouml (Figures 16 and 17).

Large package interface size. The Mosaic pattern occurs usually for packages whose interfaces (In-Interface and
Out-Interface) contain a large number of classes. The incoming fingerprint of model package (Figure 17)
shows that this package has a large In-Interface, containing 51 classes, or 45% of the 112 total classes the
package contains. Moreover, out of those In-Interface classes, only 14 have incoming references inside the
model package.

Core and Central package. This patten occurs usually with giant fingerprints, i.e., a pattern that reveals a package
with a large interface and which is coupled to a large number of other packages. In the case of incoming

20

Squeak38::Morphic::Basic

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Morphic::Windows
Morphic::Support
Morphic::Widgets

Morphic::TileScriptors
Morphic::Navigators

Morphic::Palettes
Morphic::Kernel

Morphic::Games
Morphic::Demo

Morphic::GeeMail

Morphic::ScriptingTiles

Morphic::Scripting
Morphic::Experimental

Morphic::Books
Morphic::Menus
Morphic::Stacks
Morphic::PDA

Squeak38::Sound
Morphic::Games::Chess

Morphic::TextSupport::Tests
Morphic::Undo

Morphic::PartsBin

Morphic::PostscriptCanvases
Morphic::Flaps

Morphic::Games::Atomic

Nebraska::Morphic::Collaborative

Morphic::Widgets::Tests
Morphic::Buttons

Morphic::Kernel::Tests

Morphic::Components

Group3:
StringMorph,
AlignmentMorph

Group1:
StringMorph,
AlignmentMorph,
ImageMorph,
RectangleMorph

Group2:
StringMorph,
AlignmentMorph,
ImageMorph

Group4:
RectangleMorph,
EllipseMorph

AlignmentMorph

StringMorph

RectangleMorph

EllipseMorph

PolygonMorph

Mosaic

a

aaa

b
bb

c

cc d
dd

e

e
f

fff
gggggg

iiii
hhh

a

a

a

M

i

Figure 16: An example of the Mosaic pattern: the Incoming Fingerprint of Morphic::Basic package, from Squeak38 system.

fingerprints, this means that the package provides a lot of services (i.e., groups of classes always referenced
together, see Section 3.1) that are used by an important number of packages within its system (see Section 7.5).

Examples. The Basic package whose incoming fingerprint (Figure 16) has the Mosaic pattern is also a core
package within its system Morphic. Basic package provides 15 classes to 30 packages. Only two pack-
ages of the referencing packages are stubs, i.e., they do not belong to the Morphic system. Those stubs are
Squeak38::Sound package (denoted by 18) and Nebraska::Morphic::Collaborative package (denoted by 26).
Thus, Basic package provides 15 classes to 28 of the 45 Morphic packages. This means that more than 62 % of
the Morphic packages depend upon Basic package and this last is a core and a central package within Morphic.

Another example, the model package whose incoming fingerprint (Figure 17) has the Mosaic pattern is a core
package within its system Argouml. In addition to the fact that it contains 112 classes of the 1671 Argouml
classes, it is also referenced by 54 packages of the 76 Argouml packages. Also the package In-Interface contains
51 classes, which means 71 % of Argouml packages depend directly on 51 classes within the model package.
This means that the whole Argouml system highly depends on the model package and this last plays the role of
core and central package within Argouml.

Imprecision and difficulty in determining package usage and role. The occurrence of Mosaic pattern for incom-
ing fingerprints indicates that the package under analysis provides a large number of functionalities that are
accessed by a large number of packages in an arbitrary way, i.e., non-consistent way. Thus in presence of this
pattern, it is hard to know which functionalities are used together and which are not. As a result, it is hard to
identify the role/functionality and to determine the contextual cohesion of the considered package.

A deeper analysis of the Mosaic pattern is described in [Abd09].

21

Group2: CoreHelper,
Facade,
Model

Group4: Facade,
Model

Group3: ModelEventPump,
Facade,
Model

Group1: MetaTypes,
Model

Group5: ModelEventPump,
Model

Mosaic

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

argouml::model
Zoom-In

Zoom-In

The package's
In-Interface
contains 51 classes.
Only 14 classes,
among them,
have incoming
references inside
the package.

Group6: ModelEventPump,
Facade,
Model,

CoreHelper

Group7: Facade,
Model,

CoreHelper,
MetaTypes,

StateMachinesHelper,
ModelManagementHelper

Mosaic1

Mosaic2

Mosaic3

Mosaic4

Figure 17: An example of the Mosaic pattern: the Incoming Fingerprint of model package, from Argouml system.

22

7.5. Other Patterns

We present some other less frequent but still interesting patterns with less details.

7.5.1. Unbalanced Pattern
This pattern occurs when an incoming or outgoing fingerprint appears clearly bigger than its counterpart (i.e., its

outgoing or incoming fingerprint). The Unbalanced-Incoming Fingerprint pattern indicates that the analyzed package
plays a server role within the system, rather than a client role. The Unbalanced-Outgoing Fingerprint pattern indicates
the reverse case. Two variants of this general patterns have special interest:

Giant Incoming Fingerprint. This variant reveals core/central and utility packages that provide basic services for the
system. Figures 8, 17 and 16 show respectively that plugins::utils, argouml::model and Morpic::Basic exhibit
this pattern.

Empty-Outgoing Fingerprint. The outgoing fingerprint is empty, i.e., the package under analysis does not refer to
any package in the system. This occurs for packages that include only abstract classes or/and interfaces. Such
packages are not impacted by the system.

Empty-Incoming Fingerprint. The incoming fingerprint is empty and the package has no incoming references. It is
the case of packages that include abstract classes that are implemented in other packages. This pattern appears
for packages that are leaves in the package structure. This is often the case for UI application packages.

7.5.2. Golden Border Pattern
This patterns occurs when all the referencing packages are stubs (i.e., are not part of the system under analysis).

Thus, this pattern only occurs when the clients of the package under consideration do not belong to the analyzed
subsystem (e.g., Plugins within Azureus Figure 8). Such packages represent the border of the analyzed subsystem.
This pattern is usually a good sign because it indicates that the system under analysis tends to be well layered.

Ideally, a subsystem should be composed of three distinct layers of packages: the first layer presents packages
that refer only to packages outside the subsystem –thus they have Golden Border Outgoing Fingerprints– and are not
referenced by packages outside the subsystem; the second layer presents packages that interact only with packages
inside the subsystem; the third and last layer presents packages that refer only to packages inside the subsystem and
are referenced by only packages outside the subsystem –thus they have Golden Border Incoming Fingerprints.
Whatever, analyzing and understanding subsystem architecture/layers need a global view of the analyzed subsystem.
DSM views [SJSJ05] are more suitable for such analysis.

On the another hand, if a package has Golden Border Outgoing and Incoming Fingerprints, this means that the
concerned package is bad placed within the analyzed subsystem –since it has no incoming or outgoing references with
the subsystem packages and it interacts only with packages outside the subsystem.

7.6. Patterns Frequency

To give an impression to the readers of the relative importance of the patterns, we studied of their frequency in
the four case studies. Our process is the following one: (1) we picked random packages and applied the incoming
and outgoing fingerprints, (2) we visually identified some of the patterns mentioned previously and that are briefly
described in Table 2. In total, we evaluated 396 packages over a total of 1265 (31%). When a fingerprint exhibits
several patterns at once, we record one occurrence for each of the patterns. Figure 18 shows several instances of the
patterns to illustrate possible variations. Sometimes the distinction between two patterns is fuzzy, so the categories are
not totally rigorous. The size consideration in the patterns is mentioned to give an impression of the system from the
class usage point of view. Finally, we are aware that tallying pattern occurrences is not a validation of the approach
in itself. We only present these statistics to give an overall impression of its relevance, but the limited number of case
studies certainly biases which patterns appeared most.

During our systematic application of fingerprint, we noticed that it is interesting to see packages exhibiting nearly
identical patterns. We also got really fast information about packages having classes not been referenced in the system.
We could see differences between the projects: for example, in ArgoUML, outgoing fingerprints often contained
arrows and breaks, and were larger than in JBoss or Azareus. ArgoUML also presented a couple of really large

23

Pattern Number Description

Black Fill 114 (28%) Completely filled with black squares
Black & Grey Fill 126 (31%) Uniform blocks of black or grey squares
Arrow 106 (26%) Square groups around the diagonal
Break 78 (19%) Filled, except for one spot
Mosaic 78 (19%) Irregular shades of grey, lots of holes
Filled Mosaic 9 (2%) Filled but irregular shades of grey
Micro 116 (29%) 2 to 4 interacting packages
Large 62 (15%) More than 10 interacting packages
Extra Large 18 (4%) More than 25 interacting packages
Empty Incoming 88 (22%) With no cells
Empty Outgoing 14 (3%) With no cells

Table 2: Overall system data – Number of patterns (percentage relative to 396 packages examined).

Figure 18: Some instances of the patterns.

incoming fingerprints, mainly because they offered a complex UI. Since Squeak defines a complete language we had
a large variety of fingerprints and many Mosaics, since the packages were not designed to be modular or cohesive. In
general we noticed a large number of 2 or 3 cell wide fingerprints, which indicates focused client or user packages.

8. Discussion and lessons learned

8.1. Graphical concerns

Fingerprints show in a condensed form, the existing situation of the code. When packages are not well-designed
the patterns are less apparent but the visualization remains useful as it conveys a lot of information on the package
usage among the system.

Our approach has worked well on our case studies and we have been able to locate many conceptual bugs and to
spot several visual patterns. It should be noted that we were not familiar with the case studies before applying our
approach. Now we discuss some design points.

Position Choices. A reader often pays more attention to the top elements than to the bottom ones. Therefore, we
grouped the internal references at the top corner of the package fingerprint, then ordered the referencing packages in
an incoming fingerprint from the most referencing one at the top to the least referencing at the bottom (and similarly
with referenced packages in outgoing fingerprints).

24

Seriation. We ordered referencing/referenced packages that make the same number of references by similarity based
on common referenced/referencing classes into the package under analysis: the largest number of common refer-
enced/referencing classes that two client/provider packages have, the biggest similarity the two packages have; this
way, the reader can see which packages access, or are accessed by, the same groups of classes. During the design
of the fingerprint, we tried ordering packages differently, e.g., by similarity regardless of how many references they
make, but each time we lost important information i.e., the position of the most/least referencing packages.

Impact of Boundaries. We colored the border of packages that do not belong to the system under analysis in gold. We
found it really effective to use color to identify the currently selected entities so that the user can interactively mark
entities on which s/he wants to focus; this increases the usability of the tool.

Zooming. We introduced two levels of zoom-outs with minimal information loss, so that the visualization remains
compact and scalable over the number of the related packages or the size of the interfaces. This way, the user can
visualize large systems, navigate in the system, spot global patterns and conceptual anomalies. Then he can focus on
any package by zooming into the detailed fingerprint.

However, during our experiments, we found that detailed fingerprints do not scale as well as the zoomed-out
views. Detailed fingerprints expose a lot of information, which makes it difficult to spot patterns or gather general
information about the visualized package; this is especially true for giant fingerprints where the package’s interface
and number of related packages are very large. In fact, in such cases, none of the detailed views we applied has scaled
well. Zooming mechanisms [Sto05] helped us solve this problem.

Placeholders. The placeholders in cell internals are essential to make preattentive processing work and thus to help
users quickly spot which classes are coupled and where they are coupled. The negative impact of this principle is that
all cells should be large enough to represent all possible classes in the package interface. This is one of the reason
why the detailed fingerprints do not scale so well.

8.2. Package Cohesion
The presence of dark homogenous zones is a good indicator of the package cohesion. To assess whether fin-

gerprints do offer a good indication on cohesion, we computed the Common-Use (CU) metrics defined by Ponisio
[PN06] on packages whose fingerprints clearly showed that they were not cohesive (for example the packages model
(Figure 17) and Basic (Figure 16). The CU metric computes package cohesion from the reuse of the classes of the
package in-interface. It takes its value between 0 (no cohesion) and 1 (best cohesion) [PN06]. Applying the CU metric
gave the following results: 0.63 for the Basic package and 0.7 for the model package. This means that the design of
the latter is better than the design of the former and both packages are considered as relatively cohesive, which is not
what the fingerprint revealed. This experiment is quite limited, tough, and this is one of our future work. However, it
does show that the Fingerprint is much more than just metrics: the Fingerprint shows which classes are coupled, and
which ones are not, in a consistent way; it also shows the proportion of those classes within the package in-interface.

8.3. Hints for Code Improvements and Fingerprint Limitations
Incoming Fingerprint helps maintainer answer the following questions about a given package:

• Which In-Interface classes are used together, in a consistent way, as a single service? And which are not used
together, also in a consistent way, as distinct services?

• Where is a group of In-Interface classes used as a single service? and where is it mixed with distinct classes of
the concerned In-Interface?

• Which referencing packages refer to a given group of In-Interface classes? And which ones do not refer to that
group?

• Which In-Interface classes are highly coupled (i.e., used together by a large number of referencing packages)?
And which ones are loosely coupled (i.e., used together by a small number of referencing packages)?

• Which In-Interface classes are considered as most important (i.e., classes that are referenced by most referencing
packages)? And which In-Interface classes are less important?

25

Fingerprints Limitations. Package fingerprints focus on the package contextual cohesion, coupling, and co-use of
internal classes. However, they do not provide a good map for internal references; our aim is to support understanding
packages through their interfaces, regardless what happens inside them. With package fingerprint, we consider related
packages (e.g., referencing packages in an incoming fingerprint) as black boxes; we only pay attention to package
classes while we look at its fingerprint. This is clearly a limitation of fingerprints.

Since package fingerprints do show partial information about package internal references, hints at improvements,
which are revealed by fingerprints, should be verified and complemented by other information/views. For example, we
illustrated in Section 7.3 that an Arrow pattern indicates that the concerned package may be a candidate for splitting
— since it provides distinct non-coupled services. For such a case, before deciding to split the concerned package,
maintainer needs to know if classes that are not contextually coupled interact with each other. S/he needs to verify if
there are references or inheritance relationships among classes that are used by distinct packages before deciding to
split the package or to move some classes of that package to other ones.

The primary goal of Package Fingerprints is to give a fast visual understanding. It helps maintainers decide
whether and how to remodularize. However, this is not always possible when code is too complex, as illustrated by
the mosaic fingerprints. It should be noted that we do not oppose fingerprints to other techniques; on the contrary, we
see them as complementary. For example, independently of this work and this article, we developed complementary
tools to help dealing with packages such as Package Blueprints (which is based on a zoom-out visualization and or-
dering of internal references between packages) [DPS+07]; Orion (which supports the prediction of change impact)
[LDDK09] and a Simulated Annealing search-based technique to help maintainers find good alternative modulariza-
tions [ADSA09]. Maintainers can then use the fingerprints to compare the results, understand the alternatives, and
choose the most suitable modularization.

8.4. A Limited User Study

Package Fingerprints are a dense and compact visualization, they were designed to have such property. Still, users
may have difficulty extracting all the information from them. Our current work lacks a serious user study.

We performed some limited studies with members and students of our team not working on Fingerprint or vi-
sualization in general but on new language design. The experience was conducted as follows: (1) we presented the
fingerprint principles, (2) provided some simple case with explanation, (3) then we presented some fingerprints and
asked questions about the fingerprints, (4) at the end we asked if the fingerprints were useful using a set of questions
using the Likert scale2. The experience is rather limited since we got only 11 participants but we can already draw
some conclusions.

• Positive points. Our preliminary results show that a first level of understanding is easy to get: identifying
groups of co-referencing/co-referenced classes; identifying distinct provided services and distinct reasons-for-
changing; identifying referencing and referenced packages; etc.

Those users found that, the direction of the diagonal as well as the small annotations we put on top of the
fingerprint to distinguish incoming/outgoing fingerprint are very helpful. Fingerprints also support fly-by-help,
whose use suggests that showing the names of the packages on the side may really help creating a deeper
context. In addition, showing the referenced/referencing classes with the fly-by-help makes the visualizations
less abstract.

• Negative points. We learned that a deeper level of information extraction is difficult. This is the case with
packages that have very large interfaces and classes coupled in a non-consistent way (e.g., the Mosaic pattern).
More problematic, this limited study shows that more than a third of the participants (4/11) was unable to
quickly understand the semantics of the shades of grey, and why the matrixes are not symmetrical. In addition,
understanding the staircase effects as shown in Figure 13 was difficult to grasp for some participants (3/11).

This suggests that Fingerprint is good for a fast overview, but further usability enhancements and studies are
required to really prove the usability when too many details are presented.

2Five levels from “strongly disagree” to “strongly agree”, http://en.wikipedia.org/wiki/Likert_scale

26

http://en.wikipedia.org/wiki/Likert_scale

9. Related Work

Several works focus on understanding packages. These can be by supporting high-level analyses of package
relationships, visualizations, software metrics or package evolution.

High-level analyses. We are interested here on those based on visualizations. Sangal et al. adapted the dependency
structure matrix (DSM) from the domain of process management to analyze architectural dependencies in software
[SJSJ05]. DSM presents a consistent visualization that offers a system overview. While the visualization scales for
large systems, it is poor in terms of precise information about the package. DSM cells contain a number indicating
the number of references made between packages. However DSM did not focus on packages cohesion and co-use or
co-usage of classes.

X. Dong et al. [DG07] present the High-level Object Dependency Graph (HODG) that helps capturing, from a
high-level point of view, possible usage dependencies among coarse-grained software entities, namely packages. In
their approach, they interpret the usage dependencies between classes in the context of their hierarchy and present a
new graph of the system under analysis. While the given graph is helpful for understanding the considered system
from a high-level point of view, it does not give any information about package cohesion nor about the co-use or
the similarity between classes. Also, their graph visualization still difficult to be interpreted by human eyes because
within it, the nodes have different sizes but without any meaningful dimension. The HODG has not visual semantics
and it uses numbers to visualize almost information.

Program Visualization and Navigation. Package fingerprints are based on similar principles, but provide more visual
information and help identify groups of packages with similar dependencies. A fingerprint exploits pre-attentive
processing using color, contrast, and the principle of placeholders. In addition, a fingerprint by focusing on a package
at a time qualifies in a finer-grained way the dependencies.

A Package Blueprint [DPS+07] presents a condensed view of a package in terms of the references made between
packages. It acts as a map and puts in situation the references between packages. While package blueprint provides a
compact view and shows dependencies on a per-class basis, it does not help to group the client/provider packages in
terms of their dependencies to the package under analysis.

Kuhn et al. used information retrieval to exploit linguistic information. He introduced semantic clustering to group
source artifacts that use similar vocabulary [KDG07]. He uses vocabulary topics to reveal the intention of the code
and the similarity between its artifacts, then he provides a consistent visualization.

Several works explore packages and their structure but few of them reveal information on their relationships
and dependencies. In Softwarenaut, Lungu et al. help system discovery by guiding exploration of nested packages
[LLG06]. Storey et al. also worked on system exploration, supporting zoom-out facilities and forces-based graph
layouts [SWFM97]. However the work did not focus on co-use or co-usage of classes.

Software Metrics. There is a plethora of software metrics on cohesion: from the simple and bogus LCOM ([CK94])
to more advanced LCOM* metrics [BDW98]. Ponisio et al. introduced the notion of use cohesion [PN06], which is at
the foundation of the fingerprint. E. Hautas defines a new metric that indicates the percentage of changes to be made
in order to make a package structure acyclic [Hau02]. While he focuses only on the cyclic dependencies, he does not
provide any utility that helps understanding packages or indicating their cohesion or similarity.

Package Evolution. A number of approaches give summarized information on package relationships and their evolu-
tion: the Butterfly by Ducasse et al. gives a high-level client/provider trend of package dependencies [DLP05]; Pzinger
et al. show the evolution of package metrics using Kiviat diagrams [PGFL05]; Chuah and Eick use rich glyphs to char-
acterize software artifacts and their evolution (number of bugs, number of deleted lines, kind of language...) [CE98].
In particular, the timewheel exploits preattentive processing, and the infobug presents many different data sources in
a compact way; finally, D’Ambros et al. reveal package coupling by showing evolutions that are correlated in time
[DL06].

27

Co-evolution. Other works treat and visualize information about software co-change evolution, looking at cou-
pling from a temporal perspective, and software development teams and activities [Bey05, EGK+02, FD04, SvG05,
VTvW05, XPM06]. Such approaches are completementary to ours in the sense that we only focus on the static na-
ture of the packages and their relationships. While those approaches are valuable and provide fine-grained views of
packages that may help understanding the contextual coupling and cohesion inside packages, they fall short on the
analysis of a single version of a system.

10. Conclusion

In this paper, we tackled the problem of understanding the details of package relationships from a usage perspec-
tive. We described the package fingerprints, and their use as a visual approach for understanding package relation-
ships, contextual cohesion, and the conceptual coupling of their classes. While designing Fingerprint, we exploited
pre-attentive processing using color properties and saving placeholders principle. We also introduced interactivity and
multi-selection mechanism to help the user during the analysis task.

We successfully applied the visualization to several large systems and we have been able to quickly point out
badly designed packages, and to extract relevant patterns. While applying Fingerprints to large systems that contain
radically different packages in terms of size and references, the visualization generally scaled well without hindering
the detection of different patterns.

References

[AAD+08] Hani Abdeen, Ilham Alloui, Stéphane Ducasse, Damien Pollet, and Mathieu Suen. Package reference fingerprint: a rich and compact
visualization to understand package relationships. In European Conference on Software Maintenance and Reengineering (CSMR),
pages 213–222. IEEE Computer Society Press, 2008.

[Abd09] Hani Abdeen. Visualizing, Assessing and Re-Modularizing Object-Oriented Architectural Elements. PhD thesis, Université de Lille,
2009.

[ABF04] Erik Arisholm, Lionel C. Briand, and Audun Foyen. Dynamic coupling measurement for object-oriented software. IEEE Transactions
on Software Engineering, 30(8):491–506, 2004.

[ADSA09] Hani Abdeen, Stéphane Ducasse, Houari A. Sahraoui, and Ilham Alloui. Automatic package coupling and cycle minimization. In
International Working Conference on Reverse Engineering (WCRE), pages 103–112, Washington, DC, USA, 2009. IEEE Computer
Society Press.

[AGa01] Fernando Brito e Abreu and Miguel Goulão. Coupling and cohesion as modularization drivers: Are we being over-persuaded? In
CSMR ’01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, page 47, Washington, DC,
USA, 2001. IEEE Computer Society.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments with Clustering as a Software Remodularization Method. In Proceedings of
WCRE ’99 (6th Working Conference on Reverse Engineering), pages 235–255, 1999.

[BDW98] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified Framework for Cohesion Measurement in Object-Oriented Systems.
Empirical Software Engineering: An International Journal, 3(1):65–117, 1998.

[BDW99a] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified Framework for Coupling Measurement in Object-Oriented Systems.
IEEE Transactions on Software Engineering, 25(1):91–121, 1999.

[BDW99b] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. Using coupling measurement for impact analysis in object-oriented systems.
In Proceedings of the 21st International Conference on Software Engineering (ICSE 1999), pages 475–482, 1999.

[Bey05] Dirk Beyer. Co-change visualization. In Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM),
Industrial and Tool volume, pages 89–92, 2005.

[CE98] Mei C. Chuah and Stephen G. Eick. Information rich glyphs for software management data. IEEE Computer Graphics and Applica-
tions, 18(4):24–29, July 1998.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[DD07] Marcus Denker and Stéphane Ducasse. Software evolution from the field: an experience report from the Squeak maintainers. In
Proceedings of the ERCIM Working Group on Software Evolution (2006), volume 166 of Electronic Notes in Theoretical Computer
Science, pages 81–91. Elsevier, January 2007.

[DG07] Xinyi Dong and M.W. Godfrey. System-level usage dependency analysis of object-oriented systems. In ICSM 2007: IEEE Interna-
tional Conference on Software Maintenance, pages 375–384, October 2007.

[DL06] Marco D’Ambros and Michele Lanza. Reverse engineering with logical coupling. In Proceedings of WCRE 2006 (13th Working
Conference on Reverse Engineering), pages 189 – 198, 2006.

[DLP05] Stéphane Ducasse, Michele Lanza, and Laura Ponisio. Butterflies: A visual approach to characterize packages. In Proceedings of the
11th IEEE International Software Metrics Symposium (METRICS’05), pages 70–77. IEEE Computer Society, 2005.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and Ilham Alloui. Package surface blueprints: Visually supporting the
understanding of package relationships. In ICSM ’07: Proceedings of the IEEE International Conference on Software Maintenance,
pages 94–103, 2007.

28

[EGK+02] Stephen Eick, Todd Graves, Alan Karr, Audris Mockus, and Paul Schuster. Visualizing software changes. IEEE Transactions on
Software Engineering, 28(4):396–412, 2002.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: Improving the Design of Existing Code.
Addison Wesley, 1999. ordered but not received.

[FD04] Jon Froehlich and Paul Dourish. Unifying artifacts and activities in a visual tool for distributed software development teams. In
Proceedings of the 26th International Conference on Software Engineering, pages 387–396, Washington, DC, USA, 2004. IEEE
Computer Society.

[Fow01] Martin Fowler. Reducing coupling. IEEE Software, 2001.
[Hau02] Edwin Hautus. Improving java software through package structure analysis. In IASTED International Conference Software Engi-

neering and Applications, 2002.
[HBT93] C. G. Healey, K. S. Booth, and Enns J. T. Harnessing preattentive processes for multivariate data visualization. In GI ’93: Proceedings

of Graphics Interface, 1993.
[KDG07] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba. Semantic clustering: Identifying topics in source code. Information and Software

Technology, 49(3):230–243, March 2007.
[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual approach to reverse engineering. Transactions on

Software Engineering (TSE), 29(9):782–795, September 2003.
[LDDK09] Jannik Laval, Simon Denier, Stéphane Ducasse, and Andy Kellens. Supporting incremental changes in large models. In Proceedings

of ESUG International Workshop on Smalltalk Technologies (IWST 2009), Brest, France, 2009.
[LLG06] Mircea Lungu, Michele Lanza, and Tudor Gı̂rba. Package patterns for visual architecture recovery. In Proceedings of CSMR 2006

(10th European Conference on Software Maintenance and Reengineering), pages 185–196, Los Alamitos CA, 2006. IEEE Computer
Society Press.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer-Verlag, 2006.
[Mar96] Robert C. Martin. Granularity, 1996. www.objectmentor.com.
[Mar00] Robert C. Martin. Design principles and design patterns, 2000. www.objectmentor.com.
[Mar02] Robert C. Martin. Srp: The single responsibility principle, 2002. www.objectmentor.com.
[MM06] Brian S. Mitchell and Spiros Mancoridis. On the automatic modularization of software systems using the bunch tool. IEEE Transac-

tions on Software Engineering, 32(3):193–208, 2006.
[MMCG99] Spiros Mancoridis, Brian S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A Clustering Tool for the Recovery and Maintenance of

Software System Structures. In Proceedings of ICSM ’99 (International Conference on Software Maintenance), Oxford, England,
1999. IEEE Computer Society Press.

[MT07] Hayden Melton and Ewan Tempero. The crss metric for package design quality. In ACSC ’07: Proceedings of the Australian
Computer Science Conference, 2007.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into modules. CACM, 15(12):1053–1058, December 1972.
[Pet95] Marian Petre. Why looking isn’t always seeing: Readership skills and graphical programming. Communications of the ACM,

38(6):33–44, June 1995.
[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing multiple evolution metrics. In Proceedings of SoftVis

2005 (2nd ACM Symposium on Software Visualization), pages 67–75, St. Louis, Missouri, USA, May 2005.
[PN06] Laura Ponisio and Oscar Nierstrasz. Using context information to re-architect a system. In Proceedings of the 3rd Software Measure-

ment European Forum 2006 (SMEF’06), pages 91–103, 2006.
[RC92] Linda Rising and Frank W. Calliss. Problems with determining package cohesion and coupling. Software - Practice and Experience,

22(7):553–571, 1992.
[SGCH01] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. The structure and value of modularity in software design. In

ESEC/FSE 2001, 2001.
[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models to manage complex software architecture. In

Proceedings of OOPSLA’05, pages 167–176, 2005.
[Sto05] Margaret-Anne D. Storey. Theories, methods and tools in program comprehension: Past, present and future. In 13th International

Workshop on Program Comprehension (IWPC), pages 181–191, 2005.
[SvG05] Margaret-Anne D. Storey, Davor Čubranić, and Daniel M. German. On the use of visualization to support awareness of human

activities in software development: a survey and a framework. In SoftVis’05: Proceedings of the 2005 ACM symposium on software
visualization, pages 193–202. ACM Press, 2005.

[SWFM97] Margaret-Anne D. Storey, Kenny Wong, F. D. Fracchia, and Hausi A. Müller. On integrating visualization techniques for effective
software exploration. In Proceedings of IEEE Symposium on Information Visualization (InfoVis ’97), pages 38–48. IEEE Computer
Society, 1997.

[Tre85] Anne Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image Processing, 31(2):156–177, 1985.
[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 2nd edition, 2001.

[VTvW05] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan: visualization of code evolution. In Proceedings of 2005 ACM Symposium
on Software Visualization (Softviz 2005), pages 47–56, St. Louis, Missouri, USA, May 2005.

[War00] Colin Ware. Information visualization: perception for design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.
[Wig97] Theo Wiggerts. Using clustering algorithms in legacy systems remodularization. In Ira Baxter, Alex Quilici, and Chris Verhoef,

editors, Proceedings of WCRE ’97 (4th Working Conference on Reverse Engineering), pages 33–43. IEEE Computer Society Press,
1997.

[XPM06] Xinrong Xie, Denys Poshyvanyk, and Andrian Marcus. Visualization of CVS repository information. In WCRE’06: Proceedings of
the 13th Working Conference on Reverse Engineering, pages 231–242, Washington, DC, USA, 2006. IEEE Computer Society.

29

	Introduction
	Challenges in Understanding Packages
	Raw size information
	Cohesion and coupling
	Package Maintenance Scenarios

	Package Fingerprint Principles
	Terminology
	Fingerprints Intention
	Fingerprint Skeleton
	Enriching the Fingerprint Skeleton Layout

	Detailling a Fingerprint
	Reading and Interacting With an Incoming Fingerprint
	Outgoing Fingerprint
	Visual Patterns
	Characterizing the systems under analysis
	Black Fill Pattern
	Arrow Pattern
	Mosaic Pattern
	Other Patterns
	Unbalanced Pattern
	Golden Border Pattern

	Patterns Frequency

	Discussion and lessons learned
	Graphical concerns
	Package Cohesion
	Hints for Code Improvements and Fingerprint Limitations
	A Limited User Study

	Related Work
	Conclusion

