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Joint estimation of chords and downbeats from an

audio signal
Hélène Papadopoulos* and Geoffroy Peeters

Abstract—We present a new technique for joint estimation
of the chord progression and the downbeats from an audio
file. Musical signals are highly structured in terms of harmony
and rhythm. In this paper, we intend to show that integrating
knowledge of mutual dependencies between chords and metric
structure allows us to enhance the estimation of these musical
attributes. For this, we propose a specific topology of hidden
Markov models that enables modelling chord dependence on
metric structure. This model allows us to consider pieces with
complex metric structures such as beat addition, beat deletion
or changes in the meter. The model is evaluated on a large set
of popular music songs from the Beatles that present various
metric structures. We compare a semi-automatic model in which
the beat positions are annotated, with a fully automatic model in
which a beat tracker is used as a front-end of the system. The
results show that the downbeat positions of a music piece can be
estimated in terms of its harmonic structure and that conversely
the chord progression estimation benefits from considering the
interaction between the metric and the harmonic structures.

Index Terms—Chords, Downbeat, HMM

I. INTRODUCTION

W ITHIN the last few years, the huge explosion of

online music collections have become a great source

of attention. Specific demands, such as asking an online

store to find a song that fits his or her taste and musical

expectation among millions of other tracks, became common

requirements to music listeners. In this context, techniques

for interacting with enormous digital music libraries at the

song level are necessary. Content-based music retrieval is

therefore a very active topic of research. Within the context of

music information retrieval, many applications based on music

content analysis have emerged, such as music classification or

structural audio segmentation. These applications are mostly

based on the use of musical descriptors that are extracted

from the audio signal. For instance, two different versions of

the same underlying musical piece generally share a similar

harmonic structure. The detection of cover versions is thus

frequently based on chord progression [1]. Manual annotation

of the content of musical pieces is a very difficult and tedious

task and requires an immense amount of effort. It is thus

essential to develop techniques for automatically extracting

musical elements from musical signals. We address this issue
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in this paper. Our research concentrates on musical descriptors

related to the harmonic structure and the metric structure,

which are some of the most important attributes of Western

tonal music. More specifically, we focus on the problem

of estimating two musical attributes: the chord progression,

which is related to the harmony, and the downbeats, which

are related to the metric structure. A piece of music can

be characterized by its chord progression that determines the

harmonic structure. The chord progression is closely related

to the metric structure of the piece [2]. For example, chords

will change more often on strong beats than on other beat

positions in the measure. Most of the previous studies have

dealt with various musical attributes independently. However,

harmony and meter are deeply related to each other and their

automatic estimation should be improved by exploiting their

interrelationship. In this paper, we present a system that allows

the simultaneous estimation of the chord progression and the

downbeats from an audio file. Most of the previous work on

downbeat detection have dealt with constant meter pieces. A

contribution of this paper is that we consider the problem of

complex meter (e.g. changes in the meter, addition or deletion

of beats). We also consider the problem of imperfect beat

tracking. The model is evaluated on a large set of popular

music songs and gives very interesting results on pieces with

complex metric structure.

II. RELATED WORK

In this section, we review some previous works on chord

and downbeat estimation that are related to the present work.

A. Chords

The first stage of a chord detection system consists in ex-

tracting some low-dimensional features from the audio signal

that are appropriated for the task. Since their introduction

in 1999, Pitch Class Profiles (PCP) [3] or Chroma-based

representation [4] became common features for estimating

chords or musical keys from audio recordings. PCP/chroma

vectors are low-dimensional features that represent the inten-

sity of the twelve semitones of the pitch classes. [3] proposes

and uses this representation to derive a large set of chords

using either a nearest neighbor or a weighted sum method.

The system is successfully evaluated but only using synthetic

sounds. Most of the works on chord detection are based on

this representation. Recently, a new feature called the Tonal

Centroid has been proposed [5]. [6] uses this feature in the
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context of chord estimation and shows that his chord detection

system performs better than when using chroma features.

Chord detection systems can be generally classified into two

categories: template matching algorithms and machine learn-

ing algorithms. In template matching approaches, each feature

vector computed from the audio signal is correlated with a

set of chord templates that indicate the perceptual importance

of the notes within a chord. The musical chord is obtained

by selecting the template that gives the maximum correlation

coefficient. [7] estimates chords using simple bit masks1 that

are compared to chroma features. Relying on the work of

[8], [9] proposes chord templates that take into account the

harmonics of the notes. Alternative to the template matching

based approaches are the machine learning approaches. Hidden

Markov models (HMMs) have been widely used in the context

of chord estimation. [10] presents the first system for chord

segmentation/recognition evaluated on natural sounds (whole

pieces of music of commercial recordings). The system relies

on HMM trained by the Expectation Maximization (EM)

algorithm. [11] uses an approach similar to [10] but introduces

musical knowledge in the HMM to improve the results. This

work is extended in [9] and compared with other methods. [12]

proposes a system that tracks chords and keys replacing the

more traditional Gaussian emission distributions with Dirichlet

distributions in the HMM. [13] proposes an acoustic chord

transcription system that uses symbolic data to train HMMs,

avoiding the tedious task of human annotation of chord names

and boundaries.

B. Downbeats

A metric structure is a hierarchical structure. The most

salient metrical level, called the tactus or beat level is a mod-

erate level that corresponds to the foot-tapping rate. Here, we

will also consider another common metrical level called tatum.

The tatum level corresponds to the “shortest durational values

in music that are still more than accidentally encountered ”

[14]. Musical signals are divided into units of equal time value

called measures or bars. The relationship between measures

and tactus/tatum is defined by the meter, which is usually

indicated by a time signature. One important problem related

to meter analysis is to find the position of the downbeat or the

first beat of each measure.

Downbeat detection is an interesting problem that deserves

to be carefully studied. Even if it has drawn less attention

than beat tracking, there have been however a number of

contributions dealing with various aspects of this problem.

Most of the proposed approaches rely on prior knowledge such

as tempo, time-signature of the piece or hand-annotated beat

positions.

[15] presents a model that uses an autocorrelation technique

to determine the downbeats in musical audio signals for which

beat positions are known. The system relies upon the assump-

tion that a piece of music will contain repeated patterns. It has

been tested on 42 different pieces of music at various metrical

levels, in several genres. It achieves a success rate of 81% for

1A bit mask is a 12-dimensional vector corresponding to the 12 semitones
of the pitch classes with 1 when the note belongs to the chord, 0 otherwise.

pieces in 4/4 time-signature and needs more testing on ternary

time-signatures. [16] proposes an unbiased and predictive ap-

proach. The model is tempo independent and does not require

beat tracking but requires some fair amount of prior knowledge

acquired through listening or learning during a supervised

training stage where downbeats are hand-labeled. The model

has only been applied to music in 4/4 meter. [2] proposes two

approaches to downbeat estimation. For percussive music, the

downbeats are estimated using rhythmic pattern information.

For non-percussive music, the downbeats are estimated using

chord change information. [14] proposes a full analysis of

musical meter into three different metrical levels: tatum, tactus

and measure level. The downbeats are identified by matching

rhythmic pattern templates to a mid-level representation. [17]

uses a similar “template-based” approach in a drum-pattern

classification task. In [18] an approach based on a spectral

difference between band-limited beat-synchronous analysis

frames is proposed. The sequence of beat positions of the

input signal is required and the time-signature is to be known

a priori. A recent method that segments the audio according

to the position of the bar lines has been presented in [19]. The

position of each bar line is predicted by using prior information

about the position of previous bar lines as well as the estimated

bar length. The model does not depend on the presence of

percussive instruments and allows moderate tempo deviations.

C. Exploiting Relationships Between Musical Attributes

Although there is a strong relationship between the chord

progression of a piece and other musical attributes such as

the musical key or the metric structure, these attributes have

typically been estimated separately in the past. However, some

approaches that consider the interactions between chords and

other musical attributes have already been proposed. [20]

proposes a technique to estimate the predominant key in a

musical excerpt from the chord progression. The key space

is modeled on a 24-state hidden Markov model, where each

state represents one of the 24 major and minor keys, and

each observation represents a chord transition. It is argued

that the tonal center can be better defined using chords instead

of note distributions without regard for their position within

musical phrases. [13] estimates simultaneously the chord pro-

gression and the musical key of an audio file. For each key,

a key-dependent HMM is built, using the key information

derived from symbolic data. The musical key is obtained by

choosing a key model with the maximum likelihood, and the

chord sequence is obtained from the optimal state path of

the corresponding key model. [21] proposes a probabilistic

framework devised to uniformly integrate bass lines extracted

by using bass pitch estimation into hypothesis-search-based

chord recognition. Bass lines are utilized as clues for improv-

ing chord recognition. [22] considers the interaction between

harmonic and metric structure. It is related to our work in

the sense that contextual information related to the meter

is used for modeling the chord progressions. However, the

approach is different. It is not based on a HMM but the strong

relationship between chord progression and the meter of the

piece is embedded in a tree structure that captures the chord
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structure in a given musical style. The main assumption behind

the model is that conditional dependencies between chords

in a typical chord progression are strongly tied to the metric

structure associated to it. In this model, a chord progression

is seen as a two-dimensional architecture. Each chord in the

chord progression depends both on its position in the chord

structure (global dependencies) and on the surrounding chords

(local dependencies).

III. PROPOSED APPROACH

Hidden Markov Models (HMM) have often been used to

model the chord progression of an audio file (see for example

[10], [11], [6]). One of the reasons why the chord progression

is modeled by an HMM is that the observation of a given

chord depends on the previous chord according to musical

composition rules which can be modeled in a transition

matrix. In this paper, we propose a specific topology of HMM

that allows us to extract simultaneously the chord progression

and the downbeats from an audio file. For this, we first extract

a set of feature vectors that describe the signal. Here, we use

the chroma features described above. The chroma vectors are

averaged according to the tactus/tatum positions that have

been extracted using the method proposed in [23] and checked

by hand. The chord progression is represented using a hidden

Markov model that takes into account global dependence on

meter. We present a “double-states” HMM where a state is a

combination of a chord type and a position of the chord in

the measure. Harmonic and metric structure information are

encoded in the transition matrix. In order to take into account

several cases of metric structure, two transition matrices

are proposed. Using a Viterbi decoding algorithm, the most

appropriated matrix is selected. We then obtain simultaneously

the most likely chord sequence and downbeat positions path

over time. The flowchart of the system is represented in Fig. 1.

The rest of the paper is organized as follows. First, in section

IV-A, we present the front-end of our system, the extraction of

a set of meter-related feature vectors that represent the audio

signal. We then introduce in section IV-B a probabilistic model

for simultaneous chord progression and downbeat position

estimation. This model encodes contextual information in the

state transition matrix (IV-E). In section IV-F, we present our

approach to estimate the two considered musical attributes

(chords and downbeats) using the Viterbi decoding algorithm.

In sections V and VI, the proposed model is evaluated on a

set of hand-annotated songs from the Beatles. A conclusion

section closes the article.

IV. MODEL

A. Features Extraction

The front-end of our system is based on the extraction of

a set of feature vectors (chroma vectors) that represent the

audio signal.

Fig. 1. General flowchart of the proposed model for simultaneous chord
progression and downbeat estimation.

1) Parameters: The audio signal is first down-sampled to

11025 Hz and converted to mono by mixing both channels.

We consider frequencies between 60 Hz and 1000 Hz, which

correspond to midi notes from B1 to B5. The upper limit

is set to 1 kHz because the fundamentals and harmonics

of the music notes in popular music are usually stronger

than the non-harmonic components up to 1 kHz [24].

This choice is also supported by the fact that many of the

higher harmonics, which are whole number multiples of the

fundamental frequency, are far from any note of the Western

chromatic scale. This is especially true for the 7th and the

11th harmonics.

2) Tuning: Because the energy peaks in the spectrogram

are mapped to the chroma vectors, it is important that the

peak frequencies of the spectrum correspond as close as

possible to usual pitch values (262.6, 277.2, 293.7, ... Hz).

Since the instruments may have been tuned according to a

reference pitch different from the standard A4 = 440 Hz,

it is necessary to estimate the tuning of the track. Here,

the tuning is estimated using the method proposed in [25].

A set of candidate tunings between 427 Hz and 452 Hz

(corresponding to the quarter-tones below and above A4)

is tested. The amount of energy of the spectrum explained

by the frequencies corresponding to the semitones based on
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each candidate tuning is measured. The candidate tuning

that allows us to best explain the energy of the spectrum

is selected as the tuning of the track. The estimated tuning

Aref is taken into account when computing the chromagram,

as explained below. Concerning the database used in the

evaluation (see part V), the estimated tunings of the tracks

are comprised between 430 Hz and 444 Hz. Most of the

songs are not based on a tuning of A4 = 440 Hz.

3) Chromagram Computation: The temporal sequence of

chroma vectors over time is known as chromagram. Existing

methods to compute a chromagram present some variances but

follow, in general, two steps: first a semitone pitch spectrum

is either computed from the Fourier transform or directly

obtained by the constant Q transform (CQT) because the

center frequencies of the CQT are spaced according to the

frequencies of the equal-tempered scale; then the semitone

pitch spectrum is mapped to the chroma vectors. As proposed

in [26], smoothing the semitone pitch spectrum provides a

reduction of transients and noise in the signal.

Here, we compute the chromagram using the constant Q

transform, which was first introduced in 1991 by Brown [27].

It is a spectral analysis where frequency domain channels are

not linearly spaced, as in Fourier transform-based analysis, but

geometrically spaced (the frequency-resolution ratio remains

constant), thus very similar to the frequency resolution of the

human auditory system. The constant Q transform is closely

related to the Fourier transform but gives a better represen-

tation of spectral data from a music signal. The constant Q

transform of a temporal signal sample x(n) can be calculated

as:

Xcq(k) =

N(k)−1
∑

n=0

w(n, k)x(n)e−j2πfkn (1)

where Xcq(k) is the kth component of the constant Q trans-

form. For each value of k, the window function w(n, k) is

a function of the frequency. Let Q denote the constant ratio

of frequency to resolution, Q = f
δf , and let S denote the

sampling rate. The length of the window w(n, k) in samples

at frequency fk is N(k) = Q.S
fk

. N(k) is function of the

frequency and thus of the bin position k.

Let β denote the number of bins per octave. Chroma

features are usually represented in a 12-bin histogram, each

bin corresponding to one of the 12 semitones of the equal-

tempered scale. This corresponds to semitone spacing and in

this case, β = 12. Very often, a higher resolution is used to

get a finer pitch class representation. In our experiments, we

found that using a 36-bin per octave resolution allows us to

increase the accuracy of the results. In this case, each note in

the octave is mapped to 3 bins in the chroma and β = 36. Let

fmin,440 be the minimum frequency considered in the signal

feature computation in the ideal case of a perfect tuning. The

actual minimum frequency value fmin is chosen according to

the estimated tuning of the track: fmin = fmin,440∗
Aref

440 . The

center frequencies are geometrically spaced, according to the

frequencies of the equal-tempered scale:

fk = (21/β)kfmin (2)

The constant Q transform increases time resolution towards

higher frequencies. The length of the window w(n, k) de-

creases with frequency. The hopsize is chosen to be equal

to the smallest window length. In the case of β = 12, the

center frequencies directly correspond to musical notes of the

semitone pitch scale and the computation of the constant Q

transform leads to a semitone pitch spectrum. When β = 36,

it corresponds to a 1
6 -tone pitch spectrum. It is computed at

each time instant t. The output signal of each filter Xcq(k, t) is

then smoothed over time using a 10-points median filtering2.

This provides a reduction of transients and noise in the signal.

Finally, each bin b of a chroma vector computed at time

instant n can be calculated as:

Cn(b) =

M
∑

m=0

|(Xcq(b + mβ))| (3)

where b ∈ [1; β] denotes the chroma bin index and M is the

total number of octaves in the constant Q spectrum, defined

by the upper and lower frequencies used for the analysis and

set by the user. In our case M = 4.

We obtain a sequence of 12-dimensional vectors that are

suitable feature vectors for our analysis.

4) Tactus/tatum-Synchronous Analysis: Since we want to

study the relationship between chords and metric structure,

we need to deal with observation features that are related

to the meter. The frame by frame analysis does not fit our

needs: we need to proceed to a beat synchronous analysis.

To this end, the chromagram is averaged so that we obtain

one feature per tactus/tatum3. In the present work, we use

the beat tracker proposed in [23] as a front end of the

system. Briefly, [23] proposes a method that aims at detecting

tempo at the tactus level for percussive and non-percussive

audio. The front-end of the system is based on a proposed

reassigned spectral energy flux for the detection of musical

events. The dominant periodicities of this flux are estimated

by a combination of discrete Fourier transform and frequency-

mapped autocorrelation function. The most likely meter, beat,

and tatum over time are then estimated jointly using meter/beat

subdivision templates and a Viterbi decoding algorithm. The

beat tracking is then performed using a method adapted from

a P-SOLA glottal closure instant detection using estimated

tempo and local maxima of the onset-energy function. We

refer the reader to [23] for more details.

For each tactus/tatum position pk of the piece, we compute

a chroma vector Ck. Each bin Ck(b), b = [1; 12] is obtained

by computing the average of the Kk chroma vector bins Cn(b)

2Smoothing of the semitone pitch spectrogram strengthens spectral envelope
continuity, a physical property, while smoothing on the chromagram does not
rely on any physical property. That is why the filtering is performed on the
notes rather than on the chroma vectors.

3The tactus/tatum positions are either considered as input to the system
in the case of semi-automatic analysis or obtained using a beat tracker as a
front-end of the system in the case of fully-automatic analysis.
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over the considered tactus position and the following one:

Ck(b) =
1

Kk

∑

pk≤n<pk+1

Cn(b) (4)

The feature extraction stage is represented in Fig. 2.

Fig. 2. Chroma features extraction.

In our study, we have considered two cases. The chroma-

gram has been averaged with respect to the beats or quarter

notes (tactus) in the first case, and with respect to the eighth

notes (tatum) in the second case.

B. Overview of the Model

We consider an ergodic I ∗ K-states HMM where each

state sik is defined as an occurrence of a chord ci, i ∈ [1; I]
occurring at a “position in the measure” (position of a beat or

tatum inside a measure) pimk, k ∈ [1; K]:

sik = [ci, pimk].

In our experiments, our chord lexicon is composed of I = 24
Major and minor triads (C Major, . . . , B Major, C minor, . . . ,

B minor). The notation for chord types will be the following:

CM, . . . , BM, for major chords, Cm, . . . , Bm for minor

chords. In the proposed model, chord changes can only occur

on beats or half beats, which corresponds respectively to the

tactus and the tatum positions in the test set. In the rest of

the text, the positions in the measure where chord changes

occur will be referred to as “position in the measure” and

denoted by pim. We consider here pieces predominantly in 3/4
or predominantly in 4/4 meters. In both cases, the transition

matrix will allow 4 beat positions in the measure. K = 4 if we

consider the tactus-level and K = 8 if we consider the tatum-

level. Each state in the model generates with some probability

an observation vector O(tm) at time tm. This is defined by the

observation probabilities. Given the observations, we estimate

the most likely chord sequence over time and the downbeat

positions in a maximum likelihood sense.

We now describe in detail the characteristics of our HMM:

initial state distribution, observation probability distribution

and state transition probability distribution.

C. Initial State Distribution π

The prior probability πik for each state is the prior probabil-

ity that a specific chord i occurring on pimk has been emitted.

Since we do not know a priori which chord the piece begins

with and which pim the piece starts with, we initialize πik at
1

I∗K for each of the I ∗ K states.

D. Observation Probabilities

The observation probabilities are computed in the following

way. Let P (O(tm)|sik(tm)) denote the probability that obser-

vation O has been emitted at time instant tm given that the

model is in state sik. Let P (O(tm)|ci(tm)) denote the one

that has been emitted by chord ci and P (O(tm)|pimk(tm))
the one that has been emitted given that the chord is occurring

on pimk. We now assume independence between chord type

(CM, C#M, . . . , Cm, . . . , Bm) and the position of the chord in

the measure. For instance, we consider that in any given song,

even if we favor chord changes on pim = 1, we do not favor

any chord type: a D major chord is as likely to occur at the

beginning of a measure as a C major chord4. The observation

probabilities are computed as:

P (O(tm)|sik(tm)) = P (O(tm)|ci(tm))P (O(tm)|pimk(tm))
(5)

1) Observation pim Probability Distribution: Equation 5

gives the observation probability for state sik depending on

chord ci and position in the measure pimk. Here, the pim

probability distribution P (O(tm)|pimk(tm)) is considered

as uniform ( 1
K for each pim in the measure). It is thus a

constant multiplication that has no effect on the observation

probability for state sik, which actually depends only on

the chord type. We acknowledge that by doing so, we

disregard signal information that could inform the downbeat

tracking process. The system would benefit from downbeat

information extracted from the signal, for instance by

combining a rhythmic pattern approach with the proposed

one. Future work will concentrate on the definition of a more

elaborated pim probability distribution.

2) Observation Chord Symbol Probability Distribution:

The probabilities P (O(tm)|ci(tm)) are obtained by computing

the cosine distance between the observation vectors (the

chroma vectors) and a set of chord templates which are the

theoretical chroma vectors corresponding to the I = 24 major

and minor triads.

4This is not strictly correct: for example some chords are more likely to
occur than others on strong beats in the piece according to the musical key.
We will not take into account these considerations here, they are left for future
work.
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TABLE I
NOTES AND HARMONICS COMPOSING A C MAJOR CHORD CONSIDERING 6

HARMONICS IN THE MODEL.

C major

Note Harmonics

C C C G C E G
E E E B E G# B
G G G D G B D

Amplitude 1 0.6 0.36 0.216 0.1296 0.0778

Chord Templates:

We consider 24 chord templates corresponding to the

24 major and minor triads. The amplitude of a note in the

template is non-zero if the note belongs to the considered

chord (fundamental or harmonic). As proposed in [8], in the

context of key estimation, the amplitude contribution of the

hth harmonic composing the spectrum of a note is set to be

0.6h−1. In what follows, the chord template corresponding

to chord ci will be denoted by CTi. In Fig. 3, the chord

templates for a CM and a Cm chord considering 6 harmonics

in the model have been represented. The first six harmonics of

the notes composing a C major chord and their corresponding

amplitude are given in Table I. It can be seen that higher

harmonics contribute to the pitch class of their fundamental

frequencies. For instance, the amplitude of the G is very

high in the C major chord (C-E-G) because, besides being a

note of the chord, G is a strong harmonic of C. The chord

templates for other chords (C#M, . . . , BM, C#m, . . . , Bm) are

obtained from the CM and Cm chords by circular permutation.

C C# D D# E F F# G G# A A# B
0

0.2

0.4

notes

a
m

p
lit

u
d
e

C C# D D# E F F# G G# A A# B
0

0.2

0.4

notes

a
m

p
lit

u
d
e

Fig. 3. Chord templates CT1 (top) and CT13 (bottom) for C Major and C
minor chords considering 6 harmonics in the model.

Chord Symbol Probabilities Computation:

At each time instant tm, we compute the cosine distances

between the observation vector O(tm) and each of the 24

chord templates CTi, i ∈ [1, 24].

For i = 1 . . . 24, P (O(tm)|ci(tm)) =
O(tm).CTi

‖O(tm)‖.‖CTi‖
(6)

The 24 values P (O(tm)|ci(tm)) are normalized across

components per template such that their components sum to

unity.

E. State Transition Probability Distribution

In music pieces, the transitions between chords result from

musical rules. Using a Markov model, we can model these

rules in the state transition matrix. Let T denote the I ∗ K-

states transition matrix of our model. T takes into account

both the chord transitions and their respective positions in

the measure. The matrix T is derived from an I-state chord

transition matrix denoted by Tc based on music-theoretical

knowledge about key-relationships we used in [9]. In [28],

Krumhansl studies the proximity between the various musical

keys using correlations between key profiles obtained from

perceptual tests. These key profile correlations have been used

in [29] to derive a key transition matrix in the context of local

key estimation as described below. Krumhansl gives numerical

values corresponding to key profile correlations for C major

and C minor keys. The values can be circularly shifted to give

the transition probabilities for keys other than C major and C

minor. In order to have probabilities, all the values are made

positive by adding 1, and then normalized to sum to 1 for

each key. The final key transition matrix size is 24 x 24. As

we proposed in [9], the key transition matrix from [29] can be

used as a chord transition matrix. This matrix is represented

in Fig. 4.

 

 

CM C#M DM D#M EM FM F#M GM G#M AM A#M BM cm c#m dm d#m em fm f#m gm g#m am a#m bm
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Fig. 4. State transition matrix between the 12 major and the 12 minor chords.
Dark marks indicate high values in the transition matrix. Horizontal axis from
left to right and vertical axis from top to bottom: chords (CM, C#M, BM,
. . . , cm, . . . , Bm).

That main idea of the present model is that we favor chord

changes on the beginning of the measures. In a piece of music,

chord changes are in general related to the beats. As stated by

[2]:

1) Chords are more likely to change on beat times than on

other positions.
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2) Chords are more likely to change on half-note times than

on other positions of beat times.

3) Chords are more likely to change at the beginnings of

measures than at other positions of half-note times.

Analysis of the evaluation dataset has shown that our data

support these assumptions. Figure 5 shows the distribution

of chord changes according to the position in the measure.

It can be seen that the three statements reported above are

corroborated by the chord annotation. In particular, about 90%
of the chord transitions occur on a beat position (for most of

them on the strong beats) and 76% of the chord transitions

occur on a downbeat.
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Fig. 5. Distribution of the chord changes according to the pim computed on
the pieces in 4/4 of the Beatles evaluation dataset.

Because chords are more likely to change at the beginning

of a measure than at other pim, we give lower self-transition

probabilities for chords occurring on the last beat of a measure

than on other pim. A self-transition is defined as a transition

between two same chord symbols. For instance CM-CM is a

self transition whereas CM-DM is not. The term self-transition

here only refers to the spelling of the chord and is independent

from its position in the measure. We extend the model we

presented in [30] for constant 4/4 meter to the case of variable

meter. In the previous model, the meter was constrained to be

constant and it was not allowed to jump over a pim (i.e. skip

over or add one or several beats). Furthermore, the problem

of imperfect beat tracking was not considered.

We will present in the next two parts of this paper the results

of some experiments that we have carried out on a very large

set of Beatles songs presenting various metric structures. A

detailed analysis of the test set will be given in part V-A, but

it is important to already note that many songs do not have

a constant meter. We have picked out several cases of metric

structure :

• constant 4/4 or 3/4 meter

• variable meter 4/4 with passages in 3/4 meter

• variable meter 3/4 with passages in 4/4 meter

• 1 or 2 added beats within a constant meter passage

• 1 or 2 deleted beats within a constant meter passage

However, because most of the songs have a predominant

meter (3/4 or 4/4), we have chosen to simplify the problem

considering two major cases. Two transition matrices, with

same form but different values, are proposed. The first one

corresponds to the case of songs in 4/4 meter with ternary

passages and will be denoted as T4. In this case, we favor

measures of 4 beats but transitions to measures of 3 beats

are allowed. The second transition matrix corresponds to the

case of songs in 3/4 meter with passages in 4/4 and will be

denoted as T3. In this case, we favor measures of 3 beats but

transitions to measures of 4 beats are allowed. We do not allow

the algorithm to skip over or add one or several beats because

this would reduce its robustness. Indeed addition or deletion

of beats corresponds to exceptional situations that happen no

more than a few times within a song.

T3 and T4 can be seen as block matrices where each block

corresponds to a specific chord transition. They are derived

from the I-state chord transition matrix Tc presented above.

The transition probability between chord i and chord i′ will

be denoted as Tc(i, i
′). This matrix is represented in the left

part of Fig. 6.

T3 and T4 are related to both the metric and harmonic

structures of a piece of music. The construction of T3 and

T4 follows three steps. The first two concern the problem of

the downbeats. The third step takes into account the chord

type dimension.

Firstly two pim transition matrices T3pim and T4pim are

defined, which represent the probability to transit from pimk

to pimk′ in a song. According to our assumptions, only values

T3pim(k, k′)/T4pim(k, k′) such that k′ = (k+1) (mod 4)5 are

non-zero, as well as T3pim(3, 4)/T4pim(3, 4) so that transitions

between measures in 4/4 and measures in 3/4 are allowed:
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T3pim(3, 1) = β3
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>

:

T4pim(1, 2) = 1

T4pim(2, 3) = 1

T4pim(3, 4) = α4

T4pim(4, 1) = 1

T4pim(3, 1) = β4

(7)

with α3 < α4 and β3 > β4 so that measures in 3/4 are

favored in the case of T3pim and measures in 4/4 are favored

in the case of T4pim. In our experiments, we used α3 = 0.6,

α4 = 0.9, β3 = 1.05 and β4 = 0.85. These values were

manually selected in small scale simulations, starting from the

value 1 and varying in a range of ±0.5.

Secondly, we want to favor chord changes on downbeats,

i.e. disfavor transition between identical chords at measure

boundaries (between the last pim of a measure and the first

pim of the next measure). For this self-transition case (i′ = i),
corresponding to the diagonal blocks of T3 and T4, we define a

specific transition matrix, denoted by T ′
pim. T ′

pim is the same

in the case of T3 building and in the case of T4 building.

To favor chord changes on downbeats, we attribute a self-

transition probability from beat 3 to beat 1 (3/4 time-signature)

and from beat 4 to beat 1 (4/4 time-signature) lower than on

other pim transitions:

5where a = b (mod m) means that a and b have the same remainder for
the Euclidian division by m.
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Fig. 6. In this figure, the darker the color, the higher the value in the transition matrix. The figures indicate: the chord transition matrix for a single-state
HMM [left], the transition matrices for major to major chords in the case of double-states HMM, without taking into account the pim of the chord in the
measure [middle left] and taking into account the pim of the chord [middle right] (lower value on transition pim3-pim1, pim4-pim1) and the pim transition
matrices [right].































T ′
pim(1, 2) = α

T ′
pim(2, 3) = β

T ′
pim(3, 4) = γ s.t. δ < α, β, γ

T ′
pim(4, 1) = δ

T ′
pim(3, 1) = δ

(8)

The values α, β, γ and δ were again selected manually in

small-scale simulations starting from the value 1 and varying

in a range of ±0.5 (testing values between 0.5 and 1.5).

It should be noted that, even if the model parameters were

selected in part by hand and have an impact on the results,

the exact values of these parameters is not critical. The same

transition matrices with the same parameters have been used

with success on a set of classical music pieces [31], which

suggest that the values are not critical to the dataset. It should

be possible to learn the parameters from the annotated files.

However, until now, attempts to derive transition probabilities

from training have given less accurate results than those

obtained using values selected in part by hand.

Finally, we construct the global transition matrix T3 from

Tc, T3pim and T ′
pim, and normalize it so that the sum of each

row is equal to 1 (Fig. 6 [middle]). Each block Bii′ (k, k′) of

this matrix represents the transition from chord i at pimk to

chord i′ at pimk′ :

Bii′ (k, k′) =

{

Tc(i, i
′) · T3pim(k, k′) if i 6= i′

Tc(i, i
′) · T3pim(k, k′) · T ′

pim(k, k′) if i = i′

(9)

The transition matrix T4 is constructed in a similar way,

using Tc, T4pim and T ′
pim.

F. Simultaneous Estimation of Chords and Downbeats

In order to find the optimal succession of states sik over

time, the Viterbi decoding algorithm [32] is used successively

with the two chord transition matrices T3 and T4. The algo-

rithm provides the most likely path Q through the HMM states

given the sequence of observations. The transitions matrix

T which gives the greatest likelihood given the observation

sequence O according to Equation 10 is selected. We obtain

simultaneously the best sequence of chords over time and the

downbeat positions.

T = argmax(P (O,Q|T3), P (O,Q|T4)) (10)

V. EVALUATION METHOD

A. Test Set

The proposed model has been tested on a set of hand-

labeled Beatles songs. All the recordings are polyphonic,

multi-instrumental songs containing drums and vocal parts.

The chord annotations were kindly provided by C. Harte from

Queen Mary University of London [33]. Since our chord lexi-

con only represents major and minor triads, we have performed

a mapping from complex chords in the annotation (such as ma-

jor and minor 6th, 7th, 9th) to their root triads. The augmented

chords, which include a major third, were mapped to major

chords whereas the diminished chords, which include a minor

third, were mapped to minor chords. The tactus positions and

the ground-truth downbeats were manually annotated by the

authors and checked by trained musicians. Meter information

for each song was provided by the American musicologist

Alan W. Pollack6. The original set comprises 180 songs of the

Beatles, we reduced it to 162 songs removing songs having an

overcomplicated metric structure and containing parts where

downbeats were perceptually ambiguous and were extremely

difficult to predict and annotate, even for a trained musician.

For instance, the song Good Morning, Good Morning was not

analyzed because, according to A.W. Pollack, the meter is “4/4

in intro, bridge and outro; anything but predictable in verse”.

For this reason, those files were not annotated. The songs of

the testset can be classified according to their metric structure

in the following way:

• 8 songs are in 3/4 meter

• 10 songs have a variable meter (presenting at least one

change in time signature, more than two for most of them)

6http://www.icce.rug.nl/∼soundscapes/DATABASES/AWP/awp-
notes on.html
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Fig. 7. Ilustration of chord label accuracy measure.

• 24 songs present some addition or deletion of beats

• The rest of the songs have a constant 4/4 meter

B. Evaluation Measures

To evaluate the performance of our system, we use the

following evaluation measures:

1) Beat and Downbeat position Evaluation Measure: The

evaluation of beat and downbeat estimation is performed

using the standard Precision, Recall and F-measure. Precision

P is defined as the ratio of detected beat/downbeat positions

that are relevant. Recall R is defined as the ratio of relevant

beat/downbeat positions detected. The F-measure F combines

the two F = 2RP/(R + P ). For each song, we compare

the estimated beat/downbeat positions against annotated

beat/downbeat positions within a given tolerance window

w depending on the local tempo. The tolerance window w
is defined as 10% of the minimum distance between two

successive beats in the track. It is centered on the estimated

beats when computing the Precision and centered on the

annotated beats when computing the Recall. The tolerance

window depends on the local tempo (distance between

two beat markers) in order to avoid drawing misleading

conclusion from the results. Indeed, a fixed tolerance window

of 0.166 s for instance would be very restrictive for slow

tempi (half-beat duration of 0.5 s at 60 bpm) but would mean

accepting counter-beats as correct for fast tempi (half-beat

duration of 0.166 s at 180 bpm). The results indicated in

Tables IV and III correspond to the mean and the standard

deviation over all the tracks of the Precision, Recall and

F-measures.

2) Chord Evaluation Measure: We consider two aspects

of chord estimation: the label accuracy (how the estimated

chord is consistent with the ground truth) and the segmentation

accuracy (how the detected chord changes are consistent with

the actual locations). The chord label accuracy measure is

illustrated in Figure 7 and is defined as follows.

For each song s of the testset, let TA = (tA1, tA2, . . . , tAM )
denote time positions corresponding to the annotated (ground

truth) chord changes and let TE = (tE1, tE2, . . . , tEN ) denote

time positions corresponding to the estimated chord changes.

We note T = TA ∪ TE . For each segment [tk, tk+1] ⊂ T
of duration dk, we compare the estimated chord Ĉk with the

TABLE II
CHORD LABEL ACCURACY RESULTS (IN %) CONSIDERING SEVERAL

CASES: NOT INTEGRATING/INTEGRATING METRIC STRUCTURE

INFORMATION IN THE MODEL (NM/WM), TACTUS OR TATUM ANALYSIS

(TAC/TAT), USING THEORETICAL BEAT POSITIONS (TB) OR

AUTOMATICALLY ESTIMATED BEAT POSITIONS (EB).

no meter (NM)

theoretical beats (TB) estimated beats (EB)

TAC TAT TAC TAT

69.6 ± 13.9 71.2 ± 13.1 68.5 ± 14.0 71.2 ± 13.1

with meter (WM)

theoretical beats (TB) estimated beats (EB)

TAC TAT TAC TAT

71.5 ± 13.3 72.9 ± 13.3 70.4 ± 14.2 72.8 ± 13.3

TAC TAT TAC TAT

Improvement WM/NM (%) 2.7 2.4 2.8 2.2
Statistical significance yes yes yes yes

TABLE III
DOWNBEAT POSITION ESTIMATION RESULTS CONSIDERING SEVERAL

CASES: THEORETICAL OR ESTIMATED BEATS (TB/EB),
TACTUS/TATUM-SYNCHRONOUS ANALYSIS (TAC/TAT). PRECISION

(PREC), RECALL (REC), F-MEASURE (F-M).

theoretical beats (TB) estimated beats (EB)

TAC TAT TAC TAT

Prec 0.89 ± 0.20 0.84 ± 0.26 0.76 ± 0.30 0.80 ± 0.26
Rec 0.90 ± 0.20 0.86 ± 0.26 0.76 ± 0.31 0.79 ± 0.28
F-m 0.89 ± 0.20 0.85 ± 0.26 0.76 ± 0.31 0.79 ± 0.27

annotated chord Ck. The chord recognition rate is computed

as:

µs = 100 ∗

∑

k so that Ck=Ĉk

dk

K−1
∑

k=1

dk

(11)

Note that there is no stage in our HMM corresponding

to “N” chords of the annotation (denoting noise, silent parts

or non-harmonic sounds). They are counted as errors in the

evaluation. The results we give in Table II correspond to the

mean and standard deviation of correctly identified frames per

song.

The chord segmentation accuracy is evaluated using the

standard Precision P (ratio of detected chord changes that are

relevant), Recall R (ratio of relevant chord changes detected)

and f-measure F , using a tolerance window TW of 30% of

the minimum distance between two beats in the track.

VI. ANALYSIS OF THE RESULTS

We provide in this section a detailed analysis of the

results. This is illustrated through some examples that have

been chosen for their relevance. Since the interrelationship

between musical attributes is the main purpose of this work,

special attention is devoted to this aspect. This section starts

with a global presentation of the results. We then analyze

in detail the downbeat estimation results. We continue with

a comparison of the chord estimation results with other

state-of-the-art chord detection systems through the Music



10 MANUSCRIPT IEEE T- ASL-02411-2009
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Fig. 8. Histogram of chord [left] and downbeat [right] estimation results (in %) considering several cases: not integrating/integrating metric structure information
in the model (NM/WM); using theoretical beat positions (TB) or automatically estimated beat positions (EB). The results from the tactus-synchronous analysis
are represented in black, the results from the tatum-synchronous analysis are represented in grey.

TABLE IV
BEAT POSITION ESTIMATION RESULTS.

Precision Recall F-measure

0.91 ± 0.22 0.88 ± 0.24 0.89 ± 0.23

Information Retrieval Evaluation eXchange (MIREX) 2008

results. This comparison is followed by a discussion about

the influence of each musical attribute on the estimation of

the other. We finish with some case study examples.

A. Chords and Downbeats Interaction

The results are presented in Tables II, and III and

illustrated in Fig. 8. An accuracy result up to 79% (EB-

TAT) suggests that relying on the chord structure of a

piece is an appropriated approach for downbeat estimation.

Conversely, taking into account the metric structure allows

us to improve the chord recognition task by 2.8% relative

improvement in the case of tactus-frame analysis and 2.2%
relative improvement in the case of tatum-frame analysis.

We performed a paired sample t-test to determine if there is

a significant difference between the chord estimation result

obtained without considering interaction with the metric

structure (NM) and with consideration of interaction with the

metric structure (WM). For the various situations (TB, EB,

TAC, TAT), the null hypothesis could be rejected at the 5%
significance level. We can conclude that there is a statistical

difference on the chord estimation results when considering

the metric structure in the model.

B. Downbeat Position Estimation

In this section, we evaluate the performance of downbeat

estimation comparing the output of our algorithm to the

ground truth downbeat times annotated by hand. Following

the approach proposed in [34], we measure the performance

of downbeat estimation considering two cases. On the one

hand, we evaluate the upper limit of the model by estimating

the downbeat positions using manual annotation of beat

positions (referred to as theoretical beat positions (TB) in

Table III). On the other hand, we measure the fully automatic

performances of the system by using a beat tracker [23] as a

front end of the system. The beat positions estimated with the

beat tracker are referred to as estimated beat positions (EB)

in Table III. With these two measures, we can distinguish

between errors due to poor beat position estimation and errors

due to the model.

1) Semi-automatic Downbeat Position Estimation: The

results presented in Table III show that the system leads to a

good estimation of downbeat positions. It achieves 89% of

correct estimation in the case of tactus-synchronous analysis

and 85% in the case of tatum-synchronous analysis. The

encouraging results obtained in the case of tatum-synchronous

analysis highlight the robustness of the presented approach.

It can be remarked that the standard deviation is high. This

can be explained by the fact that the downbeat estimation

score is null for some pieces, in particular when there are

many half-measure chord changes in the song. In this case,

the downbeat positions may be located by the algorithm on

the third instead of the first beats of the measures.

2) Using Estimated Beat Positions Versus Theoretical

Beat Positions: The downbeats estimation relies on the

knowledge of the beat positions. For real applications of

the system, we need to use automatically estimated beats.

Errors in the beat tracking will be carried forward into the

downbeat tracking stage. Beat tracking results evaluated on

the testset are presented in Table IV and show that the beat

tracking is not perfect. We thus expect a lower downbeat

tracking performance using the estimated beats compared to

downbeat tracking performance using the ground-truth beats.

However, the decrease in the results from semi-automatic to

fully-automatic analysis is lower in the case of tatum-frame

analysis than in the case of tactus-frame analysis because

some common beat tracking errors do not affect downbeat

estimation at the tatum-level.

Some common errors in beat tracking algorithm are octave

errors (e.g., halving or doubling the beat positions). In case
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TABLE V
DOWNBEAT ESTIMATION RESULTS FOR PROPOSED APPROACH (PA),

MEPD APPROACH (MEPD). RESULTS ACROSS THE WHOLE DATASET

(WHOLE DATA), RESULTS ACROSS SONGS WITH PERFECT BEAT TRACKING

(PERFECT BT), RESULTS ACROSS SONGS WITH IMPERFECT BEAT

TRACKING (IMPERFECT BT). PRECISION (PREC), RECALL (REC),
F-MEASURE (F-M).

Whole Data

MEPD PA

Precision 0.74 ± 0.36 0.81 ± 0.26
Recall 0.72 ± 0.37 0.79 ± 0.28

F-measure 0.72 ± 0.36 0.79 ± 0.27

Perfect BT Imperfect BT

MEPD PA MEPD PA

Prec 0.90 ± 0.24 0.86 ± 0.26 0.36 ± 0.30 0.71 ± 0.24
Rec 0.90 ± 0.24 0.87 ± 0.26 0.30 ± 0.25 0.62 ± 0.25
F-m 0.90 ± 0.24 0.86 ± 0.26 0.32 ± 0.25 0.64 ± 0.23

of halved beat positions, a maximum downbeat tracking

score recall of 0.5 using tactus-frame features can be

expected, but a recall of 1 could be theoretically reached

using tatum-frame features. Off-beat errors (tapping at the

annotated metrical on the off-beat positions) in addition

to a halved tempo estimation is another common beat

tracking error. If such a beat estimation error is constant

throughout the analyzed piece, we expect to have a null

score for tactus-synchronous analysis but a score similar

to the one obtained using the theoretical beat position for

tatum-synchronous analysis. This was corroborated in our

experiments. An interesting case of beat estimation errors

concerns the addition or deletion of beats due to a tempo

deviation (e.g., slowdown in the tempo). The presented

system is supposed to tackle this situation as it does when

there is beat addition or deletion within the music (see below).

3) Comparison With the State-of-the-art: We compare the

performance of our algorithm (WM-EB-TAT) against those

obtained using M.E.P. Davies’s model [34], which we refer

to as MEPD. In the MEPD approach, the downbeats are esti-

mated based on spectral difference between band-limited beat

synchronous analysis frames. The analysis is restricted to the

cases where the time signature does not change. The algorithm

requires a sequence of beat times and the time-signature of the

input signal to be known a priori. For comparison with our

system, we have used our beat tracker as input to the MEPD

downbeat estimation system. We computed i) the results across

the whole dataset, ii) the results across the songs for which

the beat tracking was perfect, iii) the results across the songs

for which the beat tracking was imperfect.

Results reported in Table V show that our system is

globally more successful than the MEPD approach and thus

compares favorably to the state-of-the-art. MEPD obtains

better results across songs with perfect beat tracking. Most of

those songs have a constant time-signature. For those files,

The MEPD accuracy for each of those les will either be 0
or 100%, whereas our system may insert some additional

downbeats. This highlights a shortcoming of our system:

we need to make a compromise between favoring constant

meter and allowing meter changes (see below). However, our

system performs clearly better across the songs on which

the beat tracking was imperfect. Any added or omitted beat

in the beat tracking will irrecoverably degrade the MEPD

downbeat tracking process whereas our system can handle

those situations. Our system thus shows improvements over

the state-of the-art.

4) Handling Variable Meter: Previous works on downbeat

tracking have mostly focused on pieces with constant meter.

The present work proposes an approach that considers some

cases of variable meter. The results we obtain are encouraging.

We obtain a score of 56% on tactus and tatum analysis on

the 9 variable meter pieces of the testset. For each song,

we can determine a predominant meter. The transition matrix

corresponding to the predominant meter of the piece has been

correctly chosen for all songs but one. Ideally, the system

should remain in the new meter when a change in meter

occurs. However, the model is built in order to favor constant

meter within a music piece. For this reason, if the chord

changes are not strongly enough marked in the chromagram

(high spectral difference between frames), the system will not

adapt to the meter change until there is a sufficiently clear

chord change. In case of a meter change from a predominant

meter 3/4 to 4/4, the proposed algorithm inserts measures

in 4/4 so that most of the downbeat positions are correctly

detected when the predominant meter returns.

Let us illustrate this on an example. The song I Me Mine

has a 3/4 predominant meter with changes to 4/4 meter.

Due to percussive sounds, the chromagram is blurred and

chord changes are not clear. Note that the beat positions are

not perfectly estimated by the beat tracker (see the dashed

rectangle). It can be seen in Fig. 9 that, during the 4/4 meter

passage (from 33s to 55s), the system mostly remains in 3/4.

However, measures in 4/4 are inserted (see the black circles)

so that the downbeats are correctly estimated when the 3/4
meter returns. Our model shows some adaptation to meter

changes even if it is not perfect. On the provided example,

the 11 bars of the 4/4 section cannot be divided into a whole

number 3/4 bars. If the system had constantly remained in 3/4,

the rest of the downbeats until the end of the song wouldn’t

have been correctly detected. Note that, even for many human

listeners, it is very difficult to understand meter changes on

this complex example. Experiments carried out by one of the

authors on 6 trained musicians clapping their hands along with

the music have shown that listeners needed between 2 and

3 measures before synchronizing with the correct downbeat

positions of the 4/4 meter passage.

The last line in Fig. 9 represents the downbeat tracking

obtained by increasing the value of α in Eq.(7), so that

constant 3/4 meter is less favored by the model. With this

value, the algorithm shows more flexibility to the meter

change. We plan to find methods to reduce the trade-off

between favoring constant meter and allowing meter changes.

5) Handling Addition or Deletion of Beats: It is possible

that there is an addition or an omission of beats within

a constant-meter part of a song, either due to the music

itself or due to a beat tracking error. This is illustrated in
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Fig. 9. Estimated downbeat positions of an excerpt of the song I Me Mine. Annotated beat positions [top, a)], annotated downbeat positions [middle top,
b)], estimated downbeat positions [middle bottom, c)] with α3 = 0.6, estimated downbeat positions [middle bottom, d)] with α3 = 0.85. Measures in 4/4
inserted by the model are indicated by the two black circles. Extra beats added by the Beatles at the end of the passage in 4/4 meter are indicated by the
grey circle. The dashed rectangle shows a region with errors in the beat tracking. The image has been obtained using the Open Source tool Wavesurfer.

Fig. 9: two extra beats have been added by the Beatles at the

end of the passage in 4/4 meter (see the grey circle). The

estimated succession of beats is 1 2 3 1 2 3 1 2 3 instead of

1 2 3 4 1 2 1 2 3. This corroborates our expectations stated

in part IV-E: the system synchronizes to the correct downbeat

positions after a few beats following the added or deleted beat.

C. Chord Estimation

In this section, we analyze the performances of chord label

estimation comparing the output of our algorithm to ground

truth chord labels annotated by hand.

1) Comparison of the Results with MIREX 2008 “Audio

Chord Detection”: The authors of this paper participated to

the first chord detection task in Music Information Retrieval

Evaluation eXchange7. In the submitted system, the chords

were estimated without considering interaction with down-

beats. To set the algorithm presented in this article among other

state-of-the-art chord detection algorithms, we first report and

analyze the MIREX 2008 chord detection results.

The MIREX 2008 Audio Chord Detection task was divided

into two subtasks. In the first subtask the systems were pre-

trained and tested against 176 Beatles songs. In the second

subtask systems were trained on 2/3 of the Beatles testset

and tested on 1/3. Our system does not need any training,

we thus participated to the first subtask. An overlap score was

calculated as the ratio between the overlap of the ground truth

and detected chords and ground truth duration. Four songs

were excluded from the original Beatles testset because of

problems aligning the ground truth chords to the audio data.

A total of 8 algorithms were submitted to the first subtask,

and our algorithm obtained the fourth place. Note that silent

or no-chord segments were not estimated with our algorithm.

The differences in the results between the participants are very

small, probably because the approaches are similar (using

HMM). The four highest results were the following: Bello

7http://www.music-ir.org/mirex/2008/

and Pickens [11] obtained 66% of correct detected chords,

Mehnert [35] 65% correct, Ryynanen and Klapuri [36] 64%
correct, Papadopoulos and Peeters [37] 63% correct. Our

system compares favorably to the trained-systems. Indeed,

7 algorithms were submitted to the second subtask. The

approach proposed by Uchiyama, Miyamoto, and Sagayama

[38] gave results that were significantly better than the other

submitted algorithms (72% correct). Ellis obtained [39] 66%
correct results. All the remaining algorithms gave results

above 62%.

Using MIREX’s exact methodology (chord evaluation

measure and dataset), we have re-computed the score

obtained with our MIREX 2008 algorithm and computed

the score obtained with the newly proposed algorithm

(EB-WM-TAT). We obtained a statistically significant relative

improvement of 2.4%8.

2) Chord segmentation: Table VI presents the chord

segmentation accuracy results. It can be seen that jointly

estimating the downbeats with the chords allows us to improve

significantly the chord segmentation. Chord estimation results

presented in Table II may seem contradictory since, in

the TB case, tatum-based features result in better chord

estimation whereas tactus-based features result in better

downbeat tracking. It is worth noting that chord estimation

is better on tatum-based results even without joint estimation

of chords/downbeats. This may be explained by the fact

that tatum-based analysis allows us to take into account

chord changes on off-beats whereas tactus-frame analysis

only allows chord changes on beats. However, improvement

of chord segmentation accuracy corresponds with downbeat

estimation accuracy. For instance, downbeat estimation based

on the beat tracking is better on tatum-frame analysis than on

8Note that despite using MIREX methodology, we did not recover the
results reported by MIREX. We obtained 68.8% for our MIREX algorithm
and 70.5% for the newly proposed algorithm. A deeper analysis of MIREX’s
results have shown that it is very likely that there are some errors in the
evaluation. For instance, all participants obtained a score close to zero for
songs number 23, 35, 76, 97 and 104.
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TABLE VI
CHORD SEGMENTATION ACCURACY RESULTS (IN %) CONSIDERING

SEVERAL CASES: NOT INTEGRATING/INTEGRATING METRIC STRUCTURE

INFORMATION IN THE MODEL (NM/WM), TACTUS OR TATUM ANALYSIS

(TAC/TAT), USING THEORETICAL BEAT POSITIONS (TB) OR

AUTOMATICALLY ESTIMATED BEAT POSITIONS (EB). REL. IMP. (%)
INDICATES THE RELATIVE IMPROVEMENT BETWEEN THE TWO

APPROACHES. PRECISION (PREC), RECALL (REC), F-MEASURE (F-M).

no meter (NM)

theoretical beats (TB) estimated beats (EB)

TAC TAT TAC TAT

Prec 61.6 ± 16.8 43.7 ± 15.0 55.6 ± 21.4 43.6 ± 15.1
Rec 59.1 ± 17.1 56.5 ± 16.7 52.7 ± 21.3 56.4 ± 16.6
F-m 59.0 ± 15.2 48.4 ± 15.0 52.8 ± 19.8 48.2 ± 14.8

with meter (WM)

theoretical beats (TB) estimated beats (EB)

TAC TAT TAC TAT

Prec 68.3 ± 17.7 57.4 ± 18.0 61.3 ± 23.2 56.8 ± 18.3
Rec 72.5 ± 17.1 73.5 ± 18.4 64.4 ± 23.8 71.1 ± 18.7
F-m 69.1 ± 15.8 63.3 ± 17.2 61.6 ± 22.1 62.0 ± 17.2

Rel. Imp. 17.12 30.8 16.7 28.6

tactus-frame analysis and consequently, chord segmentation is

slightly better on tatum-frame analysis than on tactus-frame

analysis.

3) Analysis of Chord Detection Errors: In this part, we

focus only on chord estimation results and analyze chord

detection errors. The results indicated in Table II show that

we obtain up to 72.8% of correctly identified chords on our

testset. As can be seen, the standard deviation of the results

is relatively high (around 13%). A deeper analysis of the

results shows that the errors come from a subset of songs

which possess specific characteristics described below.

• Chord confusion due to chord lexicon mapping:

As mentioned earlier, because of our limited chord

dictionary, a mapping was performed between complex

chords and their root triad. The chord type distribution

in the testset is unbalanced and whereas the majority

of songs in the evaluation testset are composed of triad

chords, some of them contain many partial or complex

(non-triads) chords. The system sometimes recognises

other triads than the root triad of the complex chord

analyzed, which decreases the recognition rate. For

instance, the song Ask Me Why contains many G#min7

chords (G#-B-D#-F#). This complex chord comprises a

G# minor chord (G#-B-D#) and a B major chord (B-

D#-F#). The theoretically correct answer depends on the

tonal function of the chord in the harmonic progression.

Modeling chord sequences using longer dependencies

between chords, using for instance probabilistic N-grams,

would help characterize the complexities of harmonic

progressions in western tonal music.

• Neighboring triad confusion: Table VII shows that a

large portion of chord errors (about 57%) correspond

to harmonically close triad confusion: relative chords

(Am being confused with CM); dominant chords (CM

being confused with GM) or subdominant chords (CM

TABLE VII
PROPORTION (IN%) OF CHORD ERRORS CORRESPONDING TO

HARMONICALLY RELATED CHORDS.

Relative Dominant Sub-dominant

10 13 34

being confused with FM). Parallel major/minor chords

(EM being confused with Em) account for 13%. The

distribution of the type of errors is similar for all the

configurations of the system (TAC, TAT, TB, EB). Note

that their is a notable predominance of sub-dominant

errors in the results. This may be due to the high value

given to transitions between subdominant chords in the

cognitive-based transition matrix. We have found that

diminishing this value decreases the sub-dominant errors

rate. However, this also decreases the global results. This

shows some limitations of our approach that is not based

on training but on theoretical and cognitive-based music

knowledge. If the system does not recognize exactly a

chord but makes such confusions, the result can still be

useful for higher-level structural analysis such as key

estimation, harmony progression or segmentation. The

results obtained by the system when taking into account

these harmonically close chords are quite high (80%).

The harmonically close chord errors do not have all the

same qualitative weight. Parallel errors, for instance,

may badly affect key recognition. However, the most

common harmonically close errors are dominant and

sub-dominant chords (having a perfect fifth relationship

between the estimated and ground-truth chord), which

should not affect key estimation. Neighboring triad

confusion may not be critical to downbeat estimation.

A relevant example of this assessment here concerns

the detection of metric structure. We obtain a score

of 57% correctly detected chords on the song Don’t

Bother Me, which is rather low compared to the other

songs. However, most of the errors correspond to

neighboring chords and the harmonic structure has been

well-preserved (chord changes occur according to the

measures), as illustrated in Fig. 10. For that reason,

the downbeat positions of the song have been correctly

detected.

• Passing tones, missing notes: In the song Till There

Was You, there is a repeating pattern beginning by an F

major chord lasting two beats. The system estimates the

following chords: FM-Dm. If we listen to the music, we

can hear that on the first two beats, the guitar is playing

a broken F major chord (F-A-C). On the second beat,

the C note is not present any more. A musician would

naturally label the two chords as an F major chord,

ignoring the fact that there are missing notes (because it

is the same harmony). However, the signal features only

take into account notes which are present in the signal.

As a result, the estimated chords do not match exactly

those of the ground truth. This example leads to the

relevant question of how to evaluate the performances of

a chord estimation system. The ground truth is provided
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Fig. 10. Estimated chord progression of an excerpt of the song Don’t Bother

Me [a)] and ground truth [b)]. The downbeat positions are represented by
vertical lines.

by trained musicians who not only take into account the

notes present in the signal but also the harmonic context

to label the chords, ignoring the addition or the deletion

of some notes in their annotation. This complicates the

evaluation of the algorithm.

• Limitation of the chroma-based approach for

inharmonic sounds: It is interesting to notice that we

obtain much better results for the five first Beatles albums

than for the others (from the ”Norwegian Wood (This

Bird Has Flown)” on 1965’s Rubber Soul). The reason

for this may come from the extended use of the Indian

sitar instrument9 and various percussive instruments such

as bells, wood blocks or congas that cause transients.

Since the chroma-based approach strongly relies on the

presence of harmonic sounds, the use of chroma-based

signal features would ideally require a pre-processing

step that effectively reduces transients and noise. We

plan to concentrate on this point in future work.

4) Tactus-synchronous Versus Tactum-synchronous Analy-

sis: Table II indicates that the tatum-frame analysis performs

slightly better in general than the tactus-frame analysis. This

may be due to the fact that tatum-based analysis allows us to

take into account chord changes on off-beats whereas tactus-

frame analysis only allows chord changes on beats.

D. Case Study Examples

In this part, we present some examples that illustrate some

important advantages from estimating simultaneously the

chords and the downbeat positions.

1) Boundary Errors: Taking into account the position

of the downbeats when estimating the chord progression

allows us to enhance the accuracy of the estimation.

Indeed, when this information is not taken into account,

the chord change may be detected a beat before or after

9The sitar is a stringed instrument that uses sympathetic strings in addition
to regular strings. This produces a very lush sound with complex, competing
harmonic components.

its theoretical position, because of the smoothness of chord

transition. This is illustrated in Fig. 11. The ground-truth

is indicated by the truth-line c). When the chords are

estimated independently from downbeat positions, errors

often occur around pim. When they are taken into account,

chord changes on the correct position are favored (see line b)).

2 4 6 8 10 12

CM

GM

CM

GM

CM

GM

time (s)

a)

c)

b)

Fig. 11. Chord progression of the first few seconds of the song Love

Me Do without taking into account the downbeat positions [a)] and taking
into account the downbeat positions [b)]. Ground truth [c)]. The downbeat
positions are represented by vertical lines.

2) Chord Changes: The example in Fig. 12 clearly shows

how the chord progression estimation task can benefit from

modelling chord dependencies to the metric structure. This

piece is in C Major key and it changes between C Major and

G Major chords about every two measures (ground-truth line

c)). Without taking into account global dependencies (line a)),

chord transitions are badly detected and the estimated chord

progression remains almost all the time on the G Major chord

instead of transiting between GM and CM. The knowledge

of downbeat positions (line b)) allows us to better detect

transitions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a system that allows the

simultaneous estimation of the chord progression and the

downbeat positions of an audio file. The key idea behind our

approach is that the harmonic structure is closely related to the

metric structure of a piece of music. Relying on this idea, we

have built a specific topology of HMM where each state is a

combination of an occurrence of a chord and a position of the

chord in the measure. Each state is thus related on the one hand

to the harmonic structure and on the other hand to the metric

structure of the piece. Harmonic structure information and

metric structure information are encoded in the state transition

matrix. The chord progression and the downbeats are estimated

jointly based on the assumption that chords are more likely to

change on the beginning of a measure than on other positions.

An important contribution of this article is that we consider

the case of pieces with varying time-signatures.

The system has been evaluated and compared to the state-

of-the-art on a large set of hand-labeled files. We have

demonstrated that considering the interaction between the two

musical attributes allows their simultaneous estimation and
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Fig. 12. Chord progression of the last few seconds of the song Love

Me Do without taking into account the downbeat positions [a)] and taking
into account the downbeat positions [b)]. Ground truth [c)]. The downbeat
positions are represented by vertical lines.

that the robustness and the chord estimation accuracy is higher

when estimated jointly with downbeats.

We have provided a detailed analysis of the results illus-

trated by case studies that suggest that some points need

further improvement that include a pre-processing step that re-

moves transients and noise and the use of longer dependencies

between chords (using, for instance, probabilistic N-grams).

We have considered the problem of using imperfect beat

positions obtained from beat tracking. Results show that using

a tatum-synchronous analysis instead of a tactus-synchronous

analysis might temper the effects of imperfect beat tracking on

downbeat tracking. The model allows us to take into account

pieces with complex metric structure. The downbeat tracking

results for pieces in variable meter are encouraging even if

they need further improvement. For the moment, the system

is built so that it remains in a single predominant meter along

the analyzed track. It would be highly desirable that the system

shows more flexibility to the meter changes. Future work will

concentrate on this point.

An analysis of the results shows that the harmonic structure

of a piece is an important clue for determining the downbeat

positions. However, it has been noticed that in some cases

(such as when chords change every two beats), the relationship

between chord changes and downbeats is ambiguous. This

model would benefit from a more complete functional chord

analysis. Combining the present system, which is based on

harmony, with a rhythmic pattern approach would probably

also allow improvement of the downbeat tracking process.
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2001. During his Ph.D. he developed new signal
processing algorithms for speech and audio process-
ing. Since 1999, he works at IRCAM (Institute of
Research and Coordination in Acoustic and Music)
in Paris, France. His current research interests are
in signal processing and pattern matching applied

to audio and music indexing. He has developed new algorithms for timbre
description, sound classification, audio identification, rhythm description,
automatic music structure discovery, and audio summary. Dr. Peeters owns
several patents in these fields and received the ICMC best paper award in
2003. He is co-author of the ISO MPEG-7 audio standard. He has coordinated
indexing research activities for the Cuidad, Cuidado, Semantic HIFI European
projects and is now leading the music indexing activities of the Quaero project.


