
HAL Id: inria-00520465
https://inria.hal.science/inria-00520465

Submitted on 23 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Neighborhood Local Search Optimization on
Graphics Processing Units

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

To cite this version:
Thé Van Luong, Nouredine Melab, El-Ghazali Talbi. Large Neighborhood Local Search Optimization
on Graphics Processing Units. Workshop on Large-Scale Parallel Processing (LSPP) in Conjunction
with the International Parallel & Distributed Processing Symposium (IPDPS), 2010, Atlanta, United
States. �inria-00520465�

https://inria.hal.science/inria-00520465
https://hal.archives-ouvertes.fr

Large Neighborhood Local Search
Optimization on Graphics Processing Units

Thé Van Luong, Nouredine Melab, El-Ghazali Talbi

Abstract

Local search (LS) algorithms are among the most powerful techniques for solving computationally
hard problems in combinatorial optimization. These algorithms could be viewed as “walks through
neighborhoods” where the walks are performed by iterative procedures that allow to move from a
solution to another one in the solution space. In these heuristics, designing operators to explore large
promising regions of the search space may improve the quality of the obtained solutions at the expense
of a highly computationally process. Therefore, the use of graphics processing units (GPUs) provides
an efficient complementary way to speed up the search. However, designing applications on GPU is still
complex and error-prone. We provide a methodology to designand implement large neighborhood LS
algorithms on GPU. Finding efficient mappings of the neighborhood structures onto the GPU threads
organization is a challenging issue dealt with in this paper. The work has been experimented for binary
problems by deploying multiple neighborhood structures. The obtained results are convincing both in
terms of efficiency, quality and robustness of the provided solutions at run time.

Keywords
Metaheuristics, Local Search, Neighborhoods, Graphics Processing Units (GPU), General-

Purpose Computing on Graphics Hardware, Permuted Perceptron Problem.

I. INTRODUCTION

Plenty of hard problems in a wide range of areas including engineering design, telecommu-
nications, logistics, biology, etc., have been modeled andtackled successfully with optimization
approaches such as metaheuristics (generic heuristics). Local search algorithms is a class of
metaheuristics which handle with a single solution iteratively improved by exploring its neigh-
borhood in the solution space. Fig. 1 gives a general model for LS algorithms. At each iteration,
a set of neighboring solutions is generated and evaluated. The best of these candidate solutions
is selected to replace the current solution. The process is iterated until a stopping criterion
is satisfied. Common LS heuristics of the literature are hillclimbing, simulated annealing,
tabu search, iterative local search and variable neighborhood search. A state-of-the-art of LS
algorithms can be found in [1].

The definition of the neighborhood is a required common step for the design of any LS
algorithm. The neighborhood structure plays a crucial rolein the performance of a LS method.
Theoretical and experimental studies have shown that the increase of the neighborhood size may
improve the effectiveness (quality of provided solutions)of the LS algorithms [2]. Nevertheless,
as it is generally CPU time-consuming it is not often fully exploited in practice. Indeed, experi-
ments with large neighborhood algorithms are often stoppedwithout convergence being reached.
That is the reason why, in designing LS methods, there is often a compromise between the size of
the neighborhood to use and the computational complexity toexplore it. As a consequence, in LS
algorithms, there is often a reduction of the size of the explored neighborhood at the expense of
the effectiveness. To deal with such issues, only the use of parallelism allows to design algorithms
based on large neighborhoods. Nowadays, GPU computing is recognized as a powerful way to
achieve high-performance on long-running scientific applications [3]. Designing LS algorithms
based on large neighborhood structures for solving real-world optimization problems are good

Fig. 1. General model for local search algorithms

challenges for GPU computing. However, to the best of our knowledge only few research works
related to evolutionary algorithms on GPU exist [4]–[7]. Indeed, the parallel exploration of the
neighborhood on GPU is not immediate and several challengespersist and are particular related
to the characteristics and underlined issues of the GPU architecture and the LS algorithms.

In this paper, we contribute with the first results of LS algorithms based on large neigh-
borhoods on GPU. The main objective of this paper is to find efficient mappings between the
neighborhood structure and the hierarchical GPU. More exactly, the focus is on the mapping of
the neighborhood of the currently processed solution to GPUthreads. Since the neighborhood
structure strongly depends on the target optimization problem, we focus on binary problems all
along of this paper. We propose to deal with three neighborhoods of different sizes. For each
handled neighborhood, the mappings of the neighborhood structure to the GPU thread blocks
organization is particularly challenging.

To be valided the work has been experimented on the permuted perceptron problem (PPP)
introduced by Pointcheval [8]. The problem is a cryptographic identification scheme based on
NP-complete problems, which seems to be well suited for resource constrained devices such as
smart cards. The work has been experimented on different popular instances of the literature.
We investigate to measure the impact on how the increase of the size of the neighborhood can
improve the quality of the obtained solutions.

The rest of the paper is organized as follows: Section 2 presents the three handled neighbor-
hoods for binary problems. In Section 3, efficient mappings for each neighborhood structures
are performed on GPU. Application of this methodology is made for the permuted perceptron
problem in Section 4. Finally, conclusions and a discussionof this work are drawn in Section 5.

II. NEIGHBORHOODS FORBINARY PROBLEMS

Designing any iterative metaheuristic needs an encoding ofa solution. The encoding must be
suitable and relevant to the tackled optimization problem.For binary problems, any candidate
solution is represented by a vector (or string) of binary values. Moreover, the efficiency of a
representation is related to the search operators applied on this representation i.e. the neighbor-
hood.

Fig. 2. Three neighborhoods for binary problems

Fig. 3. 1-Hamming Distance Neighborhood

The natural neighborhood for binary representations is based on the Hamming distance. This
distance measures the number of positions between two strings of equal length in which the
corresponding symbols are different. Fig. 2 gives an illustration of the Hamming distance for
strings of length 3. For instance, the Hamming distance between the node(0, 1, 0) (represented
by a triangle) and each node represented by a circle is equal to two. Therefore, nodes of a same
shape in the graph constitute a particular neighborhood of the node(0, 1, 0).
• 1-Hamming Distance Neighborhood. In most cases, the associated neighborhood for binary

representations is based on the Hamming distance equal to one. In this neighborhood,
generate a neighbor consists in flipping one bit of the candidate vector solution (see Fig. 3).
Considering a candidate vector solution of sizen, the size of the associated neighborhood
is n.

• 2-Hamming Distance Neighborhood. For binary problems, an improved neighborhood for
LS algorithms is based on the Hamming distance of two. It consists on building a neighbor
by flipping two values of a candidate solution vector. Two indexes represent a particular
neighbor. For a candidate solution of sizen, the number of neighbors isn×(n−1)

2
. Fig. 4

Fig. 4. 2-Hamming distance neighborhood

Fig. 5. 3-Hamming distance neighborhood

gives an illustration of this neighborhood.
• 3-Hamming Distance Neighborhood. An instance of a large neighborhood is a neighborhood

built by modifying three values called 3-Hamming distance neighborhood. This neighbor-
hood is much complex since each neighboring solution is identified by 3 indexes. The
number of elements associated to this neighborhood isn×(n−1)×(n−2)

6
. Fig. 5 shows an

illustration of this neighborhood.
Most of the LS algorithms use neighborhoods which are in general a linear (e.g. 1-Hamming

distance) or quadratic (e.g. 2-Hamming distance) functionof the input instance size. Some
large neighborhoods may be high-order polynomial of the size of the input instance (e.g. 3-
Hamming distance). Then, the complexity of the search will be much higher. So, in practice,
large neighborhoods algorithms are unusable because of their high computational cost. In the

other sections, we will show how the use of GPU computing allows to fully exploit parallelism
in such algorithms.

III. EFFICIENT MAPPINGS OFNEIGHBORHOODSSTRUCTURES ONGPU

In this section, the focus is made on the neighborhood generation on GPU. Indeed, this step
is crucial in the design of new large neighborhood LS algorithms for binary problems since it
is clearly identified as the gateway between a GPU process anda candidate neighbor.

A. GPU Kernel Execution Model

Each processor device on GPU supports the single program multiple data (SPMD) model, i.e.
multiple autonomous processors simultaneously execute the same program on different data. For
achieving this, the concept ofkernel is defined. The kernel is a function callable from the host
and executed on the specified device simultaneously by several processors in parallel.

This kernel handling is dependent of the general-purpose language. For instance, CUDA
(Compute Unified Device Architecture) is a parallel computing environment, which provides
an application programming interface for NVIDIA architectures [9]. The concept of thread in
CUDA does not have exactly the same meaning as CPU thread. A thread on GPU can be
seen as an element of the data to be processed. Compared to CPUthreads, CUDA threads are
lightweight. That means that changing the context between two threads is not a costly operation.

Regarding their spatial organization, threads are organized within so called thread blocks. A
kernel is executed by multiple equally threaded blocks. Blocks can be organized into a one-
dimensional or two-dimensional grid of thread blocks, and threads inside a block are grouped in
a similar way. All the threads belonging to the same thread block will be assigned as a group to a
single multiprocessor, while different thread blocks can be assigned to different multiprocessors.
Thus, a uniqueid can be deduced for each thread to perform computation on different data.

B. Efficient mappings

As suggested in Fig. 6, the challenging issue is to find efficient mappings between a threadid
and a particular neighbor. Indeed, on the one hand, the thread id is represented by a single index.
On the other hand, the move representation of a neighbor varies according to the neighborhood.

1) 1-Hamming Distance:For neighborhoods based on a Hamming distance of one, a mapping
between LS neighborhood encoding and GPU threads is quiet direct. Indeed, for a binary vector
of sizen, the neighborhood size is exactlyn where each neighbor is represented by one index
varying from 0 to n − 1. Regarding the GPU threads, they are provided with a uniqueid and
thus associated with one single index in a similar manner. That way, the associated kernel can be
launched withn threads (each neighbor is associated to a single thread). Asa result, aIN→ IN
mapping can be made in constant time.

2) 2-Hamming Distance:For a binary vector of sizen, the size of this new neighborhood
is n×(n−1)

2
. The associated kernel is executed byn×(n−1)

2
threads. For this encoding a mapping

between a neighbor and a GPU thread is not straightforward. Indeed, on the one hand, a neighbor
is composed by two indexes to modify. On the other hand, threads are identified by a unique
id (single index). As a result, aIN → IN × IN mapping has to be considered to transform one
index into two. In a similar way, aIN × IN → IN mapping must be handled to transform two
indexes into one.

Proposition 1: Two-to-one index transformation

Fig. 6. Mappings between threads and neighbors

Given i andj the indexes of two elements to modify in the binary representation, the corre-
sponding indexf(i, j) in the neighborhood representation is equal toi×(n−1)+(j−1)− i×(i+1)

2
,

wheren is the vector size.

Proposition 2: One-to-two index transformation
Given f(i, j) the index of the element in the neighborhood representation, the corresponding

indexi is equal ton−2−b
√

8×(m−f(i,j)−1)+1−1

2
c andj is equal tof(i, j)−i×(n−1)+ i×(i+1)

2
+1

in the binary representation, wheren is the vector size andm the neighborhood size.

The proofs of one-to-two and two-to-one index transformations are respectively in appendices
B and A. The complexity of such mappings is dependent of the calculation of the square root
on GPU (nearly constant time).

3) 3-Hamming Distance:For an array of sizen, the size of this neighborhood isn×(n−1)×(n−2)
6

.
The associated kernel on GPU is executed byn×(n−1)×(n−2)

6
threads. A mapping here between a

neighbor and a GPU thread is also particularly challenging.IN→ IN×IN×IN andIN×IN×IN→
IN mappings must be handled efficiently.

The mapping here is a generalization of the 2-Hamming distance neighborhood with a third
index. In this case, a 3D abstraction must be considered. Forthe sake of simplicity, instead of
having a 3D view, we consider a set of plans where each plan is a2D abstraction. The main
difference with the 2D abstraction is the introduction of a third index which represents a plan
in the 3D abstraction.

A methodology to perform one-to-three and three-to-one index transformations is given in
appendices C and D. The complexity of the mappings are logarithmic in practice (complexity
of the numerical Newton-Raphson method).

g loba l void MoveIncrEva lKerne l (c o n s t i n t ∗ V, i n t ∗ n e w f i t n e s s)
{

i n t move index = b lock Idx . x ∗ blockDim . x + t h r e a d I d x . x ;
i f (move index < N)

n e w f i t n e s s [move index] = c o m p u t e f i t n e s s (V, move index) ;
}

Fig. 7. Mapping source code for a neighborhood based on a Hamming distance of one

IV. A PPLICATION TO THE PERMUTED PERCEPTRONPROBLEM

A. Permuted Perceptron Problem

As illustration of a binary problem, the PPP is a NP-completeproblem that has received a
great attention given its importance in security protocols. An ε-vector is a vector with all entries
being either +1 or -1. Similarly anε-matrix is a matrix in which all entries are either +1 or -1.
The PPP is defined as follows:

Definition 1: Given anε-matrix A of sizem×n and a multiset S of non-negative integers of
sizem, find anε-vector V of sizen such that{{(AV)j/j = {1, . . . , m}}} = S.

Let Y = AV be a matrix-vector product. Determine a histogram vectorH over the integers
such thatHi = #{Yj = i | j = 1, . . . , m}. Let V ′ denote the candidate for the secret keyV , let
Y ′ = AV ′ and letH ′

i denote the histogram vector ofY ′. Then an objective function is given in
[10] by:

f(V ′) = 30×
m

∑

i=1

(|(AV ′)i| − (AV ′)i) +
n

∑

i=1

(|Hi −H ′

i|).

This corresponds to a minimization problem where a valuef(V ′) = 0 gives a successful
solution to the problem.

B. Configuration

A tabu search [11] has been implemented on GPU for each neighborhood. This algorithm is
an instance of the general LS model presented in introduction. Basically, this algorithm uses a
tabu list (a short-term memory) which contains the solutions that have been visited in the recent
past. More details of this algorithm are given in [11].

The used configuration is an Intel Xeon 8 cores 3GHz with a NVIDIA GTX 280 card. The
number of multiprocessors of this card is equal to 32 and the constraints of memory alignment
are relaxed in comparaison with the previous architectures(G80 series). Therefore, GTX 280
get better global memory performance.

The following experiments intend to measure the quality of the solutions for the instances of
the literature addressed in [10]. A tabu search was executed50 times with a maximum number
of n×(n−1)×(n−2)

6
iterations (stopping criterion). The tabu list size was arbitrary set to am

6
where

m is the number of neighbors. The average value of the evaluation function (fitness) and its
standard deviation (in subindex) were measured. The numberof successful tries (fitness equal
to zero) and the average number of iterations are also represented.

C. 1-Hamming Distance

Table I reports the results for the tabu search based on the 1-Hamming distance neighborhood
and Fig. 7 shows the code source of the associated mapping. Ina short execution time, the
algorithm was able to find few solutions for the instancesm = 73, n = 73 (10 successful tries

TABLE I
PERMUTED PERCEPTRON PROBLEM1-HAMMING DISTANCE

Problem Fitness # iterations # solutions CPU time GPU time
73 × 73 10.35.1 59184.1 10/50 4s 9s
81 × 81 10.85.6 77321.3 6/50 6s 13s

101 × 101 20.214.1 166650 0/50 16s 33s
101 × 117 16.45.4 260130 0/50 29s 57s

 0

 200

 400

 600

 800

 1000

 1200

10
1-

11
7

20
1-

21
7

30
1-

31
7

40
1-

41
7

50
1-

51
7

60
1-

61
7

70
1-

71
7

80
1-

81
7

90
1-

91
7

10
01

-1
01

7

11
01

-1
11

7

12
01

-1
21

7

13
01

-1
31

7

14
01

-1
41

7

15
01

-1
51

7

E
xe

cu
tio

n
tim

e

Problem size

PPP GPU Acceleration

CPU
GPUTexture

Fig. 8. GPU acceleration factor on the permuted perceptron problem

on 50) andm = 81, n = 81 (6 successful tries on 50). The two other instances are well-known
for their difficulties and no solutions were found. Regarding execution time, GPU version does
not offer anything in terms of efficiency. Indeed, since the neighborhood is relatively small (n
threads), the number of threads per block is not enough to fully cover the memory access latency.

To measure the efficiency of the GPU-based implemententation of this neighborhood, bigger
instances of the PPP must be considered. Fig. 8 shows the GPU acceleration factor for different
PPP instance sizes on the base of10000 iterations.

Fromm = 201 andn = 217, the GPU version starts to be faster than CPU version (acceleration
factor of×1.1). As long as the problem size increases, the speed-up grows significantly (up to
×10.8 for m = 1501 andn = 1517).

D. 2-Hamming Distance

A tabu search has been implemented on GPU using a 2-Hamming distance neighborhood.
The source code of the mapping is given in Fig. 9. Results of the experiment for the PPP are
reported in Table II.

By using this other neighborhood, in comparison with Table I, the quality of solutions was
significantly improved: on the one side the number of successful tries for bothm = 73, n = 73

g loba l void MoveIncrEva lKerne l (c o n s t i n t ∗ V, i n t ∗ n e w f i t n e s s)
{

i n t move index = b lock Idx . x ∗ blockDim . x + t h r e a d I d x . x ;
i f (move index < N∗ (N−1) /2) {

i n t move f i r s t , move second ;
move index = f l o o r f (((s q r t f (8 ∗ ((N∗ (N−1) /2) − move index − 1)

+ 1 +0.1 f)) −1) / 2) − 1 ;
m o v e f i r s t = N − 2 − move index ;
move second = moveindex − m o v e f i r s t ∗ (n−1) +

m o v e f i r s t ∗ (m o v e f i r s t + 1) / 2 + 1 ;
n e w f i t n e s s [move index] = c o m p u t e f i t n e s s (V, move f i r s t , move second) ;

}
}

Fig. 9. Mapping source code for a neighborhood based on a Hamming distance of two

TABLE II
PERMUTED PERCEPTRON PROBLEM2-HAMMING DISTANCE

Problem Fitness # iterations # solutions CPU time GPU time Acceleration
73 × 73 16.417.9 43031.7 19/50 81s 8s ×9.9
81 × 81 15.516.6 67462.5 13/50 174s 16s ×11.0

101 × 101 14.214.3 138349 12/50 748s 44s ×17.0
101 × 117 13.810.8 260130 0/50 1947s 105s ×18.5

(19 solutions) andm = 81, n = 81 (13 solutions) is more important. On the other side, 12
solutions were found for the instancem = 101, n = 101. Regarding execution time, acceleration
factor for GPU version is really efficient (from×9.9 to ×18.5). Indeed, since a large number
of threads are executed, GPU can take full advantage of the multiprocessors occupancy.

E. 3-Hamming Distance

A tabu search using a 3-Hamming distance neighborhood was implemented for the PPP. Fig.
10 shows a part of the source code for the mapping. Since the computational time was too
exhorbitant, the average expected time for the CPU implementation was deduced from the base
of 100 iterations per execution. Results are collected in Table III.

In comparison with Knudsen and Meier article [10], the results found by the generic tabu
search are competitive without any use of cryptoanalysis techniques. Indeed, the number of
successful solutions was drastically improved for every instance (respectively 35, 28 and 18
successful tries) and a solution was even found for the instancem = 101, n = 117. Regarding

g loba l void MoveIncrEva lKerne l (c o n s t i n t ∗ V, i n t ∗ n e w f i t n e s s)
{

i n t move index = b lock Idx . x ∗ blockDim . x + t h r e a d I d x . x ;
i f (move index < N∗ (N−1)∗(N−2) /6) {

i n t move f i r s t , move second , moveth i rd ;
newtonGPU (moveindex ,& move f i r s t ,& move second ,& move th i rd) ;
n e w f i t n e s s [move index] = c o m p u t e f i t n e s s (V, move f i r s t , move second , moveth i rd) ;

}
}

Fig. 10. Mapping source code for a neighborhood based on a Hamming distance of three

TABLE III
PERMUTED PERCEPTRON PROBLEM3-HAMMING DISTANCE

Problem Fitness # iterations # solutions CPU expected time GPU time Acceleration
73 × 73 2.44.3 21360.2 35/50 1202s 50s ×24.2
81 × 81 3.54.4 43230.7 28/50 3730s 146s ×25.5

101 × 101 6.25.4 117422 18/50 24657s 955s ×25.8
101 × 117 7.72.7 255337 1/50 88151s 3551s ×24.8

execution time, acceleration factors using GPU are very significant (from×24.2 to ×25.8).
The conclusion from this experiment indicate that the use ofGPU provides an efficient way

to deal with large neighborhoods. Indeed, 3 Hamming-distance neighborhood on PPP were
unpracticable in terms of single CPU computational ressources. So, implementing this algorithm
on GPU has allowed to exploit parallelism in such neighborhood and improve the quality of
solutions.

V. D ISCUSSION ANDCONCLUSION

Local search algorithms based on large neighborhoods may allow to enhance the effectiveness
in combinatorial optimization [2]. However, their exploitation for solving real-world problems
is possible only by using a great computing power. High-performance computing based on GPU
accelerators is recently revealed as an efficient way to use the huge amount of resources at
disposal and fully exploit the parallelism of neighborhoods. To the best of our knowledge, no
research work has been published on LS algorithms on GPU based on different neighborhoods
exploration.

In this paper, we particularly focused on the design of efficient mappings of three different
neighborhoods to the hierarchical GPU for binary problems.The designed and implemented
approaches have been experimentally validated on a cryptographic application. The experiments
indicate that GPU computing allows not only to speed up the search process, but also to exploit
large neighborhoods structures to improve the quality of the obtained solutions. For instance, LS
algorithms based on a Hamming distance of three were unpracticable on traditional machines
because of their high computational cost. So, GPU computinghas permitted their achievement
and the obtained results are particularly promising in terms of effectiveness. Indeed, all along
the paper, we investigated on how the increase of the size of neighborhood allows to improve the
quality of the solutions. Furthermore, we strongly believethat the quality of the solutions would
be drastically enhanced by (1) increasing the number of running iterations of the algorithm and
(2) introducing appropriate cryptonanalysis heuristics.

Beyond the improvement of the effectiveness, the parallelism of GPUs allows to push far
the limits in terms of computational resources. As a consequence, a next perspective is to use
a multi-GPU approach to allow handling larger neighborhoods. It will consist of partitioning
the neighborhood set, where each partition is executed on a single GPU. That way, multi-GPU
approach will allow to increase the speed-up of the exploration space of a given solution. But
since each GPU has its own private memory, managing the context execution of different GPUs
in an efficient way is not a straighforward task.

In the future, GPU concepts will be integrated in the ParadisEO platform. This framework was
developped for the design of parallel hybrid metaheuristics dedicated to the mono/multiobjective
resolution [12]. ParadisEO can be seen as a white-box object-oriented framework based on a clear
conceptual separation of metaheuristics concepts. The Parallel Evolving Objects (PEO) module

Fig. 11. IN × IN → IN mapping

of ParadisEO includes the well-known parallel and distributed models for metaheuristics. This
module will be extended in the future with GPU-based implementation.

APPENDIX A
TWO-TO-ONE INDEX TRANSFORMATION

Let us consider a 2D abstraction in which elements of the neighborhood are disposed in a
zero-based indexing 2D representation in a similar way thata lower triangular matrix. Letn be
the size of the solution representation and letm = n×(n−1)

2
be the size of its neighborhood. Let

i andj be the indexes of two elements to modify in a binary encoding.A candidate neighbor is
then identified by bothi and j indexes in the 2D abstraction. Letf(i, j) be the corresponding
index in the 1D neighborhood fitnesses structure. Fig. 11 gives through an example an illustration
of this abstraction.

In this example,n = 6, m = 15 and the neighbor identified by the coordinates (i = 2 , j = 3)
is mapped to the corresponding 1D array elementf(i, j) = 9.

The neighbor represented by the (i , j) coordinates is known, and its corresponding index
f(i, j) on the 1D structure has to be calculated. If the 1D array size wasn∗n, the 2D abstraction
would be similar to a matrix and theIN× IN→ IN mapping would be:

f(i, j) = i× (n− 1) + (j − 1)

Since the 1D array size ism = n×(n−1)
2

, in the 2D abstraction, elements above the diago-
nal preceding the neighbor must not be considered (illustrated in Fig. 11 by a triangle). The
corresponding mappingIN× IN→ IN is therefore:

f(i, j) = i× (n− 1) + (j − 1)− i× (i + 1)

2
(1)

APPENDIX B
ONE-TO-TWO INDEX TRANSFORMATION

Let us consider the 2D abstraction previously presented. Ifthe element corresponding tof(i, j)
in the 2D abstraction has a giveni abscissa, then letk be the distance plus one between the
i + 1 andn− 2 abscissas. Ifk is known, the value ofi can be deduced:

i = n− 2− b
√

8X + 1− 1

2
c (2)

Fig. 12. IN → IN × IN mapping

Let X be the number of elements followingf(i, j) in the neighborhood index-based array
numbering:

X = m− f(i, j)− 1 (3)

Since this number can be also represented in the 2D abstraction, the main idea is to maximize
the distancek such as:

k × (k + 1)

2
≤ X (4)

Fig. 12 gives an illustration of this idea (represented by a triangle).
Resolving (4) gives the greatest distancek:

k = b
√

8X + 1− 1

2
c (5)

A value of i can then be calculated according to (2). Finally, by using (1) j can be given by:

j = f(i, j)− i× (n− 1) +
i× (i + 1)

2
+ 1 (6)

IN→ IN× IN mapping is also done.

APPENDIX C
ONE-TO-THREE INDEX TRANSFORMATION

f(x, y, z) is a given index of the 1D neighborhood fitnesses structure and the objective is
to find the three indexesx, y and z. Let n be the size of the solution representation and
m = n×(n−1)×(n−2)

6
be the size of the neighborhood. The main idea is to find in which plan

(coordinatez) corresponds the given elementf(x, y, z) in the 3D abstraction. If this correspond-
ing plan is found, then the rest is similar as theIN→ IN× IN mapping for the one-to-two index
transformation previously seen. Figure 13 illustrates an example of the 3D abstraction.

In this representation, since each plan is a 2D abstraction,the number of elements in each
plan is the number of combinations

(

k

2

)

wherek ∈ {2, 3, . . . , n−1} according to each plan. For
a specific neighbor, if a value ofk is found, then the value of the corresponding planz is:

z = n− k − 1 (7)

Fig. 13. IN → IN × IN × IN mapping

For a given indexf(x, y, z) belonging to the plank in the 3D abstraction, the number of
elements contained in the following plans is

(

k

3

)

(also equal tok×(k−1)×(k−2)
6

).
Let Y be the number of elements followingf(x, y, z) in both 1D neighborhood fitnesses

structure and 3D abstraction:
Y = m− f(x, y, z)

Then the main idea is to minimizek such as:
k × (k − 1)× (k − 2)

6
>= Y (8)

By reordering (8), in order to find a value ofk, the next step is to solve the following equation:

k3
1 − k1 − 6Y = 0 (9)

Cardano’s method in theory allows to solve cubic equation. Nevertheless, in the case of finite
discrete machine, this method can lose precision especially for big integers. As a consequence, a
simple Newton-Raphson method for finding an approximate value ofk1 is enough for our prob-
lem. Indeed, this iterative process follows a set guidelineto approximate one root, considering
the function, its derivative, an initial arbitraryk1-value and a certain precision (see Algorithm
1).

Finally, since the minimization ofk in (8) is expected, the value ofk is:

k = dk1e
Then a value ofz can be deduced with (7). At this step, the plan correspondingto the element

f(x, y, z) is known. The next steps for findingx andy are identically the same as the one-to-two
index transformation with a change of variables.

Algorithm 1 Newton-Raphson method for solvingk3
1 − k1 − 6Y = 0

1: k1 ← initial value;
2: repeat
3: term ← (k1 ∗ k1 ∗ k1 − k1 − 6 ∗ Y) / (3 ∗ k1 ∗ k1 − 1);
4: k1 ← k1 − term;
5: until |term / k1| > precision

First, the number of elements precedingf(x, y, z) in the neighborhood index-bas array num-
bering is exactly:

nbElementsBefore = m− (k + 1)× k × (k − 1)

6

Second, the number of elements contained in the same planz asf(x, y, z) is:

nbElements =
k × (k − 1)

2

Finally the index of the last element of the planz is:

lastElement = nbElementsBefore + nbElements − 1

As a result, one-to-two index transformation is applied with a change of variables:

f(i, j) = f(x, y, z)− nbElementsBefore

n′ = n− (z + 1)

X = lastElement − f(x, y, z)

After performing this transformation, a value ofx andy can be deduced:

x = i + (z + 1)

y = j + (z + 1)

IN→ IN× IN× IN mapping is done.

APPENDIX D
THREE-TO-ONE INDEX TRANSFORMATION

x, y andz are known and its corresponding indexf(x, y, z) must be found. According to the
3D abstraction, since a value ofz is known,k can be calculated:

k = n− 1− z

Then the number of elements precedingf(x, y, z) in the neighborhood index-based array
numbering can be also deduced.

If each plan size was(n− 2) ∗ (n− 2), each 2D abstraction would be similar to a matrix and
the IN× IN→ IN mapping would be:

f1(x, y, z) = z × (n− 2)× (n− 2) + (x− 1)× (n− 2) + (y − 2) (10)

Fig. 14. IN × IN × IN → IN mapping

Since each 2D abstraction is some kind of triangular matrix,some elements must not be
considered. The advantage of the 3D abstraction is that these elements can be found by geometric
construction (see Fig. 14).

First, given a planz, the number of elements in the previous plans to not consideris:

n1 = z × (n− 2)× (n− 2)− nbElementsBefore

Second, the number of elements on the left side to not consider in the planz is:

n2 = z × (n− 2)

Third, the number of elements on the upper side to not consider in the planz is:

n3 = (y − z)× (n− k − 1)

Fourth, the number of elements on the upper triangle abovef(x, y, z) to not consider is:

n4 =
(y − z)× (y − z − 1)

2

Finally a value off(x, y, z) can be deduced:

f(x, y, z) = f1(x, y, z)− n1− n2− n3− n4 (11)

IN× IN× IN→ IN mapping is also done.

REFERENCES

[1] E.-G. Talbi, From design to implementation. Wiley, 2009.
[2] R. K. Ahuja, J. Goodstein, A. Mukherjee, J. B. Orlin, and D. Sharma, “A very large-scale neighborhood search algorithm

for the combined through-fleet-assignment model,”INFORMS Journal on Computing, vol. 19, no. 3, pp. 416–428, 2007.
[3] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S. Baghsorkhi, and W. mei W. Hwu, “Program

optimization carving for gpu computing,”J. Parallel Distrib. Comput., vol. 68, no. 10, pp. 1389–1401, 2008.
[4] J.-M. Li, X.-J. Wang, R.-S. He, and Z.-X. Chi, “An efficient fine-grained parallel genetic algorithm based on

gpu-accelerated,” inNetwork and Parallel Computing Workshops, 2007. NPC Workshops. IFIP International Conference,
2007, pp. 855–862. [Online]. Available: http://dx.doi.org/10.1109/NPC.2007.108

[5] D. M. Chitty, “A data parallel approach to genetic programming using programmable graphics hardware,” inGECCO,
2007, pp. 1566–1573.

[6] T.-T. Wong and M. L. Wong, “Parallel evolutionary algorithms on consumer-level graphics processing unit,” inParallel
Evolutionary Computations, 2006, pp. 133–155.

[7] K.-L. Fok, T.-T. Wong, and M. L. Wong, “Evolutionary computing on consumer graphics hardware,”IEEE Intelligent
Systems, vol. 22, no. 2, pp. 69–78, 2007.

[8] D. Pointcheval, “A new identification scheme based on theperceptrons problem,” inEUROCRYPT, 1995, pp. 319–328.
[9] NVIDIA, CUDA Programming Guide Version 2.1, 2009.

[10] L. R. Knudsen and W. Meier, “Cryptanalysis of an identification scheme based on the permuted perceptron problem,” in
EUROCRYPT, 1999, pp. 363–374.

[11] É. D. Taillard, “Robust taboo search for the quadratic assignment problem,”Parallel Computing, vol. 17, no. 4-5, pp.
443–455, 1991.

[12] S. Cahon, N. Melab, and E.-G. Talbi, “Paradiseo: A framework for the reusable design of parallel and distributed
metaheuristics,”J. Heuristics, vol. 10, no. 3, pp. 357–380, 2004.

