
HAL Id: hal-00520207
https://hal.science/hal-00520207v1

Submitted on 23 Sep 2010 (v1), last revised 9 Sep 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Polynomial Multiplication in Chebyshev Basis
Pascal Giorgi

To cite this version:
Pascal Giorgi. On Polynomial Multiplication in Chebyshev Basis. IEEE Transactions on Computers,
2012, 61 (6), pp.780-789. �10.1109/TC.2011.110�. �hal-00520207v1�

https://hal.science/hal-00520207v1
https://hal.archives-ouvertes.fr

On Polynomial Multiplication in Chebyshev Basis

Pascal Giorgi

September 23, 2010

Abstract

In a recent paper Lima, Panario and Wang have provided a new method to multiply

polynomials in Chebyshev basis which aims at reducing the total number of multiplication

when polynomials have small degree. Their idea is to use Karatsuba’s multiplication scheme

to improve upon the naive method but without being able to get rid of its quadratic com-

plexity. In this paper, we extend their result by providing a reduction scheme which allows

to multiply polynomial in Chebyshev basis by using algorithms from the monomial basis case

and therefore get the same asymptotic complexity estimate. Our reduction allows to use any

of these algorithms without converting polynomials input to monomial basis which therefore

provide a more direct reduction scheme then the one using conversions. We also demon-

strate that our reduction is efficient in practice, and even outperform the performance of

the best known algorithm for Chebyshev basis when polynomials have large degree. Finally,

we demonstrate a linear time equivalence between the polynomial multiplication problem

under monomial basis and under Chebyshev basis.

1 Introduction

Polynomials are a fundamental tool in mathematics and especially in approximation theory where
mathematical functions are approximated using truncated series. One can think of the truncated
Taylor series to approximate a function as a polynomial expressed in monomial basis. In general,
many other series are preferred to the classical Taylor series in order to have better convergence
properties. For instance, one would prefer to use the Chebyshev series in order to have a rapid
decreasing in the expansion coefficients which implies a better accuracy when using truncation
[18, 5]. One can also use other series such as Legendre or Hermite to achieve similar properties.
It is therefore important to have efficient algorithms to handle arithmetic on polynomials in such
basis and especially for the multiplication problem [2, 7].

Polynomial arithmetic has been intensively studied in the past decades, in particular fol-
lowing the work in 1962 of Karatsuba and Ofmann [16] who have shown that one can multiply
polynomials in a subquadratic number of operations. Let two polynomials of degree d over a field
K be given in monomial basis, one can compute their product using Karatsuba’s algorithm in
O(nlog2 3) operations in K. Since this seminal work, many other algorithms have been invented in
order to asymptotically reduce the cost of the multiplication. In particular, one can go down to
O(nlog

r+1(2r+1)) operations in K with the generalized Toom-Cook method [23, 10] for any integer
r > 0. Finally, one can even achieve a quasi-linear time complexity using the so-called FFT [11]
assuming the field K have some nice properties (see [13, 6] for a good introduction). One of the
main concern of this work is that all these algorithms have been designed for polynomials given
in monomial basis, and they do not directly fit the other basis, such as the Chebyshev one.

In this work, we extend the result of Lima, Panario and Wang [17] which is to directly
use Karatsuba’s algorithm [16] within the multiplication of polynomials given in Chebyshev

1

basis. In [17] the authors partially succeeded in such a task but without being able to reach
Karatsuba’s asymptotic complexity. Our approach here is more general and it endeavors to
completely reduce the multiplication in Chebyshev basis to the one in monomial basis. Of
course, one can already achieve such a reduction by using back and forth conversions between
the Chebyshev and monomial basis using methods presented in [3, 4]. However, this reduction
scheme is not direct and it implies at least three calls to multiplication in monomial basis: two
for the back and forth conversions and one for the multiplication of the polynomials. Note that
it is not even clear from [3, 4] that basis conversions are equivalent to only one multiplication in
monomial basis. In this work, we present a new reduction scheme which does not rely on basis
conversion and therefore reduces the number of multiplications in monomial basis to only two.
We also demonstrate that degenerating this reduction for the case of DFT-based multiplication
algorithm reduces the number of operations. Considering practical efficiency, we will see that
our degenerated reduction scheme will definitively compete with implementations of the most
efficient algorithms available in the literature.

Organization of the paper. Section 2 recalls some complexity results on polynomial multi-
plication in monomial basis and provides a detailed study on arithmetic operation count in the
case of polynomials in R[x]. In Section 3 we give a short review on the available methods in the
literature to multiply polynomials given in Chebyshev basis. Then, in Section 4 we propose our
new method to perform such multiplication by re-using multiplication in monomial basis. We
analyze the complexity of this reduction and compare it to other existing methods. We perform
some practical experimentations of such a reduction scheme in Section 5, and then compare its
efficiency and give a small insight on its numerical reliability. Finally, we exhibit in Section 6
the linear equivalence between the polynomial multiplication problem in Chebyshev basis and in
monomial basis with only a constant factor of two.

2 Classical Polynomial Multiplication

It is well-known that polynomial multiplication of two polynomials of K[x] with degree d = n−1
can be achieved with less than O(n2) operations in K, for any field K (see [13, 8]), if polynomials
are given in monomial basis. Table 1 exhibits the arithmetic complexity of two well known
algorithms in the case of polynomials of R[x]. One is due to Karatsuba and Ofman [16] and
has an asymptotic complexity of O(nlog2 3) operations in K; the other one is based on DFT
computation using complex FFT and it has an asymptotic complexity of O(n log n) operations
in K, see [13, algorithm 8.16] and [21, 8] for further details. One can see [15, 22] for more details
on complex FFT. We also give in Table 1 the exact number of operations in R for the schoolbook
method. From now on, we will use log n notation to refer to log2 n.

Table 1: Exact number of operations to multiply two polynomials of R[x] with degree n − 1 in
monomial basis s.t. n = 2k

Algorithm nb. of multiplications nb. of additions

Schoolbook n2 (n− 1)2

Karatsuba nlog 3 7nlog 3 − 7n+ 2

DFT-based(∗) 3n log 2n− 4n+ 6 9n log 2n− 12n+ 12

(*) using real-valued FFT of [22] with 3/3 strategy for complex multiplication

2

To perform fast polynomial multiplication using DFT-based method on real inputs, one
need to compute 3 DFT with 2n points, n pointwise multiplications with complex numbers
and 2n multiplications with the real constant 1

2n . Note that we do not need to perform 2n
pointwise multiplications since the DFT on real inputs has an hermitian symmetry property.
Using Split-Radix FFT of [22] with 3/3 strategy for complex multiplication (3 real additions
and 3 real multiplications), one can calculate the DFT with n points of a real polynomial with
n
2 logn − 3n

2 + 2 real multiplications and 3n
2 log n − 5n

2 + 4 additions. Adding all the involved
operations gives the arithmetic operation count given in Table 1. Note that one can even decrease
the number of operations by using the modified split-radix FFT of [15], yielding an overall
asymptotic complexity of 34

3 n log 2n instead of 12n log 2n.
In the following, we will use the function M(n) to denote the number of operations in R

to multiply polynomials of degree less than n when using the monomial basis. For instance,
M(n) = O(nlog2 3) with Karatsuba’s algorithm. In order to simplify the notations, we assume
throughout the rest of the paper that polynomials are of degree d = n− 1 with n = 2k.

3 Polynomial Multiplication in Chebyshev Basis

Chebyshev polynomials of the first kind on the interval [−1, 1] are defined by

Tk(x) = cos(k arcos(x)), k ∈ N
∗ and x ∈ [−1, 1].

According to this definition, one can remark that these polynomials are orthogonal polyno-
mials. The following recurrence relation holds:

Tk(x) = 2xTk−1(x)− Tk−2(x)
T0(x) = 1
T1(x) = x

It is obvious from this relation that the i-th Chebyshev polynomial Ti(x) has degree i in x.
Therefore, it is easy to show that (Ti(x))i≥0 form a basis of the R-vector space of R[x]. Hence,
every polynomial f ∈ R[x] can be expressed as a linear combination of Ti(x). This representation
is called the Chebyshev expansion. In the rest of this paper we will refer to this representation
as the Chebyshev basis.

Arithmetic operations in Chebyshev basis are not as easy as in the classical monomial basis, in
particular for the multiplication. Indeed, the main difficulty comes from the fact that the product
of two basis elements spans over two other basis elements. The following relation illustrates this
property:

Ti(x) Tj(x) =
Ti+j(x) + T|i−j|(x)

2
, ∀i, j ∈ N (1)

3.1 Quadratic Algorithms

According to (1), one can derive an algorithm to perform the product of two polynomials given
in Chebyshev basis using a quadratic number of operations in R. This method is often called the
“direct method”. Let two polynomials a, b ∈ R[x] of degree d = n− 1 given in Chebyshev basis :

a(x) =
a0

2
+

d
∑

k=1

akTk(x) and b(x) =
b0

2
+

d
∑

k=1

bkTk(x).

3

The 2d degree polynomial c(x) = a(x) b(x) ∈ R[x] expressed in Chebyshev basis can computed
using the following formula [1]:

c(x) =
c0

2
+

2d
∑

k=1

ckTk(x)

such that

2ck=

a0b0 + 2

d
∑

l=1

albl for k = 0,

k
∑

l=0

ak−lbl +

d−k
∑

l=1

(albk+l + ak+lbl) for k = 1, ..., d− 1,

d
∑

l=k−d

ak−lbl for k = d, ..., 2d.

(2)

The number of operations in R to compute all the coefficients of c(x) is exactly [1, 17]:

• n2 + 2n− 1 multiplications,

•
(n− 1)(3n− 2)

2
additions.

Lima et. al recently proposed in [17] a novel approach to compute the coefficient of c(x)
which reduces the number of multiplications. The total number of operations in R is then:

•
n2 + 5n− 2

2
multiplications,

• 3n2 + nlog 3 − 6n+ 2 additions.

The approach in [17] is to compute the terms
∑

ak−lbl using Karatsuba’s algorithm [16] on
polynomial a(x) and b(x) as if they were in monomial basis.

Of course, this does not give all the terms needed in (2). However, by re-using all partial
results appearing along the recursive structure of Karatsuba’s algorithm, the authors are able to
compute all the terms albk+l+ak+lbl with less multiplication than the direct method. Even if the
overall number of operations in R is higher than the direct method, the balance between multi-
plication and addition is different. The author claims this may have an influence on architectures
where multiplier’s delay is much more expensive than adder’s one.

3.2 Quasi-linear Algorithms

One approach to get quasi-linear time complexity is to use the discrete cosine transform (DCT-I).
The idea is to transform the input polynomials by using forward DCT-I, then perform a pointwise
multiplication and finally transform the result back using backward DCT-I. An algorithm using
such a technique has been proposed in [1] and achieves a complexity of O(n logn) operations in
R. As mentioned in [17], by using the cost of the fast DCT-I algorithm of [9] one can deduce
the exact number of operations in R. However, arithmetic operation count in [17] is partially
incorrect, the value should be corrected to:

• 3n log 2n− 2n+ 3 multiplications,

• (9n+ 3) log 2n− 12n+ 12 additions.

4

DCT-I algorithm of [9] costs n
2 logn − n + 1 multiplications and 3n

2 logn − 2n + logn + 4
additions when using n sample points. To perform the complete polynomial multiplication, one
needs to perform 3 DCT-I with 2n points, 2n pointwise multiplications and 2n multiplications
by the constant 1

2n . Adding all the operations count gives the arithmetic cost given above.

4 Reduction To Monomial Basis Case

4.1 Using Basis Conversions

One can achieve a reduction to the monomial basis case by converting the input polynomials
given in Chebyshev basis to the monomial basis, then perform the multiplication in the latter
basis and finally convert the product back. Hence, the complexity directly relies on the ability
to perform the conversions between the Chebyshev and the monomial basis. In [4], authors
have proved that conversion between these two basis can be achieved in O(M(n)) operations.
Assuming such reductions have a constant factor greater than or equal to one, which is the case
to our knowledge, the complete multiplication in Chebyshev basis would requires an amount of
operation larger than 3M(n). In the next section, we provide a new reduction scheme which
decrease the constant factor of the reduction to exactly two.

4.2 Our Direct Approach

As seen in Section 3.1, Lima et. al’s approach [17] is interesting since it introduces the use of
monomial basis algorithms (i.e. Karatsuba’s one) into Chebyshev basis algorithm. The main
idea in [17] is to remark that the terms

∑

ak−lbl in (2) are convolutions of order k. Hence, they
are directly calculated in the product of the two polynomials

ā(x) = a0 + a1x+ a2x
2 + ...+ adx

d,

b̄(x) = b0 + b1x+ a2x
2 + ...+ bdx

d. (3)

This product gives the polynomials

f̄(x) = ā(x) b̄(x) = f0 + f1x+ f2x
2 + ...+ f2dx

2d.

Each coefficient fk of the polynomial f̄(x) corresponds to the convolution of order k. Of course,
this polynomial product can be calculated by any of the existing monomial basis algorithms
(e.g. those of Section 2). Unfortunately, this gives only a partial reduction to monomial basis
multiplication. We now extend this approach to get a complete reduction.

Using coefficients f̄(x) defined above one can simplify (2) to

2ck =

f0 + 2

d
∑

l=1

albl for k = 0,

fk +
d−k
∑

l=1

(albk+l + ak+lbl) for k = 1, ..., d− 1,

fk for k = d, ..., 2d.

(4)

In order to achieve the complete multiplication, we need to compute the three following
summation terms for k = 1 . . . d− 1 :

d
∑

l=1

albl ,

d−k
∑

l=1

albk+l and

d−k
∑

l=1

ak+lbl. (5)

5

Let us define the polynomial r̄(x) as the reverse polynomial of ā(x):

r̄(x) = ā(x−1)xd = r0 + r1x+ r2x
2 + . . .+ rdx

d.

This polynomial satisfies ri = ad−i for i = 0 . . . d. Let the polynomial ḡ(x) be the product of the
polynomials r̄(x) and b̄(x). Thus, we have

ḡ(x) = r̄(x) b̄(x) = g0 + g1x+ g2x
2 + . . .+ g2dx

2d.

The coefficient of this polynomials satisfies the following relation for k = 0 . . . d :

gd+k =

d−k
∑

l=0

rd−lbk+l and gd−k =

d−k
∑

l=0

rd−k−lbl.

According to the definition of r̄(x) we have:

gd+k =
d−k
∑

l=0

albk+l and gd−k =
d−k
∑

l=0

ak+lbl. (6)

All the terms defined in (5) can be easily deduced from the coefficients gd+k and gd−k of the
polynomial ḡ(x). This gives the following simplification for (4)

2ck=

f0 + 2(gd − a0b0) for k = 0,

fk + gd−k + gd+k − a0bk − akb0 for k = 1, ..., d− 1,

fk for k = d, ..., 2d.

(7)

Applying (7), one can derive an algorithm which satisfies an algorithmic reduction to poly-
nomial multiplication in monomial basis. This algorithm is identified as PM-Chebyshev below.

4.3 Complexity Analysis

Algorithm PM-Chebyshev is exactly an algorithmic translation of (7). Its correctness is thus
immediate from (4) and (6).

Its complexity is O(M(n)) + O(n) operations in R. It is easy to see that coefficients fk and
gk are computed by two products of polynomials of degree d = n − 1 given in monomial basis.
This exactly needs 2M(n) operations in R. Note that defining polynomials ā(x), b̄(x) and r̄(x)
does not need any operations in R. The complexity of the algorithm is therefore deduced from
the number of operations in (7) and the fact that d = n− 1.

The exact number of operations in R of Algorithm PM-Chebyshev is 2M(n) + 8n − 10. The
extra linear operations are divided into 4n−4 multiplications and 4n−6 additions. It is possible
to decrease these numbers by setting to zero the constant coefficient of the polynomials ā(x)
and b̄(x) (i.e. a0 = b0 = 0) just before the computation of ḡ(x). Indeed, this removes all the
occurrences of a0 and b0 in (6) which gives the following relation:

gd+k =
d−k
∑

l=1

albk+l and gd−k =
d−k
∑

l=1

ak+lbl, (8)

6

Algorithm 1: PM-Chebyshev

Input : a(x), b(x) ∈ R[x] of degree d = n− 1 s.t. a(x) =
a0

2
+

d
∑

k=1

akTk(x) and

b(x) =
b0

2
+

d
∑

k=1

bkTk(x).

Output: c(x) ∈ R[x] of degree 2d s.t. c(x) = a(x) b(x) =
c0

2
+

2d
∑

k=1

ckTk(x).

begin
let ā(x) and b̄(x) as in (3)

f̄(x) := ā(x) b̄(x)

ḡ(x) := ā(x) b̄(x−1) xd

c0 :=
f0

2
+ gd − a0b0

for k = 1 to d− 1 do

ck :=
1

2
(fk + gd−k + gd+k − a0bk − akb0)

for k = d to 2d do

ck :=
1

2
fk

return h(x)
end

and therefore simplifies (7) to

2ck=

f0 + 2gd for k = 0,

fk + gd−k + gd+k for k = 1, ..., d− 1,

fk for k = d, ..., 2d.

(9)

Embedding this tricks into Algorithm PM-Chebyshev leads to an exact complexity of 2M(n)+
4n− 3 operations in R, where extra linear operations are divided into 2n− 1 multiplications and
2n− 2 additions.

Table 2 exhibits the exact number of arithmetic operation needed by Algorithm PM-Chebyshev

depending on the underlying algorithm chosen to perform monomial basis multiplication. We
separate multiplications from additions in order to offer a fair comparison to [17] and we use
results in Table 1 for M(n) costs.

4.4 Special Case of DFT-based Multiplication

When using DFT-based multiplication, we can optimize the Algorithm PM-Chebyshev in or-
der to further reduce the number of operations. In particular, we can remark that Algo-
rithm PM-Chebyshev needs two multiplications in monomial basis using operands ā(x), b̄(x) and

7

Table 2: Arithmetic operation count in Algorithm PM-Chebyshev

M(n) nb. of multiplication nb. of addition

Schoolbook 2n2 + 2n− 1 2n2 − 2n

Karatsuba 2nlog 3 + 2n− 1 14nlog 3 − 12n+ 2

DFT-based(∗) 6n log 2n− 6n+ 11 18n log 2n− 22n+ 22

(*) using real-valued FFT of [22] with 3/3 strategy for complex arithmetic

ā(x), b̄(x−1)xd. Therefore, applying the generic scheme of Algorithm PM-Chebyshev, we compute
twice the DFT transform of ā(x) on 2n points. The same remark applies to the DFT transform
of b̄(x) and r̄(x) = b̄(x−1)xd which can be deduced one from the other at a cost of a permutation
plus O(n) operations in R.

Indeed, we have

DFT2n(b̄) = [b̄(wk)]k=0...2n−1,

DFT2n(r̄) = [b̄(w−k) ωkd]k=0...2n−1.

Since ω = e
−2iπ

2n by definition of the DFT, we have ω2n = 1 and therefore :

ωk = ωk−2n and ω−k = ω2n−k for k ∈ N.

This gives :
DFT2n(r̄) = [b̄(w2n−k) ωdk]k=0...2n−1.

Considering the DFT as an evaluation process, we have

r̄(wk) = (ωd)
k b̄(w2n−k) for k = 0 . . . 2n− 1

where ωd = ωd = e
−2iπd

2n . We can easily see that computing DFT2n(r̄) is equivalent to reverse the
values of DFT2n(b̄) and multiply them by the adequate power of ωd. This process needs exactly
a permutation plus 4n − 2 multiplications in R, which is much less than the O(n logn) cost of
the FFT.

Remark 1. Instead of applying a permutation, one can use the hermitian symmetry property
of real input DFT. In other words, it is equivalent to say that b̄(ω2n−k) is equal to the complex
conjugate of b̄(ωk).

This remark has no influences on the complexity analysis but for real implementation it re-
places memory swaps by modifications of the sign in the complex numbers structure. If data
does not fit in cache, this might reduce the number of memory access and cache misses, and
therefore provide better performances.

Using these considerations, one can modify Algorithm PM-Chebyshev in order to save almost
the computation of 2 DFTs. Hence, we obtain an arithmetic cost in this case of:

• 4n log 2n+ 4n+ 5 multiplications,

• 12n log 2n− 12n+ 14 additions.

8

Table 3: Exact complexity for polynomial multiplication in Chebyshev basis, with degree n− 1

Algorithm nb. of operations in R

Direct method 2.5n2 − 0.5n

Lima et. al [17] 3.5n2 + nlog 3 − 3.5n+ 1

DCT-based (12n+ 3) log 2n− 14n+ 15

PM-Chebyshev (Schoolbook) 4n2 − 1

PM-Chebyshev (Karatsuba) 16nlog 3 − 10n+ 1

PM-Chebyshev (DFT-based) 16n log 2n− 8n+ 19

4.5 Comparisons With Previous Methods

We now compare the theoretical complexity of our new method with existing algorithms presented
in Section 3.

In Table 3, we report the exact number of operations in R for each methods. One can
conclude from this table that the asymptotically fastest multiplication is the one using DCT
[1]. However, according to the constants and the non-leading terms in each cost function, the
DCT-based method is not always the most efficient, especially when polynomial degrees tend
to be very small. Furthermore, we do not differentiate the cost of additions and multiplications
which does not reflect the reality of computer architecture.

In Figure 1, one can find the speedup of each methods compared to the Direct method. We
provide different cost models to capture a little bit more the reality of nowadays computers where
the delays of floating point addition and multiplication may differ by a factor of 4 at large. Note
that both axis use a logarithmic scale.

First, we can remark that changing cost model only affect the trade-off between methods for
small polynomials (i.e. size less than 16). As expected for large degrees, the DCT-based method
is always the fastest and our Algorithm PM-Chebyshev (DFT-based) is catching up with it since
they mostly differ by a constant factor. However, when polynomial degrees tend to be small (less
than 10) the Direct method is becoming the most efficient even if it has a quadratic complexity.

As already mentioned in [17], the method of Lima et. al tends to become more efficient than
the direct method for small polynomials when the cost model assumes that one floating point
multiplication cost more than three floating point additions. However, practical constraint such
as recursivity, data read/write or cache access have an impact on performance, as we will see, in
Section 5 and need to be considered.

5 Implementation and Experimentations

In order to compare our theoretical conclusions with practical computations, we develop a soft-
ware implementation of our Algorithm PM-Chebyshev and we report here its practical perfor-
mances. As a matter of comparison, we provide implementations for previous know methods:
namely the Direct method and the DCT-based method. For the Direct method, a naive imple-
mentation with double loop has been done, while for the DCT-one we re-use existing software
to achieve best possible performances.

9

Figure 1: Theoretical speedup of polynomial multiplication in Chebyshev basis with different
cost models.

 0.1

 1

 10

 100

 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Polynomials size (equiv. to degree+1)

1 FP mul = 1 FP addDirect method
Method of [Lima et. al 2010]
DCT−based method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)

 0.1

 1

 10

 100

 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Polynomials size (equiv. to degree+1)

1 FP mul = 2 FP addDirect method
Method of [Lima et. al 2010]
DCT−based method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)

 0.1

 1

 10

 100

 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Polynomials size (equiv. to degree+1)

1 FP mul = 4 FP addDirect method
Method of [Lima et. al 2010]
DCT−based method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)

10

Figure 2: Generic C++ code achieving the reduction to monomial basis multiplication.

template<class T, void mulM(vector<T>&,
const vector<T>&,
const vector<T>&)>

void mulC(vector<T>& c ,
const vector<T>& a ,
const vector<T>& b){

s i z e t da , db , dc , i ;
da=a . s i z e () ; db=b . s i z e () ; dc=c . s i z e () ;

vector<T> r (db) , g (dc) ;

for (i =0; i<db ; i++)
r [i]=b [db−1− i] ;

mulM(c , a , b) ;
mulM(g , a , r) ;

for (i =0; i<dc;++i)
c [i]∗=0.5 ;

c [0]+=c2 [da−1]−a [0] ∗ b [0] ;

for (i =1; i<da−1; i++)
c [i]+= 0 .5∗ (g [da−1+i]+g [da−1− i]−a [0] ∗ b [i] −a [i]∗b [0]) ;

}

5.1 A Generic Code

We design a C++ code to implement Algorithm PM-Chebyshev in a generic fashion. The idea
is to take the polynomial multiplication in monomial basis as a template parameter in order to
provide a generic function. We decided to manipulate polynomials as vectors to benefit from the
C++ Standard Template Library [19], and thus benefit from genericity on coefficients, allowing
the use of either double or single precision floating point numbers. Polynomial coefficients are
ordered in the vector by increasing degree. The code given in Figure 2 emphasis the simplicity
of our implementation:

The function mulM corresponds to the implementation of the multiplication in monomial
basis while the function mulC corresponds to the one in Chebyshev basis. The vectors a and b

represents the input polynomials and c is the output product. As expected, this code achieves
a complete reduction to any implementation of polynomial multiplication in monomial basis,
assuming the prototype of the function is compliant. In our benchmarks, we will use this code to
reduce to a homemade code implementing the recursive Karatsuba’s multiplication algorithm.

5.2 Optimized Code Using DCT and DFT

Many groups and projects have been already involved in designing efficient implementations of
discrete transforms such as DCT and DFT. We can cite for instance the Spiral project [20] and
the FFTW library effort [12]. In order to benefit from the high efficiency of these works, we build
our DCT/DFT based codes on top of the FFTW routines. For both DCT and DFT computations
we use FFTW plans with FFTW MEASURE planning option, which offer optimized code using
runtime measurement of several transforms.

As explained in the documentation of the FFTW library, the DCT-I transform using a pre/-
post processed real DFT suffers from numerical instability. Therefore, the DCT-I implementation
in FFTW is using either a recursive decomposition in smaller optimized DCT-I codelets or a real
DFT of twice the size plus some scalings. For the latter case, this means that the complexity

11

Figure 3: Theoretical speedup of polynomial multiplication in Chebyshev basis.

 0.1

 1

 10

 100

 2 4 8 16 32 64 128 256 512 1024 2048 4096

S
pe

ed
up

Polynomials size (equiv. to degree+1)

1 FP mul = 1 FP addDirect method
Method of [Lima et. al 2010]
DCT−based (via FFT) method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based accur)

of the DCT-I code is not reflecting the one of [9] we used in our complexity analysis. Taking
this into account, one should replace the 2n points DCT-I transforms of Section 3.2 by 4n points
DFT transforms plus 2n multiplications by the real constant 2. This increases the complexity of
the DCT-based method to :

• 6n log 4n− 12n+ 6 multiplications,

• 18n log 4n− 30n+ 12 additions.

In the following, we will denote this modification as the DCT-based (via FFT) method. In order
to make a fair comparison with this DCT method which cares of stability, we shall mention that
the Algorithm PM-chebyshev (DFT-based) as explained in section 4.4 may suffer in practice
from instability issues. Indeed, the trick to compute DFT2n(r̄) from DFT2n(b̄) needs multiplica-
tions by some powers of ωd and therefore introduces errors in the computed DFT. As we will
see in the next section these errors will have an influence on the accuracy of the final product.
An alternative to not introduce these numerical errors is therefore to really compute DFT2n(r̄)
by an FFT calculation, but at a price of more operations. This consideration will increase the
theoretical complexity to:

• 5n log 2n− 3n+ 9 multiplications,

• 15n log 2n− 17n+ 18 additions.

In the following, we will denote this modification as the PM-chebyshev (DFT-based accur).
Considering practical stability issues and its impact on the complexity of the DCT-based

and our DFT-based method, we can see in Figure 3 the effect on the theoretical speedups.
In particular, our DFT-based reduction is becoming more efficient than the DCT-based when
polynomial’s degrees are getting larger. This is of course explained by the difference of the

12

constant term in the complexity: 20n log 2n for our method and 24n log 2n for the DCT-based
(via FFT).

5.3 Code Validation

As a matter of reliability, we check the validity of all our implementations. First, we check their
correctness by verifying the results of their implementations done in a symbolic way using Maple1

software.
Since we want to perform numerical computations, it is clear that the accuracy of the results

may differ from one method to another. It is therefore crucial to investigate their stability to
give good statement on the accuracy. It is not the intend of this work to give statements on the
accuracy and this task would definitively require a dedicated work. However, in order to give a
small insight we did some experiments to emphasis the relative error of every methods. Let us
now give the definition of the relative error on polynomials as given in [14].

Definition 5.1. Let a(x), b(x) be polynomials given in Chebyshev basis with double precision
floating point numbers coefficients. We define ĉ(x) to be the approximation of the product a(x)b(x)
using double precision computation (53 bits of mantissa) and c(x) to be the exact product com-
puted over rational numbers. Using this notation, the relative error E(ĉ(x)) is defined as

E(ĉ(x)) =
‖c(x)− ĉ(x)‖2

‖c(x)‖2

where ‖. . .‖2 represents the Euclidean norm of polynomials, i.e. ‖a(x)‖2 = (
∑d

k=0 a
2
k)

1
2 where

the ak correspond to the coefficients of a(x).

Following this definition, we have computed the relative error on polynomial products us-
ing polynomial inputs having random floating point entries. While the numerical results are
computed in double precision floating point numbers, the exact product is computed using the
arbitrary precision rational numbers of the GMP2 library. The relative error is almost computed
exactly since only the square root is using floating point approximations, the remaining parts
being computed over the rationals. We propose in Figure 4 the measure of the relative error in
our experiments. The ordinates axis gives the average relative error of 50 products with different
random double precision floating point entries lying between −50 and 50.

As explained in Section 5.2, we can see in this figure that Algorithm PM-chebyshev (DFT-
based) is clearly suffering from instability issues. In these settings, the replacement of one DFT
by few multiplications of complex number powers introduces too many errors, which causes
a loss in the accuracy of the final result (e.g. up to three decimal digits can be erroneous).
Hopefully, using Algorithm PM-chebyshev (DFT-based accur) completely avoids this issue and
we get similar accuracy as for the DCT-based methods.

If we change a little bit the settings of our experiment, taking only positive floating point
random entries (e.g. in [0, 50]), the instability issue of Algorithm PM-chebyshev (DFT-based)
seems to be less dramatic. This is illustrated in Figure 5 where we can see that relative error of
Algorithm PM-chebyshev (DFT-based) only differ by at most one decimal digit.

Undoubtedly, these experiments exhibit some stability issues in Algorithm PM-chebyshev

(DFT-based) while it does not seem to be the case for the other methods based on discrete

1www.maplesoft.com
2http://gmplib.org/

13

Figure 4: Experimental measure of the relative error in double precision (Intel Xeon 2GHz).
Entries lying in [−50, 50]

 1e−17

 1e−16

 1e−15

 1e−14

 1e−13

 1e−12

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

R
el

at
iv

e
er

ro
r

Polynomial size (equiv. to degree+1)

Direct method
DCT−based method
DCT−based (via FFT) method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)
PM−Chebyshev (DFT−based accur)

Figure 5: Experimental measure of the relative error in double precision (Intel Xeon 2GHz).
Entries lying in [0, 50]

 1e−17

 1e−16

 1e−15

 1e−14

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

R
el

at
iv

e
er

ro
r

Polynomial size (equiv. to degree+1)

Direct method
DCT−based method
DCT−based (via FFT) method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)
PM−Chebyshev (DFT−based accur)

14

transforms. Algorithm PM-chebyshev (Karatsuba) also seems to have some numerical issues.
This can be motivated by the nature of Karatsuba method which replaces one multiplication by
few additions.

From these experiments we can conclude few thoughts. Algorithm PM-chebyshev (DFT-based
accur) seems to offer the same numerical behaviour as the DCT based method, and thus offer a
concrete alternative in practice. If accuracy is not a problem, Algorithm PM-chebyshev (DFT-
based) will provide an interesting option as it will increase efficiency, see section 5.4. Finally, a
theoretical study of the numerical stability of all these methods need to be done to give precise
statement on their reliability.

5.4 Benchmarks

We now compare the practical efficiency of the different methods. We performed our benchmarks
on an architecture which represents nowadays processors: an Intel Xeon processor 5130 running
at 2GHz with 2×4MB of L2 cache. We use the gcc compiler version 4.4.4 with O3 optimization.
Even if the platform is multi-core, we did not use any parallel computations and the FFTW
library has been built sequential. For each method, we measure the average running time of
several polynomial multiplications. All the computations have been done with double precision
floating point numbers and with the same data set.

Remark 2. We only offer an average running time estimate of each algorithms since it is
not realistic on nowadays processor to estimate precise running time of computation taking few
milliseconds.

We report in Figure 6 the relative performances to the Direct method implementation for
polynomial sizes ranging from 2 to 8192. Both axis use logarithmic scale, and the ordinates axis
represents the speedup against Direct method. All times used in this figure are given in the
appendix. One can also find in Figure 7 of the appendix more detailed views of the Figure 6.

As expected, one can see on these Figures that the Direct method reveals the most efficient
for very small polynomials (i.e. polynomial degrees less than 16). This is explained by the low
number of operations required by this method and its simplicity which makes possible several
optimizations by the compiler (e.g. loop unrolling). When polynomial sizes are getting larger,
the methods based on discrete transforms become the most efficients. In particular, we can see
that DCT-based method is catching up with its version based on FFT, which clearly illustrates
that DCT-I implementation of FFTW is using a double length FFT, as explained in Section 5.2.
Therefore, as expected, our Algorithm PM-Chebyshev (DFT-based) is the most efficient with
polynomial sizes greater than 32. In particular, our PM-Chebyshev (DFT-based) implementation
is gaining 20% to 30% of efficiency over the DCT-based implementation. Of course, if a more
accurate result is needed one may prefer to use the PM-Chebyshev (DFT-based accur) version but
at a price of less efficiency : only 15% of gain against DCT-based implementation for polynomials
of size 8096. Surprisingly, for polynomials of size 32 and 64 this method reveals to be the most
efficient in practice. It seems that the code of the DFT in FFTW library is more efficient for
these sizes than our implementation of the algebraic trick described in section 4.4.

Remark 3. One could have been interested to see the practical behavior of the method of Lima
et. al [17]. However, our feelings on the efficiency of such a method lead us to be pessimistic.
Even if this method decreases the number of multiplications, it increases the overall number of
operations. Moreover, this method needs an important amount of extra memory (i.e. O(nlog2 3))

15

Figure 6: Practical performances of polynomial multiplication in Chebyshev basis against direct
method - Intel Xeon 2GHz (global view).

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
pe

ed
up

Polynomial size (equiv. to degree+1)

Direct method
DCT−based method
DCT−based (via FFT) method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)
PM−Chebyshev (DFT−based accur)

which definitively increases data access and then should considerably penalize performances. Fur-
thermore, the method is quite complex, especially for the indices management in the separation
procedure. Since no detailed algorithm is given in [17] it is not easy to make an implementation
and then offer a fair comparison.

Finally, from our benchmarks we observe that the performance of the Karatsuba multiplication
does not compete with the Direct method for small polynomials (e.g. size less than 16). Adding
the storage of intermediate value within Karatsuba procedure plus the extra quadratic operations
needed by the method of Lima et. al [17] will probably make its implementation not competitive
with other existing methods.

6 A Note on Problems Equivalence

Let us consider the problem of multiplying two polynomials given by their coefficients in a given
basis of the R-vector space of R[x]. We denote this problem in monomial basis as Mmon and the
one in Chebyshev basis as Mche. Under this consideration, one can demonstrate the following
theorem:

Theorem 6.1. Problem Mmon and Mche are equivalent under a linear time transform, Mmon ≡L

Mche and the constant of both transforms is equal to two.

Proof. As we have shown in Section 4 the problem of multiplying polynomials in Chebyshev

16

basis linearly reduces to the multiplication in monomial basis, and the constant in the reduction
is two. Thus we have already demonstrate Mche ≤L Mmon.

We can show that Mmon ≤L Mche by using (4). Indeed, we can see from (4) that the d + 1
leading coefficients of the product in Chebyshev basis exactly match with the ones in monomial
basis on the same input coefficients. It is easy to show that the remaining d coefficients can be
read from the product in Chebyshev basis of the reversed inputs.

Let us denote ×c the multiplication in Chebyshev basis and × the one in monomial basis.
Consider the two polynomials ā, b̄ ∈ R[x] given in monomial basis as

ā(x) =
d

∑

k=0

akx
k and b̄(x) =

d
∑

k=0

bkx
k.

Consider the polynomials a(x), b(x), α(x) and β(x) sharing the same coefficients as ā(x) and b̄(x)
but expressed in Chebyshev basis:

a(x) =

d
∑

k=0

akTk(x) , b(x) =

d
∑

k=0

bkTk(x),

α(x) =

d
∑

k=0

ad−kTk(x) , β(x) =

d
∑

k=0

bd−kTk(x).

The coefficients ck of the polynomial c̄(x) = ā(x)× b̄(x) expressed in monomial basis can be read
from the coefficients of the polynomials

f(x) = a(x)×c b(x) and g(x) = α(x) ×c β(x)

using the relation

ck =

{

gd−1−k for k = 0 . . . d− 1,

fk for k = d . . . 2d.

This clearly demonstrates that Mmon ≤L Mche and thus complete the proof.

7 Conclusion

We described yet another method to reduce the multiplication of polynomials given in Chebyshev
basis to the multiplication in the monomial basis. Our method decreases the constant of the
problem reduction and therefore offer a better complexity than the ones using basis conversions.
Moreover, since our method does not rely on basis conversions, it might offer more numerical
stability as it could be when converting coefficients to other basis. As we already mention, the
problem of numerical stability is of great interest and should be treated as a dedicated article.

Our PM-Chebyshev algorithm offers an efficient alternative to any existing quasi-linear algo-
rithms. In particular, it allows to use Fast Fourier Transform of half length of the one needed by
the specialized DCT-based method, which is an alternative when DCT codes are not available
or sufficiently efficient. In such a case, our method achieves the best performances among all the
available method for large degree polynomials.

Although our reduction scheme using Karatsuba’s method is not as efficient as one could have
expected for polynomial of medium size, further work to optimize its implementation should be
investigated.

Finally, our attention in this work has been focused only on polynomials of R[x] but our
approach is still valid for Chebyshev polynomials defined over other domains, as Dickson poly-
nomials over finite fields for example.

17

References

[1] G. Baszenski and M. Tasche. Fast polynomial multiplication and convolution related to the
discrete cosine transform. Linear Algebra and its Application, 252(1-3):1–25, 1997.

[2] Z. Battles and L. Trefethen. An extension of matlab to continuous fractions and operators.
SIAM J. Sci. Comp, 2004.

[3] A. Bostan, B. Salvy, and E. Schost. Power series composition and change of basis. In IS-
SAC ’08: Proceedings of the twenty-first international symposium on Symbolic and algebraic
computation, pages 269–276, New York, NY, USA, 2008. ACM.

[4] A. Bostan, B. Salvy, and E. Schost. Fast conversion algorithms for orthogonal polynomials.
Linear Algebra and its Applications, 432(1):249–258, January 2010.

[5] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover N.Y., New York, 2001.

[6] R. Brent and P. Zimmermann. Modern Computer Arithmetic. August 2010. version
0.5.3,http://www.loria.fr/ zimmerma/mca/mca-cup-0.5.3.pdf.

[7] N. Brisebarre and M. Joldes. Chebyshev interpolation polynomial-based tools for rigorous
computing. In ISSAC 2010: Proceedings of the 2010 International Symposium on Symbolic
and Algebraic Computation. ACM Press, 2006.

[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Informatica, 28(7):693–701, 1991.

[9] S. C. Chan and K. L. Ho. Direct methods for computing discrete sinusoidal transforms.
Radar and Signal Processing, IEE Proceedings F, 137(6):433–442, 1990.

[10] S. A. Cook. On the minimum computation time of functions. Master’s thesis, Harvard
University, May 1966.

[11] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of Computation, 19(90):297–301, 1965.

[12] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[13] J. v. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, New
York, NY, USA, 2003.

[14] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002.

[15] S. Johnson and M. Frigo. A modified split-radix FFT with fewer arithmetic operations.
IEEE Transactions on Signal Processing, 55(1):111–119, January 2007.

[16] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Doklady
Akademii Nauk SSSR, 145(2):293–294, 1962.

[17] J. B. Lima, D. Panario, and Q. Wang. A Karatsuba-based algorithm for polynomial multi-
plication in Chebyshev form. IEEE Transactions on Computers, 59:835–841, 2010.

18

[18] J. C. Mason and D. C. Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, Boca
Raton, FL, 2002.

[19] D. R. Musser, G. J. Derge, and A. Saini. The STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2002.

[20] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPI-
RAL: Code generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.
Special issue on “Program Generation, Optimization, and Platform Adaptation”.

[21] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–
292, 1971.

[22] H. Sorensen, D. Jones, M. Heideman, and C. Burrus. Real-valued fast fourier transform
algorithms. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(6):849–863,
1987.

[23] A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication
of integers. Soviet Math, 3:714–716, 1963.

19

Figure 7: Practical performances of polynomial multiplication in Chebyshev basis against direct
method - Intel Xeon 2GHz (partial view).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 8 16 32 64

S
pe

ed
up

Polynomial size (equiv. to degree+1)

Direct method
DCT−based method
DCT−based (via FFT) method
PM−Chebyshev (Karatsuba)
PM−Chebyshev (DFT−based)
PM−Chebyshev (DFT−based accur)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1024 2048 4096 8192

S
pe

ed
up

Polynomial size (equiv. to degree+1)

DCT−based method
DCT−based (via FFT) method
PM−Chebyshev (DFT−based)
PM−Chebyshev (DFT−based accur)

20

Table 4: Times of polynomial multiplication in Chebyshev basis (given in µs) on Intel Xeon 2GHz platform.

n Direct DCT-based DCT-based (FFT) PM-Cheby (Kara) PM-Cheby (DFT) PM-Cheby (DFT accur)

2 0.18 1.08 0.38 0.39 0.57 0.46

4 0.28 1.15 0.48 0.58 0.66 0.54

8 0.57 1.58 0.74 0.80 0.93 0.80

16 1.13 2.43 1.47 1.56 1.52 1.38

32 3.73 4.33 2.65 4.74 2.75 2.59

64 13.44 7.56 8.11 14.93 5.09 4.94

128 50.06 15.76 14.04 61.68 12.84 15.52

256 185.48 32.29 29.69 171.78 23.58 24.70

512 716.51 69.00 62.13 489.29 52.46 57.07

1024 2829.78 146.94 135.47 1427.82 104.94 112.40

2048 11273.20 304.55 317.35 4075.72 234.41 249.88

4096 47753.40 642.17 679.50 12036.00 520.56 566.43

8192 194277.00 1397.42 1437.42 35559.60 1125.40 1185.41

PM-Cheby stands for PM-Chebyshev algorithm.

2
1

