
HAL Id: hal-00519357
https://hal.science/hal-00519357

Submitted on 20 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neuronal Approach for an accurate model of coplanar
structures

S. Khireddine, M’Hamed Drissi, R. A. Soares

To cite this version:
S. Khireddine, M’Hamed Drissi, R. A. Soares. Neuronal Approach for an accurate model of coplanar
structures. 3rd International Workshop on Electromagnetic Compatibility of Integrated Circuits, Nov
2002, Toulouse, France. pp. 82-86. �hal-00519357�

https://hal.science/hal-00519357
https://hal.archives-ouvertes.fr


Neuronal Approach for an accurate model of coplanar structures 
 

S. Khireddine, M. Drissi, R. Soares* 
CNRS IETR UMR 6164, INSA de Rennes 

*DA-LightCom 
 

 
 

Abstract  - A neuronal approach is proposed to 
develop accurate and fast CPW models for CAD 
simulator. The approach is based on the use of 
the neural network, for which the training phase 
uses electromagnetic simulation results. The 
validation tests are performed for junctions and 
discontinuities that are usually used in flip-chip, 
packaging technology. 
 
INDEX-TERMS : CPW , discontinuities, and neural 
networks. 

1. INTRODUCTION 
The wireless communication and multimedia 

applications are growing rapidly. They require high flow 
traffic systems and thus a wide operating band. The rise to 
the millimeter frequency band allows satisfying this 
previous need. 

However, specific technologies are usually required. 
Coplanar waveguide technologies offer in fact several 
advantages due to its configuration, such as low radiation, 
low dispersion, easy of shunts and series connections. The 
absence of discontinuity models with high accuracy makes 
difficult the conception and the optimization of these 
structures with CAD tools. Time consuming of EM 
simulators limits theirs use in the conception flow. 

The present communication proposes ANN models  
(Artificial Neuronal Network) for the coplanar structures, 
where the training set is provided by EM simulation 
results. The developed models are validated for uniform 
lines, curved bend, short and open circuit stubs.  

2. NEURONAL APPROACH  
The used neural network model is the MLP (multi 

layer perceptron) with one hidden layer [4]. This last one 
was used for modeling and optimizing microwave filters 
[2-3]. The previous neural network is also employed with 
prior knowledge input [9], where existing model (initial) is 
used to accelerate the training set of the neural network 
with a fast convergence. [7] used a neuronal approach to 
generate and optimize  the chamfered 90° CPW bend and 
other discontinuities,[6] optimize the same CPW 90° bend 

by reducing the width of the line to compensate the 
unwanted capacitance adde by the air-bridge. 

The innovent approach is to generate models 
considering their standard (constante) parameters as : 
permittivity of the substrate. In the figure 1, we present the 
used approach for this work; it permit to us in the next, to 
create models of some discontinuities referring to their 

line characteristic ( rε and impedance characteristic). The 

existing model for this case is the formula of the 
permittivity and characteristic impedance. 

 
Figure 1:neuronal approach with knowledge input. 
 
The fixed parameters for the training set are: 3.12=rε  
et mmH sub 6.0=  for GaAs substrate, the width of the 
air bridge is 40µm and its height is 5µm. The input data 
and their corresponding range of the neural network are 
given below in table 1. 
 

 Min Max 
W (µm) 20 120 
S (µm) 20 60 

Frequency 
(GHz) 8 80 

Table 1 : Training parameters. 
 
A neuronal model allows to acced to the characteristics 

of the propagation of the line (cZ , effε ), in function of the 
geometrical parameters and the frequency. The training 
data are obtained by EM simulation based on the finite 
elements method (HFSS-Ansoft). 
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Figure 2:coplanarwave structure. 
 
The training phase is first provided by thirty-five 

configurations with ten frequency points. The knowledge 
input is the permittivity and the characteristic impedance 
given in [1]. Three different calculations of the 
characteristic impedance could be achieved using EM 
simulator : 

 
Zpi : 

II

p
ZPI •

=  , adapted for the microstrip lines. 
Zpv : 

P

VV
ZPV

•= , adapted for coplanar and slot 
lines. 
Zvi : PIpvVI ZZZ = , adapted for TEM lines. 

 
Where: ∫ ×=

s

HdsEP  , ∫ •=
l

dlHI , ∫ •=
l

dlEV . 
 

In the second step, the created model is compared to 
ten new EM results that are different of the training ones. 
The obtained error results (ANN model compared to EM 
simulation) are given in table 2. 

  
 Zpv Zvi  effε  losses 

Training error 0.45 0.8 0.002 0.06 
Neurone of the 
hidden layer 

4 4 4 4 

Table.2 : the obtained error between EM and ANN 
models. 

Figures 3 and 4 present comparisons between the ANN 
model and EM simulation for Zpv, Zvi, losses and 

permittivity effε . The ANN model is in a good agreement 

with the EM results. It is to be noticed that the impedance 
"Zvi" of the line has less frequency dependence behavior. 
This last one confirms the choice definition of the 
characteristic impedance "Zpv" used in the EM simulator. 
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Figure 3: Comparison EM-ANN for the characteristic 

Impedance w=80 µm s=40 µm. 
 

0 10 20 30 40 50 60 70 80
6.6

6.8

7

7.2

7.4
Ereff

ANN
EM

0 10 20 30 40 50 60 70 80
0

5

10

Losses 
(Np/m)

Frequency (GHz)

Frequency (GHz)

 
Figure 4: effε and losses EM-ANN w=60µm s=40µm. 

 

3. OPEN AND SHORT CIRCUIT MODELS  
Short and open circuit stubs represent the most used 

discontinuities in many circuit designs. The geometry of 
the considered circuits is shown in figure 5. The present 
development is justified by the no validity of the existing 
commercial models. Figures 6 and 7 give a comparison 
between the available commercial model and the EM 
simulation. One can see that the observed difference 
become significant in the millimeter wave range. This 
insufficiency is also observed for the phase behavior. 
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Figure 6: return loss of short circuit (sc)  

W=20 µm S=40 µm. 
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Figure 7: return loss of open circuit (oc2) 

W =60 µm S=60 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: CPW structures of the short and the open 
circuits. 

 
 

The generated ANN model has for inputs the geometrical 

line parameters, the frequency, cZ  and effε ; the 

corresponding range data are given in table 1. The output 
responses of the ANN are S parameters for which the 
reference planes are placed at the physical discontinuity 
ones (Fig. 5). For each circuit, EM simulation has been 
performed on 18 structures over 8 to 80 GHz frequency 
range. During the training phase, the number of neurons in 
the hidden layers is firstly optimized and then fixed in a 
second step to 4 neurons, which gives to the minimum 
error.  
Finally, 10 structures are used to check the model 
accuracy. The resulting errors for the training and test 
procedures are given in tables 3 and 4: 
 

 11S  11S∠ ( °) 
Training Error 0.0028 1.1 

Neurone of the hidden 
layer 

4 4 

Table.3 : Training Error between simulation and ANN 
model .for the short circuit. 

 
OC1 OC2 

 
11S  11S∠ ( °) 11S  11S∠ ( °) 

Training Error 0.0008 0.45 0.0026 0.46 
Neurone of the 
hidden layer 

4 4 4 4 

Table.4 : Error results between  simulation and ANN 
model .for the open  circuit. 

 
To validate the capability of the developed models, we 
present in the next figures 8-10 some comparisons 
between the EM simulation and the obtained ANN model. 
A good agreement between the two results could be 
observed and the obtained accuracy is in the training error 
range. 
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Figure 8: Comparison EM-ANN for a short circuit 

W=80µm S=40µm. 
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Figure 9: open circuit (oc 1) EM-ANN comparison 

W=100µm S=60µm. 
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Figure 10: open circuit (oc 2) EM-ANN comparison 
W=120µm S=20µm. 

4. COPLANAR CURVED BEND  
The developed ANN model is now proposed to handle a 
more 3D complex discontinuity as a curved 90° CPW 
bend with air-bridges (fig. 11). 
The neuronal network has for input parameters: the width 
and slot of the CPW line, the frequency, the permittivity 

effε and the characteristic impedance, the corresponding 

range of data are given in table 1. The air bridge 
dimensions are 40µm length and 5µm height. 
 
Using the symmetry of the structure, the output responses 
of the ANN model are limited to the reflection, S11, and 
the transmission, S21, parameters. As for the previous case, 
the training and test phases use respectively twenty-five 
and ten structures. The resulting errors from the 
training/test phases are given bellow (Table 5): 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 11: curved bend structure. 
 

 11S  11S∠ ( °) 21S  21S∠ ( °) 

Training Error  0.0045 1.5 0.0038 0.45 

Neurone of the 
hidden layer 

4 4 4 4 

Table 5 : Error results between simulation and the ANN 
model. of the curved bend. 

 
In figures 12 and 13, we present a comparison of a test 
example between the ANN models and the EM simulation. 
Again, a good agreement between this model and the EM 
simulation can be observed and confirms the validity of 
the proposed model to describe the discontinuity EM 
behavior. 
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Figure 12: Curved bend EM-ANN comparison S11 
W=40µm S=20µm. 

 

WS

W pR

 



10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0
dB

Frequency (GHz)

ANN
EM

10 20 30 40 50 60 70 80
-60

-40

-20

0
angle ( °)

Frequency (GHz) 
Figure 13: Curved bend EM-ANN comparison S21 

W=40µm S=20µm. 
 

 
6. CONCLUSION 
 

We develop a procedure to create ANN models for a 
coplanar technology. The proposed model could be easily 
extended to other technologies. Validated by 
electromagnetic simulations, the studied discontinuities 
confirm the utility of the neuronal approach in reducing 
simulation time that constitutes a paramount advantage in 
CAD tools. 
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