
Modeling and Analysis of Stage Machinery Control
Systems by Timed Colored Petri Nets
Hehua Zhang

Dept. CST
School of Software

Key Laboratory of Information
System Security, Ministry of Education

Tsinghua National Laboratory
for Information Science and Technology

Tsinghua university, Beijing, China
Email: zhang-hh04@mails.tsinghua.edu.cn

Ming Gu
School of Software

Key Laboratory of Information
System Security, Ministry of Education

Tsinghua university
Beijing, China

Email: guming@tsinghua.edu.cn

Xiaoyu Song
Dept. ECE

Portland State University
Oregan, USA

Email: song@ee.pdx.edu

Abstract— This paper presents an approach and successful
experience of applying timed colored Petri nets on modeling and
analyzing a stage machinery control system. The programmable
logic controllers (PLCs) based system is modeled with timing
constraints. The compositionality is incorporated in the modeling
process of the entire design. The PLC synchronization problem
with the interactions of environment is analyzed by the state space
analysis method. The case studies demonstrate the effectiveness
of the approach.

I. INTRODUCTION

Programmable Logic Controllers (PLC) are widely used
in industry [1], [2]. In the stage machinery control system,
PLCs are the control equipments. The main stages of de-
veloping a PLC-based system are requirement analysis, hard-
ware/software design, equipment choosing, PLC programming
and product debugging. There have been many research works
which focus on the PLC programming [3], [4], [5], [6]. How-
ever, from the engineering point of view, logic errors inside
PLC programs normally do not pose the key issues. Errors
often occur due to deficient consideration of the environment
conditions or misunderstanding the actions of the plants. In
addition, synchronization among PLC and its controlled plants,
called the environment of PLC, is critical to the correctness
of a system.

Petri nets (PN) have been proven to be a powerful modeling
tool for various kinds of discrete event systems [7], [8]. The
typical characteristics exhibited by the activities such as con-
currency, decision making, synchronization, can be modeled
effectively by Petri nets. It provides strict mathematical basics
which make the formal analysis as well as simulation possible.
There are some Petri net based models like Synchronized PN
[9], LCIPN [10], SIPN [11], NCES [12] in PLC field. They
consider the synchronization between PLC and its environ-
ment. However, these research works concentrate on modeling
the control algorithm. There is no plant model considered in
their work and they cannot give a system-level model.

In this paper, the strategies and some experience of applying
Timed Colored Petri Nets (TCPN) are proposed to model

and analyze a PLC-based stage machinery control system1.
It was responsible for the rigorous control of all kinds of
stage equipments in the theater. The correctness of the stage
machinery control systems is critical to the reliability of the
whole theater. We explore the suitable systematic models for
rigorous design and verification of PLC-based embedded sys-
tems. The proposed model can help understand actions inside
the parts as well as the interactions. It can be used to describe
and analyze the synchronization problem. The analysis results
of the design can help the following equipments selection
and PLC programming. The model is suitable for the system-
level design of PLC systems as well as the detailed design of
the plants in PLC systems. The compositional construction
and the graphical representation of the TCPN model are
understandable. The time information can be used to analyze
whether the PLC system is correctly synchronized or not
through simulation or formal analysis.

The rest of the paper is organized as follows. Section II
addresses the formal definitions of TCPN model. In Section
III, the stage machinery control system, especially the light
control part is introduced. The system modeling procedure and
method based on TCPN are presented in Section IV. In Section
V, we formally analyze the synchronization problem and show
how the analysis results can be applied after the design phase.
Finally, some conclusions are drawn in Section VI.

II. PRELIMINARIES OF TCPN

The definition of TCPN follows the original definitions of
Timed CPN by [13]. The main part of the TCPN definition
is as follows. For detailed interpretation and the semantics of
TCPN, see [13].
Definition 1. A timed colored Petri net is a tuple TCPN=
(CPN, R, r0) such that:

1) CPN = (Σ, P, T, A, N, C, G, D, E, I) is a colored Petri
net, satisfying that:

1This research is sponsored by NSFC Program (60553002, 90718039) and
973 Program (2004CB719406) of China.

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 111

a) Σ is a finite set of non empty types, called color
sets.

b) P is a finite set of places.
c) T is a finite set of transitions.
d) A is a finite set of arcs such that: P ∩T = P ∩A =

T ∩ A = ∅.
e) N is a node function. It is defined from A into

P × T ∪ T × P .
f) C is a color function. It is defined from P into Σ.
g) G is a guard function. It is defined from T into

expressions such that: ∀t ∈ T : [Type(G(t)) =
BOOL ∧ Type(V ar(G(t)) ⊆ Σ]. Type(expr)
denotes the type of an expression; V ar(expr)
denotes the set of variables in an expression.

h) D is a time delay function. It is defined from T
into numbers such that: ∀t ∈ T : [Type(D(t)) =
R ∧ Type(V ar(D(t)) ⊆ Σ] .

i) E is an arc expression function. It is
defined from A into expressions such that:
∀a ∈ A : [Type(E(a)) = (C(p(a))MS) ∧
Type(V ar(E(a)) ⊆ Σ] , where p(a) is the place
of N(a) and the suffix MS means a multiset.

j) I is an initialization function. It is defined from
P into closed expressions such that: ∀p ∈ P :
[Type(I(p)) = (C(p))MS].

2) R is the set of time values, called time stamps. It is a
subset of REAL closed under + and contains 0.

3) r0 is the start time, r ∈ R.

III. THE STAGE MACHINERY CONTROL SYSTEM

In a PLC-based stage machinery control system, PLCs
are introduced to independently control the moving of the
presidium seats, fireproof curtains, screen shelves, lights, etc.
Without loss of generality, the light control part of the stage
machinery control system is introduced in this paper. The
control process is carried out by PLCs. A motor draws the
light to an appropriate location. The lights can move up and
down and locate at any predefined height. When the motor
rotates clockwise, the light rises up, otherwise it falls down.
The motor rotation angle is measured by a sensor. In the
model, each time the motor rotates one degree, the sensor will
generate an impulse. To settle the light at the right location,
PLC decides the motor actions through counting impulse
number. The relationship of the height and the motor rotation
angle(also recognized as the number of impulse) is:

Rotation angle = height ∗ 17 (1)

Fig. 1 shows the structure of the light controller with four
components. The user can set the height and the moving
direction of the light, and then confirm his(or her) settings by
the start button on the control panel. The PLC control program
instructs the motor to move according to the settings from
control panel and the current status of the motor. There are
three signals to control the motor: CW (to let the motor rotate

PLC
Control
Panel

Motor

Sensor Signal

S
ig
n
al

CW

ACW

STOP

Height

Direction

Start

Fig. 1. Structure of a light controller

clockwise), ACW (to rotate counter clockwise) and STOP. The
status of the motor is captured by a sensor.

Note that the motor in a light control system is usually a
DC motor, which will keep rotating once it begins until it
receives the STOP command. It is different from the stepping
motor which rotates one cycle with one command. In this
case, the synchronization between the motor and PLC should
be designed carefully to ensure the correctness.

IV. MODELING PLC SYSTEMS

In this section, a compositional method [14], [15] is pro-
posed to construct the model of the light control system.
We construct the local model of each part in the system,
respectively. There are four parts in the PLC system: control
panel, PLC, motor, and sensor. The sub model are constructed
respectively and composed into a system model.

A. Control Panel

Users operate the system through the control panel. They
can set the height and the moving direction of the light, and
modify them arbitrarily before the start button on the control
panel is pressed down. Once the start button is pressed down,
the settings will be transmitted to the PLC. The user cannot
modify the settings any more. The height to which the light
moves up or down should not exceed 20m.

The model of the control panel is shown in Fig. 2. The left
side of Fig. 2 gives the related declarations. There are four
places and three transitions defined in this sub-model. The
places named init, d set, h set and userCmd denote the initial
state, the state after the direction has been set, the state after
the height has been set, and the state after the user pressed the
start button to confirm his (or her) settings, respectively. The
transitions named SetDir, SetH and Start1 describe the user
actions of setting the direction, setting the height and pressing
the start button, respectively.

The declarations of the color sets specify that tokens in place
init have the same token color e, which is the only element
of E. This means that these tokens carry no information apart
from their presence/absence at the place init. The place d set
has a token color which can be up, down or stop, because the
color set DIR is declared to be an enumeration type with these
three elements. The token color of h set is an integer, with the
range from 0 to 20. The upper bound is set to 20 according
to the request that the height should not exceed 20m. Finally,
the tokens in place userCmd have the token color which is

112

e
init

SetDir SetH

Start1

userCmd
Fusion 1 TCOMMAND

1`stop 1` 0h_setd_set

1`e

1

1

1

e

eE
ee

e
d

d

h

h

old_d old_h

stop

DIR HEIGHT

(d, h)

[(h < > 0) and also
(d < > stop)]

0

Color E = with e;

Color DIR = with up | down | stop;

Color HEIGHT = int with 0..20;

Color TCOMMAND =
product DIR * HEIGHT timed;

Var d, old_d: DIR;

Var h, old_h: HEIGHT;

Fig. 2. The TCPN model of the Control Panel

a pair (because the color set TCOMMAND is declared to
be the Cartesian product of two other color sets DIR and
HEIGHT).The first element of the pair is the element from
DIR. The second element is an integer defined by HEIGHT.
Note that the tokens in userCmd are timed while the tokens
in other places are not. From the definition of TCPN, timed
and untimed tokens are permitted both in the TCPN model.
The untimed tokens are viewed as they are always ready to
be used.

To design the control panel in terms of the desired request,
the initial marking of the model shown in the Fig. 2 is assigned
as: one token with the value e in place init, one token with
the value stop in place d set and another token with the value
0 in place h set. This means that the control panel is in the
initial state and there is no setting up to now. The double arcs
between the place init and the transition SetDir together with
the double arcs between the place init and the transition SetH
ensure that the user can set the direction and the height in an
arbitrary order and can change his (or her) settings arbitrary
many times. The two arcs between the place d set and the
transition SetDir with the respective inscription of variable d
and old d mean that each direction setting action will consume
a token with the last setting value and generate a token with the
new setting value. This ensures that the new moving direction
can replace the old one for each direction setting action. The
height setting is similar. In addition, the guard expression of
the transition Start1 guarantees that the start button can be
pressed down only when the user has given the correct settings
of both direction and height. Finally, a token with a time stamp
of 0, carrying a value of a two-tuples, will be put in the place
userCmd. And then the value will be transmitted to the PLC.

B. Programmable Logic Controllers

The PLC design is important in the whole system design.
PLC catches the height and direction values from the control
panel at the beginning of its scan cycle. It then calculates
the desired cycles that the motor should rotate according to
formula (1) and sends one CW/ACW command to let the
motor start. There is a counter inside the PLC which counts

the number of cycles the motor rotates. When the rotation
number of the motor reaches the computed value, PLC issues
the STOP command to the motor. By this process, the light
should be located at the correct height.

The model of PLC and the corresponding declarations are
shown in Fig. 3. The place userCmd represents the state
that PLC has received a user command from the control
panel. PLCcmd is used to denote the state that PLC has
sent rotating or stopping command to the motor. The place
Getvalue reflects that PLC has received the feedback signal
about the motor movement from the sensor. The place end
shows the ending of the whole PLC system and the place
counter shows the state of the counter inside PLC. In addition,
the place goOn and FirstTime help to decide what should do
next according to the current status of the PLC system. The
four transitions Calculate, SendStop, SendCmd, and JudgeNext
represent the actions of calculating the number of motor
rotating cycles, sending stop command to the motor, sending
rotating command to the motor and judging what to do next,
respectively.

TCOMMAND

Calculate

goOn counter FirstTime

SendStop SendCmd

JudgeNext

End

userCmd
Fusion 1

PLCcmd

Fusion 2 TROUND

NON

TROUND

NON

1` NON@0Getvalue
Fusion 4

1

@+1

e

p

@+1

[p < > NON]

TE

if p = FIXED
then 1` e
else empty

If p < > FIXED
then 1` e
else empty

(d, h)

(d, cal(h))
true

TMOVE

e

[x = 0] [x < > 0]
@+1

FIXED

TE

@+1
false

e

(d, x)
(d, x)

(d, x-1)

b

if b = true andalso d = up
then 1` CW
else
if b = true andalso d = down
then 1` ACW
else empty

BOOL

TROUND

1`false
1

b

Fig. 3. The TCPN model of the PLC

The corresponding declarations of the PLC model are shown
in Fig. 4. The color sets declarations show that each token on
the place PLCcmd and the place Getvalue can has token with
the value CW, ACW, FIXED, or NON. The first three token
values represent clockwise rotation, counter clockwise rotation
and stopping of the motor, respectively. The last token value is
set specially to represent the initial state of the motor on which
there is no rotation. The token color of the place counter is
a pair which has the first element from DIR and the second
element from CIRCLE. The color set CIRCLE contains integer
values ranging from 0 to 400. The lower and upper bounds
are specified to ensure that the value calculated by formula
(1) is within the range. The explanation of other color sets is
straightforward.

The execution of the model in Fig. 3 is as follows. Getting
user command from the control panel gives a token to the place

113

Color TE = with e timed;
Color CIRCLE = int with 0..400;
Color ROUND = with CW | ACW | FIXED |NON;
Color TROUND = ROUND timed;
Color TMOVE = product DIR * CIRCLE timed;
Var d: DIR;
Var x: CIRCLE;
Var p: ROUND;
Var b, b1, b2: BOOL;
fun cal(h:HEIGHT) = h*17;

Fig. 4. The declarations of the PLC model

userCmd, which starts the PLC to work. Then the transition
Calculate is enabled and when it fires a token with the token
value represented by a pair (d, cal(h)) is generated to the place
counter. The first element of the pair is just to transmit the
direction information. The second element is a function cal
which defines the relation between the height and the cycles
according to formula (1). Function cal is defined in the last line
of the declarations shown in Fig. 3. In this case, the number
of cycles the motor should rotate is calculated and stored in
the place counter. Each firing of the transition SendCmd will
make the counter decrease by one. If the value in the place
counter is not equal to zero, then the transition SendCmd will
fire, otherwise the transition SendStop will fire and generate
a token with the value FIXED to place PLCcmd to stop the
motor. The choice is implemented by the exclusive guard on
the two transitions. Notice that the CW/ACW command is sent
to the motor only once, which is implemented in the model by
the existence of place FirstTime and the inscriptions on the arc
from the transition SendCmd to the place PLCcmd. Another
entrance of this PLC model is when the sensor value is got.
This means that there is a token in the place Getvalue. The
transition JudgeNext is then applied to judge whether to finish
the execution of the PLC system or go on the further steps.

Now, the time information is considered in the PLC model.
Time information is added through making the tokens carry
time stamps, adding time delay inscriptions on the transitions
or on the arcs. From the declarations in Fig. 3, the tokens
of all the places in this model are timed. To declare a timed
color set, the keyword timed is appended to the declaration of
ordinary untimed color sets. And the time delay added to the
transitions has the form of @+ delay-expr. This means that the
action execution consumes a period of time expressed by the
expression delay-expr. For example, if the calculation action
of the PLC needs one time unit to finish, @+1 will be written
as the time delay inscription of the transition Calculate. On
the other hand, taking @+0 or just omitting the time delay
inscription shows that the time it takes can be neglected.
Notice that the time unit is an abstract time, which can be
microsecond, millisecond or others. The explanation can be
given by the user according to the system in the real world.

The time information of the PLC model is added to analyze
the synchronization between PLC and its environment, which

will be explained in Section V.

C. Motor

The motor design is a key part in the whole system design,
especially for the synchronization problem. It is known from
Section III that the motor is requested to keep rotating once it
receives a rotating command and will not stop until it receives
a stop command. Then the motor will stop rotating and return
to the initial state.

The TCPN model of the motor is shown in Fig. 5. No
more declarations needed to construct the motor model, so the
declarations are not shown in the figure. The place PLCcmd
represents the state that the motor has received the command
from the PLC. The place Actioned shows that the motor
has finished an action which can be sensed by the sensor.
Places named startF, startB and beginS are introduced to show
the state that the motor has prepared to clockwise rotating,
counter-clockwise rotating and stop, respectively. The place
endRotate is to ensure that if there is a stop command,
the rotating of the motor will stop at once. The transitions
setready1, setready2 and setready3 are used to let the motor
prepare to the corresponding actions. The transitions FRota-
teOne, BRotateOne, StopF and StopB represent the actions
of clockwise rotating, counter-clockwise rotating, stopping the
motor when it is clockwise rotating and stopping it when it is
counter-clockwise rotating.

PLCcmd

setready1 setready2setready3

startF startB

FRotateOne BRotateOne

Actioned

endRotate beginS

stopF stopB

Fusion 2

Fusion 3 TROUND

TROUND

[p=CW] [p=FIXED] [p=ACW]

TROUND TROUNDBOOL

TROUND

[b1=false] [b2=false]

1
1`false

p

p

p

p p

pp@+10 p p@+10
b1

b1 b2 b2

p

p

p
p1

p1

true

false

pp p p

Fig. 5. The TCPN model of the Motor

Suppose there is a token with the value CW in the place
PLCcmd, the transition setready1 is the only one enabled ac-
cording to the guard expressions on the transitions setready1,
setready2 and setready3. Notice that the transition setready1
can be fired immediately because there is no time delay on
it. An initial token is given to the place endRotate with the
value false, so after a token is generated to the place startF
by firing the transition setready1, the transition FRotateOne is
enabled and can be fired immediately. The existence of the arc
from the transition FRotateOne to the place startF ensures that
once the motor starts to rotate, it can keep on rotating arbitrary
number of cycles without the need for other commands. The

114

time delay @+10 on this arc means that from the time when
the transition FRotateOne is fired, it needs 10 time units to
make the generated token to the place startF available. Among
these time units, the token is unavailable and cannot fire any
transition. This ensures that the time interval between the start
of two cycles is 10 time units. In other words, it takes 10 time
units that the motor rotates one cycle. Taking this mechanism,
the motor model is totally consistent with the desired rotating
requests. The case when there is a token with the value ACW
in the place PLCcmd is similar.

Once there is a token with the value FIXED on the place
PLCcmd, the transition setready3 is enabled. When it fires, the
token value of the place endRotate is replaced by true. This
disables the transitions FRotateOne and BRotateOne according
to the guard expressions of the two transitions. This ensures
that once receiving the stop command, the motor will stop
rotating immediately. In addition, the firing of the transition
StopF will consume a token from the place startF and the
transition StopB will consume a token from the place startB.
This assures that when the motor stops after some kinds of
rotation, it will not perform any self-motion in the later time
unless it receives a rotating command from the PLC again. In
other words, once the motor stops, it returns to its initial state.

D. Sensor

The sensor is to capture the signal when the motor rotates
one cycle and when it stops. The TCPN model of the sensor
is shown in Fig. 6. The place Sensor represents the sensor
resource in the system and the transition Capture expresses the
sensing action. Noting the fact that the PLC can only detect
the signal from the sensor at the beginning of its scan cycle,
only the newest sensor value can be detected. This case is
expressed in the senor model: new sensor value will replace
the old one. It is implemented by the double arcs between the
transition Capture and the place Getvalue and assigning the
initial marking of the place Getvalue with a token with the
value NON. In this way, each firing of the transition Capture
will consume a token with the old sensing value from the place
GetValue and generate a token with the new sensing value to
the same place. In addition, we specify that the capture action
consumes one time unit to finish by adding the time delay
inscription on the transition Capture.

TROUND

e

E

e

p1
e

p

p

@+1

NON

Sensor 1

1` NON@0

Capture

Getvalue
Fusion 4

1

Actioned
Fusion 3 TROUND

Fig. 6. The TCPN model of the Sensor

E. Model Composition

To get the whole system model, place fusion [16] techniques
are applied to bind the four sub models together. Same names
have been given for those places which needed to be fused for
the four sub models. Through fusing the places named user-
Cmd into one, the places named PLCcmd into one, the places
named Actioned into one and the places named Getvalue into
one, the whole model of the system is obtained. The place
fusions are shown in Fig. 2 - Fig. 6 by the rectangle attached
beside the places to be fused. There are four fusion sets, named
by Fusion1, Fusion2, Fusion3, and Fusion4, respectively.

F. As a reactive system model

The model can represent the PLC system behaviors for
one user command. However, the real case is a reactive
system and it can continuously accept user commands and act
accordingly. The TCPN model for the reactive system can be
easily obtained by returning to the home state after finishing of
a single user command. In detail, the system should be reset to
the initial state by setting the marking of some places, see the
Reset model in Fig. 7, where the input place and output places
of transition reset are fused with the corresponding places in
the former sub models.

End

init

Reset

d_set h_set end_rotatefirst_time

e
TE

BOOL BOOL

b b1false false

DIR HEIGHTE

Fusion 6

Fusion 5

Fusion 7 Fusion 8 Fusion 9 Fusion 10

Fig. 7. The TCPN model of the Sensor

G. Modeling in practice

In practice, after system modeling using the proposed
method, some original deficient considerations and misunder-
standings of the plants can be easily found. For example, for
the motor, the request of returning to the initial state after a
task execution was not considered in detail at first. When the
TCPN model of the motor was constructed, there was no arc
from the place startF to the transition stopF or the arc from
the place startB to the transition stopB in Fig. 5. Through
several simulations on the motor model, we find that the motor
can self-move in a future time even it stopped with the stop
command then. This error is hard to find if the formal model
of the plant was not constructed. The correct understanding of
no-memory characteristics of the sensor is also obtained from
the modeling with the method. In summary, this modeling
method can help understand the actions inside the plants as
well as the interactions. It can save vast efforts to debug the
corresponding errors after PLC programming.

115

V. FORMAL ANALYSIS

This section explains how to formally analyze the synchro-
nization problem on the TCPN model and shows the advantage
of the proposed analysis method.

A. State Space Analysis

There are three methods which are often used to analyze
a Petri-net based model: (1) state space analysis method;
(2) simulation method and (3) invariant method [13]. The
state space analysis method is taken as our formal analysis
method because it can give the complete proof of the dynamic
properties of the TCPN model.

The basic idea of the state space analysis method is to
construct the occurrence graph which contains a node for
each reachable marking and an arc for each occurring binding
element. A powerful tool CPN tools [17], [18] is adopted to
analyze the system modeled by TCPN.

Due to the existence of time evolution, the state space of
the TCPN model is infinite. Therefore, the Reset sub-model is
bypassed to get an acyclic model. In other words, we formally
analyze the user command one by one, instead of analyzing
the continuously running model directly. Furthermore, to ease
the analysis, some other changes will be made on the model.
First, since the synchronization is independent of the control
panel in this case, the user command is specified as a fixed
value: letting the light down 2 meters. Thus, the TCPN model
of the control panel is modified by removing the initial token
from the place init, removing the arc from the place init
to the transition Start1 and replacing the initial token value
of the place d set by down, the place h set by integer 2.
Second, two auxiliary places countF and countB are added
to record the cycles that the motor has clockwise rotated and
counter clockwise rotated, respectively. The both places have
an initial token with the value of zero. Each time the transition
FRotateOne fires, the value of the place countF increases by
1 and each time the transition BRotateOne fires, the value of
the place countB increases by 1. The modified TCPN model
of the Motor is shown in Fig. 8.

PLCcmd

setready1 setready2setready3

startF startB

FRotateOne BRotateOne

Actioned

endRotate beginS

stopF stopB

Fusion 2

Fusion 3 TROUND

TROUND

[p=CW] [p=FIXED] [p=ACW]

TROUND TROUNDBOOL

TROUND

[b1=false]
[b2=false]

1
1`false

p

p

p

p p

pp@+10 p p@+10
b1

b1 b2 b2

p

p

p
p1

p1

true

false

pp p p

countF countB

n+1 n nn+1

INT INT

1 1
1`0 1`0

Fig. 8. The TCPN model of the Motor with auxiliary places

After constructing the occurrence graph of the modified

TCPN model for the PLC system with CPN tools. The analysis
result is obtained and shown in Table I.

TABLE I

THE GENERAL ANALYSIS RESULTS GIVEN BY CPN tools

State Space
Nodes number: 145
Arcs number: 144
Sections number: 1
Status: full
Best Integer Bounds Upper lower
Motor ’ Actioned 1 0
Motor ’ PLCcmd 1 0
Motor ’ beginS 1 0
Motor ’ countB 1 1
Motor ’ countF 1 1
Motor ’ endRotate 1 1
Motor ’ startB 1 0
Motor ’ startF 0 0
PLC ’ End 1 0
PLC ’ FirstTime 1 0
PLC ’ Getvalue 1 1
PLC ’ PLCcmd 1 0
PLC ’ counter 1 0
PLC ’ goOn 1 0
PLC ’ userCmd 1 0
Panel ’ d set 1 0
Panel ’ h set 1 0
Panel ’ init 0 0
Panel ’ userCmd 1 0
Sensor ’ Actioned 1 0
Sensor ’ Getvalue 1 1
Sensor ’ Sensor 1 1
Dead Markings: [145]
Dead Transition Instances: Motor ’ FRotateOne 1

Motor ’ StopF 1
Motor ’ setready1 1
Panel ’ SetDir 1
Panel ’ SetH 1

Live Transition Instances: None
Fairness Properties: No infinite occurrence sequences.

There are 145 nodes and 144 arcs in the occurrence graph.
The full state space was generated for the analysis. From the
analysis results of upper bounds and lower bounds of all places
in the model, an 1-safe TCPN model is obtained. There is only
one dead marking with the node number 145, representing
the only deterministic final state. In addition, since the user
command is specified on the Control Panel in the modified
model, there are five transitions in the model never being
enabled. The light control system is non-circular, so there
is none live transitions in the model. Finally, the fairness
properties are unconcerned since the occurrence graph is finite.

B. Synchronization Analysis

The synchronization problem exists among the actions of
the PLC, the Motor and the Sensor. If the system is correctly
synchronized, each time the counter inside the PLC decreases
by 1, the motor will rotate just one cycle. Then when the
system stops in the end, the number of cycles that the motor
has rotated should equal to the value computed by formula
(1).

some ML functions [17] are coded to check the synchroniza-
tion of the model. These functions can be checked on the state

116

TABLE II

ML FUNCTIONS USED TO CHECK SYNCHRONIZATIONS

(1) ListDeadMarkings();
(2) Mark.Motor′countF 1 145;
(3) Mark.Motor′countB 1 145;
(4) PredAllNodes(fnn ⇒ (ms to col(Mark.Motor′countB 1n) < 0));
(5) PredAllNodes(fnn ⇒ (ms to col(Mark.Motor′countB 1n) > 34));
(6) PredAllNodes(fnn ⇒ (ms to col(Mark.Motor′countF 1n) < 0));
(7) PredAllNodes(fnn ⇒ (ms to col(Mark.Motor′countF 1n) > 0));

space and the results will be returned after the calculations in
CPN tools. The ML functions and the explanations are given
in Table II.

In function (1), ListDeadMarkings() returns a list with
all those nodes that are dead, i.e., have no enabled binding
elements. For the light control system, this function returns
val it = [145]. This means that the system is terminable and
the only terminal state is the node with the number 145 in
the occurrence graph. Then function (2) (3) are applied to
check the token values of the places countF and countB in
the state with the number 145, respectively. The result of
function (2) is zero and the result of function (3) is 34. This
demonstrates that the motor has rotated 34 cycles counter-
clockwise and has not any clockwise movement when the
system terminated. It implies that the number of the cycles the
motor has rotated equals to the value computed by formula
(1). In this way, it is verified that the system designed by
the TCPN model is correctly synchronized. The conclusion
can be further confirmed by Functions (4)-(7). Function (4) is
to check all the states on which the place countB can have
a token with the value less than zero. Functions (5)-(7) are
defined in the similar way. Through calculating on the state
space of the light control system, all the four functions returns
an empty list val it = []. This means that for each state during
the system running, the number of the cycles the motor has
rotated counter clockwise is always not less than zero and not
bigger than the maximum value it should rotate. Moreover, the
motor never rotates clockwise during this execution.

In the TCPN model, the fact that the system is correctly
synchronized is determined by the time information attached
to the actions in the system. Now, reduce the time delay that
the motor rotates one cycle needs from 10 time units to 2 time
units. This might be caused by adopting a new Motor which
is four times faster than the original one. The corresponding
model is modified by replacing the two appearances of arc
inscription p@+10 with p@+2 in Fig. 8. Then redo the formal
analysis above. The function ListDeadMarkings() returns the
value val it = [217]. Then the function Mark.Motor’countB
1 217 returns the value val it = [35]. That is to say, when
specifying the motor to rotate 34 cycles it rotated 35 cycles
instead. Therefore, it shows the wrong synchronization in the
new model.

From the two examples of correct synchronization and
wrong synchronization above, we can see that taking the
TCPN model defined in Section IV, the synchronization prob-
lem can be easily analyzed by just several functions. Compared
to the other modeling methods on synchronization [9], [10],

[11], [12], the method in this paper is more intuitive.

C. Use the analysis result

The advantage of this modeling and analysis method also
embodies in that the analysis results can do help in the later
equipment choosing and programming phase of the engineer-
ing.

For the equipment selection, we assign time delay which
are predicted on the TCPN model first, then execute the
formal analysis introduced above. If it does not synchronize
correctly, this means that, with the given PLC scan cycle and
the performance of the equipment, motor for example, the
implementation of the control by PLC may get wrong result.
Some of the equipments should be replaced to ensure the
precise control. we modify the time delays of the plants to
be selected, and then analyze the model repeatedly, until the
analysis gives the correct result. Therefore, the performance
reference values of the equipments are achieved to ensure the
correct synchronization and accurate control.

The benefit of our work is the system-level model of the
whole PLC system, including the PLC controller and its
environment. The system-level model is important for analysis.
As to the programming, after the formal analysis and selection
of the appropriate plants, the synchronization between PLC
and its controlled plants is automatically ensured. Therefore,
the PLC implementation can be easily derived reference to the
TCPN model of the PLC controller. Take the light control case
as example, from the TCPN model in Fig. 3, we can conclude
that the PLC program has three inputs: the height, the direction
and the sensor value and one output: the control signal to the
motor. The calculation of the counter and the judgement can
be easily matched to the PLC codes. We’d like to consider the
(automatically) code generation work in the future.

In sum, the formal analysis method proposed in this section
can give critical information on the function and performance
of the designed system. These information can do help to the
later phases after the system design.

VI. CONCLUSION

The method of constructing a formal TCPN model for
a PLC-based system was presented in this paper. The sys-
tem properties, such as synchronization, have been formally
analyzed. The case studies are given on the light control
part in the stage machinery control system developed for the
National Grand Theater of China. For the TCPN modeling,
we demonstrated how to construct a TCPN model in terms of
requirements compositionally. For the properties analysis, we
applied the state space analysis method to formally analyze the
synchronization problem in the PLC-based system through the
time information in the TCPN model. The case studies have
shown that the approach is effective in the system modeling
and correctness assurance in practical applications.

REFERENCES

[1] R. Lewis, Programming industrial control systems using IEC 1131-
3,volume 50 of Control Engineering Series. Stevenage, United Kingdom:
The Institution of Electrical Engineers, 1998.

117

[2] P. M. F. Bonfatti and U. Sampieri, IEC 1131-3 Programming Method-
ology. Fontaine, France: CJ International, 1999.

[3] M. Rausch and B. H. Krogh, “Formal verification of PLC programs,” in
Proceedings of American Control Conference 1998., vol. 1, pp. 234–238,
1998.

[4] T. Mertke and G. Frey, “Formal verification of PLC-programs generated
from signal interpreted Petri nets.,” in Proceedings of the SMC 2001,
Tucson (AZ) USA, pp. 2700–2705, Oct. 2001.

[5] G. Canet, S. Couffin, J. J. Lesage, A. Petit, and P. Schnoebelen, “Towards
the automatic verification of PLC programs written in instruction list,”
in IEEE International Conference on Systems, Man, and Cybernetics,
vol. 4, pp. 2449–2454, 2000.

[6] M. Heiner and T. Menzel, “A Petri net semantics for the PLC language
instruction list.,” in Proc. IEE Workshop on Discrete Event Systems
(WODES98), Cagliari/Italy, pp. 161–165, Aug. 1998.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[8] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[9] M. Moalla, J. Pulou, and J. Sifakis, “Synchronized Petri nets: A model
for the description of non-autonomous systems.,” Lecture Notes in
Computer Science: Mathematical Foundations of Computer Science
1978, vol. 64, pp. 374–384, Sept. 1978.

[10] R. David and H. Alla, Petri Nets and Grafcet - Tools for Modeling
Discrete Event Systems. New York, London: Prentice Hall, 1992.

[11] G. Frey, “PLC programming for hybrid systems via signal interpreted
Petri nets.,” in Proceedings of the 4th International Conference on
Automation of Mixed Processes ADPM, Dortmund, Germany, pp. 189–
194, Sept. 2000.

[12] H. M. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling
of PLC behavior by means of timed net condition/event systems,” in
Emerging Technologies and Factory Automation Proceedings, 1997.
ETFA ’97., pp. 391–396, 1997.

[13] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Vol. 2: Analysis Methods. Berlin: EATCS Monographs
on Theoretical Computer Science,Springer-Verlag, 1994.

[14] S. Christensen and L. Petrucci, “Towards a modular analysis of coloured
Petri nets.,” in Lecture Notes in Computer Science; 13th International
Conference on Application and Theory of Petri Nets (Jensen, K., ed.),
vol. 616, pp. 113–133, Springer-Verlag, June 1992.

[15] L. Gomes and P. B. Joao, “Structuring and composability issues in Petri
nets modeling,” IEEE Transactions on Industrial Informatics, vol. 1,
no. 2, pp. 112– 123, 2005.

[16] W. Zuberek and I. Bluemke, “Hierarchies of place/transitions refine-
ments in Petri nets,” in Proceedings of the Conference on Emerging on
Technologies and Factory Automation, pp. 355–360, 1996.

[17] A. V. Ratzer, L. Wells, and H. M. Lassen, “CPN tools for editing,
simulating, and analysing coloured Petri nets.,” in Proceedings of the
24th International Conference on Applications and Theory of Petri Nets
(ICATPN 2003), pp. 450–462, Springer-Verlag, June 2003.

[18] “Cpn tools: http://wiki.daimi.au.dk/cpntools/
cpntools.wiki.”

118

