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Nonlinear Hybrid System Identification with Kernel Models

Fabien Lauer, Gérard Bloch and René Vidal

Abstract— This paper focuses on the identification of nonlin-
ear hybrid systems involving unknown nonlinear dynamics. The
proposed method extends the framework of [1] by introducing
nonparametric models based on kernel functions in order to
estimate arbitrary nonlinearities without prior knowledge. In
comparison to the previous work of [2], which also dealt
with unknown nonlinearities, the new algorithm assumes the
form of an unconstrained nonlinear continuous optimization
problem, which can be efficiently solved for moderate numbers
of parameters in the model, as is typically the case for linear
hybrid systems. However, to maintain the efficiency of the
method on large data sets with nonlinear kernel models, a
preprocessing step is required in order to fix the model size and
limit the number of optimization variables. A support vector
selection procedure, based on a maximum entropy criterion, is
proposed to perform this step. The efficiency of the resulting
algorithm is demonstrated on large-scale experiments involving
the identification of nonlinear switched dynamical systems.

I. INTRODUCTION

By using tools from machine learning, such as kernel func-

tions, this paper proposes an algorithm for the identification

of nonlinear hybrid systems involving arbitrary and unknown

nonlinearities.

Consider a class of discrete-time ARX hybrid systems of

the form

yi = fλi
(xi) + ei, (1)

where xi = [yi−1 . . . yi−na
, ui−nk

. . . ui−nk−nc+1]
T is

the continuous state (or regression vector) of dimension p
containing the lagged nc inputs ui−k and na outputs yi−k,

λi ∈ {1, . . . , n} is the discrete state (or mode) determining

which one of the n subsystems {fj}
n
j=1 is active at time step

i, and ei is an additive noise term.

This class of hybrid models can be classified with re-

spect to the nature of the submodels {fj} and that of

the evolution of the discrete state λi. According to the

nomenclature defined in [2], Switched ARX (SARX) and

Switched Nonlinear ARX (SNARX) models assume that the

system switches arbitrarily. On the other hand, PieceWise

ARX (PWARX) models consider a dependency between the

discrete state and the regression vector. They can thus be

defined by piecewise affine maps of the type f(x) = fj(x),
if x ∈ Sj , j = 1, . . . , n, where {fj} are affine functions

and {Sj} are polyhedral domains defining a partition of

the regression space. Similarly, PWNARX models can be
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fabien.lauer@loria.fr

G. Bloch is with the Centre de Recherche en Automatique
de Nancy (CRAN UMR 7039), Nancy–University, CNRS, France
gerard.bloch@esstin.uhp-nancy.fr

R. Vidal is with the Center for Imaging Science, Department of Biomed-
ical Engineering, Johns Hopkins University, USA rvidal@jhu.edu

defined by piecewise smooth maps, where {fj} are smooth

nonlinear functions instead of affine functions. Piecewise

models with arbitrary domains {Sj} are considered in [2] and

referred to as Nonlinearly PWARX or PWNARX (NPWARX

or NPWNARX) models.

This paper concentrates on the problem of finding a

nonlinear hybrid model f = {fj}
n
j=1 of the form (1) from

input–output data {(xi, yi)}
N
i=1. We assume that the number

of models n and their regressors are known and focus on

the identification of SNARX models. However, the proposed

estimators are able to deal with all the piecewise forms

described above without any modification. These estimators

provide SNARX models, which can be used to estimate the

discrete state. With the labels of the points thus obtained,

determining the partition of the regression space simply

amounts to a pattern recognition (or supervised classification)

problem, for which efficient algorithms are available [3].

Related work. The hybrid system identification problem in-

trinsically implies to simultaneously classify the samples into

their respective modes and estimate the model parameters for

each mode. As such, it assumes a straightforward discrete

optimization formulation, which is highly non-convex and

scales exponentially with the number of data.

Many of the recent approaches proposed to solve this

problem typically implement a local optimization method

and are thus rather sensitive to their initialization. The

clustering-based approaches, either using k-means [4] or

Expectation Maximization (EM) [5], the Bayesian approach

[6], [7] and the Support Vector Regression (SVR) approach

[8], [9] fall into this category. On the other hand, the mixed

integer programming (MIP) approach [10] and the bounded-

error approach [11] are based on combinatorial optimization

and become prohibitively time consuming for moderate-

size data sets. Beside these methods, the algebraic approach

[12], [13], [14], [15] circumvents the aforementioned com-

putational issues by proposing a closed form solution to

an approximation of the identification problem for SARX

systems. However, this approach can be sensitive to noise.

Another approach based on continuous optimization has been

recently proposed in [1]. In addition to being robust to noise

and outliers, this approach also significantly alleviates the

complexity bottleneck of other methods.

To the best of our knowledge, the first approach to deal

with nonlinear hybrid system identification without prior

knowledge of the nonlinearities has been proposed in [2]

as an extension to the SVR-based method [8]. However, this

approach optimizes over a number of variables that grows

with the number of data points, and is thus limited to small

data sets. In comparison to the method of [2], the algorithm



proposed here builds on the work of [1] and is able to deal

with large data sets.

Paper contribution. In this paper, we extend the continuous

optimization framework originally proposed in [1] for linear

hybrid system identification to nonlinear hybrid systems. By

continuous optimization we refer to the optimization of a

continuous cost function over a continuous domain, which

excludes for instance integer programs. In particular, two

formulations of the algorithm are considered. The first one is

based on a non-differentiable cost function involving min op-

erations. The second one, inspired by the algebraic approach

[12], offers a differentiable approximation using products

of error terms. Nonlinear model based on kernel functions

are introduced in these algorithms to be able to estimate

unknown nonlinearities. As the efficiency of the method of

[1] heavily relies on the number of optimization variables,

we propose fixed-size kernel submodels. As a consequence,

the resulting unconstrained optimization program, though

non-convex, can be solved by standard global optimization

algorithms even for large data sets.

Paper organization. Section §II presents the proposed con-

tinuous optimization framework for hybrid system identifica-

tion with the two estimators based on the minimum of errors

(§II-A) and product of errors (§II-B) terms, respectively.

Kernel methods for nonlinear hybrid system identification

are introduced in §III. The paper ends with numerical exper-

iments in §IV and conclusions in §V.

Notations. For the sake of clarity, the notation minimize
θ

J

is used to refer to an optimization problem minimizing a cost

function J over some variable θ, whereas min
j=1,...,n

Lj refers

to the function returning the minimum of some finite set of

values {L1, . . . , Ln}.

II. HYBRID SYSTEM IDENTIFICATION

FRAMEWORK

This section presents the framework of the proposed

algorithms and recalls the form of the estimators for hybrid

systems derived in [1], the minimum-of-errors estimator

and the product-of-errors estimator, in §II-A and in §II-B,

respectively. In order to remain efficient on large data sets,

these estimators are devised so as to lead to continuous

optimization programs with a number of variables which

does not depend on the number of data.

A. Minimum-of-Errors Estimator

The Minimum-of-Errors (ME) estimator assumes that

sample xi must be assigned to the submodel that best

estimates the target output yi with respect to a given loss

function l, i.e.,

λ̂i = arg min
j=1,...,n

l(yi − fj(xi)), i = 1, . . . , N. (2)

The error minimization framework estimates the model f as

the one that minimizes, on a given data set, the error

J =
1

N

N
∑

i=1

l(yi − f(xi)). (3)

Explicitly including (2) in this framework leads to the

Minimum-of-Errors (ME) estimator as obtained by solving

minimize
{fj}

JME , (4)

where JME =
1

N

N
∑

i=1

(

min
j=1,...,n

l(yi − fj(xi))

)

. (5)

Note that the minimum of continuous functions of some

variables is a continuous functions of these variables (dis-

continuities only occur in the derivatives). It follows that

for submodels {fj} given by continuous functions of their

parameters and any loss function l(e) continuous in its argu-

ment, the minimum over j of the loss functions l(yi−fj(xi))
is a continuous function of the parameters to estimate. As a

consequence, the cost function in (5) is a continuous function

of the variables parametrizing the submodels {fj}. Thus

(4) is an unconstrained continuous optimization problem

only involving real variables, which are the parameters of

the submodels {fj}. After solving for these parameters,

the mode estimates are simply recovered by using (2) (or

λ̂i = arg minj=1,...,n |yi − fj(xi)|, if the loss function l
cannot yield the decision).

An equivalent estimator to the one presented above can

be derived in the maximum likelihood framework, as shown

in [1].

B. Product-of-Errors Estimator

For a smooth loss function l, the Product-of-Errors (PE)

estimator is obtained by solving the smooth optimization

program

minimize
{fj}

JPE , (6)

where JPE =
1

N

N
∑

i=1

n
∏

j=1

l(yi − fj(xi)). (7)

The cost function (7) of the PE estimator can be seen

as a smooth approximation to the ME cost function (5).

In particular, for noiseless data, they share the same global

minimum JME = JPE = 0. Note that for linear submodels

fj , solving the optimization problem of the PE estimator in

the noiseless case gives an exact solution to the identification

problem, as shown in [12].

III. ESTIMATION OF NONLINEAR HYBRID

MODELS

In this section, we extend the framework to the iden-

tification of hybrid systems involving unknown nonlinear

dynamics.

A. Kernel Models for Hybrid Systems

Following the Linear Programming Support Vector Re-

gression (LP-SVR) approach [16], nonlinear submodels are

expressed in the kernel expansion form

fj(x) =

N
∑

k=1

αkjkj(xk,x) + bj , (8)



where αj = [α1j , . . . , αNj ]
T and bj are the parameters

of the submodel fj and kj(·, ·) is a kernel function satis-

fying Mercer’s condition. Typical kernel functions are the

linear (k(xk,x) = x
T
k x), Gaussian Radial Basis Function

(RBF) (k(xk,x) = exp(−‖xk − x‖2
2/2σ2) and polynomial

(k(xk,x) = (xT
k x + 1)d) kernels. A kernel function implic-

itly computes inner products, k(xk,x) = 〈Φ(xk),Φ(x)〉,
between points in a higher-dimensional feature space F ob-

tained by an hidden nonlinear mapping Φ : x 7→ Φ(x). The

higher the dimension of F is, the higher the approximation

capacity of the model is, up to the universal approximation

capacity obtained for an infinite feature space, as with

Gaussian RBF kernels. With (8), different kernel functions kj

can be used for the different submodels fj . It is thus possible

to take prior knowledge into account such as the number of

modes governed by linear dynamics or information on the

type of a particular nonlinearity, if available. Note, however,

that this is not a requirement for the proposed method.

As in Support Vector Machines (SVMs) [17], we refer

to the vectors xk for which the associated {αkj}j=1,...,n

parameters are nonzero as the Support Vectors (SVs), since

these are the only data points kept in the final model. SVM

methods are typically known to yield sparse models in terms

of these SVs, which allows faster computations of the output.

1) Regularization: In order to avoid overfitting, the con-

trol of the complexity (or flexibility) of the model is a crucial

issue when estimating nonlinear kernel models. This control

can be achieved by minimizing a regularized cost as in

minimize
f

R(α) + CJ (f,D), (9)

where R(α) is a regularization term acting on the model

parameters α = [αT
1 , . . . , α

T
n ]T and J (f,D) is the data

term measuring the error of the model f on the dataset D =
{(xi, yi)}i=1,...,N .

In the following, we consider regularization of the model

f through the regularization of the submodels fj and define

an overall regularizer as

R(α) =
1

n

n
∑

j=1

R(αj), (10)

where R(αj) is the regularizer for the submodel fj .

In standard LP-SVR, the model complexity is measured

by the L1-norm of the parameter vector, i.e.,

R(αj) = ‖αj‖1, (11)

In practice, minimizing ‖αj‖1 amounts to penalizing non-

smooth functions and ensures sparsity as a certain number of

parameters αij will tend towards zero. Regularization over

the L2-norm of the parameter vectors, i.e.,

R(αj) = ‖αj‖
2
2 = α

T
j αj , (12)

is also possible, but may result in less sparse models.

2) Nonlinear ME estimator: By using submodels in ker-

nel form (8) in the ME estimator (5), the algorithm for

nonlinear hybrid system identification becomes

minimize
{αj},{bj}

1

n

n
∑

j=1

R(αj) + (13)

C

N

N
∑

i=1

min
j=1,...,n

l

(

yi −

N
∑

k=1

αkjkj(xk,xi) − bj

)

.

3) Nonlinear PE estimator: Similarly, one can define the

nonlinear PE estimator as the solution to

minimize
{αj},{bj}

1

n

n
∑

j=1

R(αj) + (14)

C

N

N
∑

i=1

n
∏

j=1

l

(

yi −

N
∑

k=1

αkjkj(xk,xi) − bj

)

.

B. Fixed-Size Kernel Models for Large-Scale Problems

For submodels in kernel form (8), the optimization pro-

grams (13) and (14) involve a large number of variables

associated to the number of potential SVs. Since the kernel

submodels consider all the data points xk, k = 1, . . . , N , as

potential SVs, the number of variables αkj is n × N . Thus

solving this problem for large N with a global optimizer

may become prohibitively time consuming. Here the key

to reducing the number of parameters αkj is to select the

support vectors xk before starting the optimization.

1) Selection of Support Vectors (SVs): The fixed-size

Least Squares SVM (LS-SVM) [18] is a particular imple-

mentation of SVMs, in which the SVs are selected before

minimizing a regularized least squares criterion. This method

is based on the maximization of an entropy criterion to

ensure a sufficient coverage of the feature space by the SVs.

Then the selected SVs are used to build an approximation

of the nonlinear mapping Φ hidden in the kernel function,

which is in turn used to recast the problem into a linear

form in the approximated feature space. However, in our

experiments, this method was rather sensitive to the numbers

of selected SVs. Therefore, we will apply a similar but more

straightforward method for Gaussian RBF kernels, where we

do not build an approximation of the nonlinear mapping, but

instead use the SVs as RBF centers directly. This leads to

reduced submodels

fj(x) =

Mj
∑

k=1

αikjjkj(xikj
,x) + bj , (15)

where Mj is the number of SVs xikj
and {ikj}k=1,...,Mj

is

the list of indexes of the SVs retained for the jth submodel.

Note that the parameter vector of submodel fj is now given

by αj = [αi1jj , . . . , αiMjjj ]
T and of dimension Mj .

As in fixed-size LS-SVM, the selection algorithm max-

imizes the quadratic Rényi entropy HR, which quantifies

the diversity, uncertainty or randomness of a system. We

approximate HR by

HR ≈ − log
1

M2
j

1
T
K

Mj

j 1, (16)



where

K
Mj

j =







kj(x1,xi1j
) . . . kj(x1,xiMjj

)
...

. . .

kj(xN ,xi1j
) kj(xN ,xiMjj

)






,

is the kernel matrix for the jth mode. Following [18], the

procedure to select the SVs for a particular mode j is as

follows.

1) Randomly select Mj SVs from the training samples

xi, i = 1, . . . , N .

2) Randomly select one of the Mj SVs, x
⋆, and one of

the remaining training samples, x
†.

3) Replace x
⋆ by x

† in the set of SVs.

4) If the criterion (16) increases, retain x
† as a SV,

otherwise replace x
† by x

⋆ in the set of SVs.

5) Repeat from 2 until the increase of the criterion is too

small or a maximum number of iterations is reached.

Note that in this procedure, a data point xi originally

generated by a particular mode can be considered as a SV

for another mode. The main idea here is only to capture the

general distribution of the data in feature space to ensure

sufficient support of the model. However, for piecewise

models, where a particular submodel is only active in a given

region of input space, this procedure may be suboptimal as

it also selects SVs outside of this region. In this case, how

to obtain sparser representations should be investigated.

2) Complete estimation procedure: A fixed-size nonlinear

hybrid model is estimated as follows.

1) Select n sets of SVs of indexes {ikj}k=1,...,Mj
, with

sizes M1, . . . , Mn, by applying the procedure of

Sect. III-B.1 to maximize the criterion (16).

2) Train the hybrid model by solving (9), e.g., for the PE

estimator with L2-regularization,

minimize
{αj},{bj}

1

n

n
∑

j=1

α
T
j αj

Mj

+
C

N

N
∑

i=1

n
∏

j=1

l(yi − fj(xi)),

(17)

where fj(xi) is computed by (15).

The final optimization program (17) involves only
∑n

j=1
(Mj + 1) variables instead of n(N+1) as in (14).

In this procedure, the numbers of SVs {Mj}j=1,...,n are

the hyperparameters that must be fixed a priori and may

influence the quality of the model. In standard SVR or neural

network problems, such hyperparameters may be tuned on

the basis of an estimate of the generalization error, which

is either obtained on out-of-sample validation data or by a

cross-validation procedure. However, here, these estimates of

the generalization error cannot be obtained without knowl-

edge of the discrete state λ to choose with which submodel

fj the output should be computed. Therefore, instead of

tuning the numbers Mj , we consider the following heuristics

for Gaussian RBF kernels of width parameter σj :

Mj =

⌊

1

σj

max
k=1,...,p

(

max
i=1,...,N

xik − min
i=1,...,N

xik

)⌋

, (18)

where ⌊·⌋ denotes the integer part of its argument and xik

is the kth component of xi. This heuristics is not optimal,

but ensures sufficient support of the model over the whole

input space. Moreover, notice that we only need suboptimal

numbers Mj that lead to rough mode estimates rather than

a perfect fit of the data. Then, it is always possible to re-

estimate the submodels separately on the basis of this data

classification. If this re-estimation is performed by standard

SVR, then the number of SVs is automatically determined.

This will be illustrated in the experiments of Sect. IV-A.

IV. NUMERICAL EXPERIMENTS

This section starts by presenting an illustrative example

involving the estimation of a function switching between

two unknown nonlinear functions (Sect. IV-A). Large-scale

experiments demonstrating the identification of a nonlinear

switched system are described in Sect. IV-B.

As proposed in [1], all optimization programs are solved

with the Multilevel Coordinate Search algorithm1 [19].

Though the MCS algorithm can deal with unbounded vari-

ables, box constraints are used to limit the search space and

restrain the variables to the interval [−100, 100] (which is

not very restrictive).

The quality of the models is evaluated on an independent

test set by the Mean Squared Error, MSE = 1/Nt

∑Nt

i=1
(yi−

fλi
(xi))

2, where Nt is the number of test samples.

A. Illustrative Example

Consider the function arbitrarily switching between two

nonlinear behaviors as

y(x) =

{

x2, if λ = 1

sin(3x) + 2, if λ = 2.
(19)

A training set of N = 2000 points is generated by this

function with additive Gaussian noise (σv = 0.3). Figure 1

shows the normalized data with zero mean and unit variance

(black dots). The procedure proposed in section III-B.2 with

the PE estimator is used to estimate two submodels, f1 and

f2, which use RBF kernels with σ1 = 0.8 and σ2 = 0.2,

respectively. The difference between σ1 and σ2 reflects the

basic assumption that one of the two models should be

smoother than the other. The SVs are first selected, with the

numbers M1 = 4 and M2 = 17 set as in (18). Then, Eq. (17)

is solved with C = 100. Finally, the resulting submodels (top

plot) are used to cluster the data and standard SVR is applied

to re-estimate the submodels separately (bottom plot). Table I

shows that the heuristics (18) leads to almost optimal Mj .

1The software is freely available as Matlab code at
http://www.mat.univie.ac.at/∼neum/software/mcs/.
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Fig. 1. Simultaneous estimation (top) and separate SVR re-estimation
(bottom) of a switched nonlinear function from 2000 noisy samples (black
dots).

TABLE I

TEST MSE (×10−3) (TOP) AND CLASSIFICATION ERROR RATE

(BOTTOM) OF THE REFINED HYBRID MODEL FOR DIFFERENT NUMBERS

OF SVS M1 AND M2 . THE NUMBERS FOR THE PROPOSED HEURISTICS

(MARKED WITH ASTERISKS) ARE ALMOST OPTIMAL.

M2 16 17∗ 18 19
M1

3 42.34 44.56 40.33 36.56
15.33% 15.33% 15.13% 14.73%

4∗ 10.96 10.72∗ 10.67 10.83
9.20% 8.73%∗ 9.13% 9.13%

5 17.51 40.11 17.04 39.34
11.07% 15.00% 11.20% 15.00%

B. Switched Nonlinear Dynamical System

Consider the dynamical system arbitrarily switching be-

tween two modes as

yi =































0.9yi−1 + 0.2yi−2, if λi = 1

(0.8 − 0.5 exp(−y2
i−1))yi−1 −

(0.3 + 0.9 exp(−y2
i−1))yi−2 + if λi = 2,

0.4 sin(2πyi−1) + 0.4 sin(2πyi−2),
(20)

Training sets of various sizes N are generated by this system

for the initial condition y0 = y−1 = 0.1 and additive

Gaussian noise (σv = 0.1), leading to trajectories with

σy ≈ 0.8. The test set of 2000 points is built from noiseless

data starting at the initial condition y0 = 0.4, y−1 = −0.3.

To be able to evaluate the quality of the results, reference

models are computed with full knowledge of the discrete

state by two separate trainings of standard SVR (one for

each mode).

For the hybrid models estimated by the PE estimator, the

submodel f1 uses a linear kernel with an arbitrary number

of SVs M1 = 5 (this is a fictive number, as the two linear

parameters can be recovered from linear combinations of

the SVs), while f2 uses a Gaussian RBF kernel (σ = 0.3)

with M2 set as in (18). Both the SVR re-estimation and

the reference models (described below) use the same kernel

hyperparameters and the same regularization trade-off C =
100 as the PE estimator. Standard SVR is applied for re-

estimation and the reference models with the ε-insensitive

loss function parameter ε, which acts as a threshold on

the minimal error taken into account, set to 0.1. Note that

in the re-estimation procedure, all these hyperparameters

could be tuned by cross-validation on the basis of the data

classification previously obtained.

Table II shows the number of SVs for f2, the test MSE, the

classification error rate and the computing time of the hybrid

model obtained by the PE estimator and the re-estimated

SVR models. In this Table, all numbers of the form A ± B
correspond to averages and standard deviations over 100

trials. The Table also shows the values for the reference

models. In order to estimate the number of undecidable

data, the classification error of the reference model is also

computed from the mode estimates (2). Note that the number

of SVs of the SVR models highly depends on the threshold ε
used in the ε-insensitive loss function. In addition, any other

nonlinear estimator can be used instead for the nonlinear

mode, while linear system identification methods can be

applied to the linear mode.

A number of remarks can be stated from these results.

First, the PE estimator can accurately estimate the mode,

leading to a classification error of 13 % on average if we

discard the undecidable points. Moreover, this classification

provides the ground for the re-estimation procedure, which

yields submodels with better test errors than standard SVR

using knowledge of the discrete state. This can be explained

by the fact that the data is classified w.r.t. the minimum

submodel error. Thus, some data points of one mode cor-

rupted by a large amount of noise may be assigned to the

other mode, for which the noise level converts into a small

value. Finally, the computing time of the PE estimator is also

quite reasonable: the model can for instance be estimated

from thousands of data in seconds and from 50 000 data in

less than 3 minutes. Note that we cannot observe a linear

dependency between the computing time and the number of

data N as in [1] for linear submodels, since the number

of SVs M2, on which depends the computing time of the

PE estimator, also changes with N (due to (18)). However,

the difference between the PE and SVR computing times

decreases with N . This shows that for large N , though

relying on non-convex global optimization, the PE estimator

can be faster than a convex optimization based method using

specifically tailored and compiled code (LibSVM [20]).



TABLE II

IDENTIFICATION OF A HYBRID SYSTEM WITH UNKNOWN NONLINEARITIES BY THE PE ESTIMATOR WITH AND WITHOUT SVR RE-ESTIMATION. THE

REFERENCE MODEL IS OBTAINED WITH KNOWLEDGE OF THE MODE. THE COMPUTING TIME OF PE+SVR ONLY ACCOUNTS FOR THE SVR STEP.

N Method M2 Test MSE (×10−3) Classif. err. (%) Time (sec.)

2 000 PE 18 ± 2 210.43 ± 48.69 25.55 ± 2.83 2.9 ± 1.2

PE + SVR 242 ± 26 49.99 ± 23.26 19.00 ± 3.00 0.6 ± 0.0

Reference 373 ± 16 102.15 ± 34.38 12.51 ± 0.96 0.6 ± 0.0

10 000 PE 22 ± 2 199.03 ± 57.41 25.24 ± 2.41 17.8 ± 6.9

PE + SVR 1034 ± 110 41.18 ± 16.35 18.54 ± 2.31 11.0 ± 0.5

Reference 1677 ± 32 105.55 ± 40.37 12.65 ± 0.44 8.8 ± 0.3

20 000 PE 24 ± 3 208.25 ± 52.03 24.97 ± 1.85 42.7 ± 18.2

PE + SVR 1924 ± 175 37.83 ± 11.64 17.97 ± 1.86 41.9 ± 2.4

Reference 3272 ± 45 104.24 ± 32.98 12.67 ± 0.38 29.7 ± 0.7

50 000 PE 27 ± 2 210.05 ± 58.02 24.85 ± 2.06 154.1 ± 38.9

PE + SVR 4689 ± 416 39.44 ± 11.48 17.97 ± 1.79 254.7 ± 17.7

Reference 8060 ± 83 103.24 ± 34.85 12.71 ± 0.29 172.8 ± 2.6

100 000 PE 29 ± 3 211.40 ± 50.63 24.85 ± 1.65 464.2 ± 121.1

PE + SVR 9238 ± 860 40.76 ± 9.70 17.99 ± 1.59 1133.8 ± 81.0

Reference 16024 ± 120 109.96 ± 41.30 12.75 ± 0.46 809.2 ± 13.1

V. CONCLUSION

A method for nonlinear hybrid system identification has

been proposed, in which kernel functions have been in-

troduced to estimate arbitrary and unknown nonlinearities.

Large-scale experiments show that the resulting algorithm

can accurately identify nonlinear hybrid systems from tens

of thousands of noisy data in a reasonable time. Future

work will focus on studying tuning procedures for the

hyperparameters of the method, including the regularization

constant C and the kernel parameter. Additionally, though

the proposed method for the selection of support vectors in

kernel submodels led to satisfactory results, better selection

strategies will be investigated. In particular, we may expect

some improvement by taking the target outputs yi into

account when selecting the support vectors. Future work

will also consider piecewise systems, for which it may be

preferable to select the SVs of a submodel only in the region

where it is active.
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