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Georgia Institute of Technology, Atlanta, Georgia 30332, USA

fkilinc@isye.gatech.edu

Arkadi Nemirovski
Georgia Institute of Technology, Atlanta, Georgia 30332, USA

nemirovs@isye.gatech.edu

August 21, 2010

Abstract

We propose new methods of recovery of sparse signals from noisy observation based on ℓ1-minimization.
They are closely related to the well-known techniques such as Lasso and Dantzig Selector. However, these
estimators come with efficiently verifiable guaranties of performance. By optimizing these bounds with
respect to the method parameters we are able to construct the estimators which possess better statistical
properties than the commonly used ones.

We also provide an oracle inequality to justify the proposed algorithms and show how the estimates
can be computed using the Basis Pursuit algorithm.

Key words : sparse recovery, linear estimation, oracle inequalities, nonparametric estimation by
convex optimization

AMS Subject Classification : 62G08, 90C25

1 Introduction

Recently a several methods of estimation and selection which refer to the ℓ1-minimization received much
attention in the statistical literature. For instance, Lasso estimator, which is the ℓ1-penalized least-squares
method is probably the most studied (a theoretical analysis of the Lasso estimator is provided in, e.g.,
[2, 3, 4, 19, 20, 21, 17, 18], see also the references cited therein). Another, closely related to the Lasso,
statistical estimator is the Dantzig Selector [7, 2, 16, 17]. To be more precise, let us consider the estimation
problem as follows: Assume that an observation y ∈ Rm is available where

y = Ax+ σξ, (1)

where x ∈ Rn is an unknown signal and A ∈ Rm×n is the sensing matrix. We suppose that σξ is a Gaussian
disturbance, where ξ ∼ N(0, Im) (i.e., ξ = (ξ1, ...., ξn)

T , where ξi are independent normal r.v. with zero
mean and unit variance), σ > 0 being known.

∗Research of the second and the third authors was supported by the Office of Naval Research grant # N000140811104.

1



The Dantzig Selector estimator x̂DS of the signal x is defined as follows [7]:

x̂DS(y) ∈ Argmin
v∈Rn

{‖v‖1 | ‖AT (Av − y)‖∞ ≤ δ}

where δ = O
(
σ
√
lnn

)
is the algorithm parameter. Since x̂DS is obtained as a solution of linear programm,

it is very attractive by its low computational cost. Accuracy bounds for this estimator are readily available.

For instance, a well known result about this estimator (cf. [7, Theorem 1.1]) is that if δ = O
(
σ
√

ln(nǫ−1)
)

then
‖x̂DS(y)− x‖2 ≤ Kσ

√
s log(nǫ−1)

with probability 1− ǫ if a) the signal x is s-sparse, i.e. has at most s non-vanishing components, and b) the
sensing matrix A with unit columns possesses the Restricted Isometry Property RIP(λ, k) with parameters
0 < λ < 1

1+
√
2
and k ≥ 3s. 1 Further, in this case the constant K = C(1− λ)−1, where C is a moderate

absolute constant. This result is quite impressive, due to the established fact (see, e.g. [5, 6]) that there
exist m × n random matrices, with m < n, which possess the RIP with probability close to 1, λ close to
zero and the value k as large as O

(
m ln−1(n/m)

)
.

On the other hand, Dantzig Selector will become suboptimal when the λ parameter of the RIP is close
to 1. Indeed, consider an example of the problem (1) with a 2 × 2 matrix A with the singular values 1
and ǫ, and the RIP holds with δ = 1 − ε2. It can be easily seen that if x is aligned with the second right
singular vector of A (corresponding to the singular value ε) the error of the Dantzig Selector may be as large
as O(ε−2σ), or O(1 − λ)−1σ), while one would expect it to be O(ε−1σ) (up to the logarithmic terms in ǫ).
While in our toy example the method can be easily modified to get rid of this drawback, there is no evident
way to improve Dantzig Selector in the case of a problem of nontrivial size. The reason to this is that
Dantzig Selector (and, to some extent, Lasso) algorithm is really “tailored” to comply with the Resticted
Isometry Property, and that property cannot be efficiently verified. For instance, given a matrix A of any
“reasonable size”, we will not even be able to answer the question if for a given k the corresponding value λ
is close to 0 or to 1 in a foreseeable future. New accuracy bounds for Lasso and Dantzig Selector have been
proposed recently, which rely upon less restrictive assumptions about the sensing matrix, such as Restricted
Eigenvalue [2] or Compatibility [3] conditions (a complete overview of those and several other assumptions
with description of how they relate to each other is provided in [19]). However, these assumptions share with
the RIP the above drawback: given a problem instance they cannot be efficiently verified. The latter implies
that there is no way to provide any guaranties (e.g., confidence sets) of the performance of the proposed
procedures. A notable exception from the rule is the Mutual Incoherence assumption (see, e.g. [10, 11, 12])
which can be used to computes the accuracy bounds for recovery algorithms: a matrix A with columns of
unit ℓ2-norm and mutual incoherence µ(A) possesses RIP(λ, k) with λ = (m− 1)µ(A).2 Unfortunately, the
latter relation implies that µ(A) should be very small to certify the possibility of accurate ℓ1-recovery of
non-trivial sparse signals, so that the estimates of a “goodness” of sensing for ℓ1-recovery based on mutual
incoherence are very conservative. This ”theoretical observation” is supported by numerical experiments –
the practical guarantees which may be obtained using the mutual incoherence are generally quite poor even
for the problems with nice theoretical properties (cf. [14, 15]).

1Recall that RIP(λ, k), same as uniform uncertainty principle, means that for any v ∈ R
n with at most k non-vanishing

components,
(1− λ)‖v‖2 ≤ ‖Av‖22 ≤ (1 + λ)‖v‖2

This property essentially requires that every set of columns of A with cardinality less than k approximately behaves like an
orthonormal system.

2 The mutual incoherence µ(A) of a sensing matrix A = [A1, ..., An] is computed according to

µ(A) = max
i6=j

|AT
i Aj |

AT
i Ai

.

Obviously, the mutual incoherence can be easily computed even for large matrices.
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Recently the authors have proposed a new approach for computing the guaranteed bounds for the “s-
goodness” of a sensing matrix A, i.e. the maximal s such that the ℓ1-recovery of all signals with no more than
s non-vanishing components is accurate in the case without measurement noise (see [14]). In the present
paper we aim to use those verifiable sufficient conditions of “goodness” of the matrix A to provide efficiently
computable bounds for the error of ℓ1 recovery procedures. Namely, we consider two following estimation
routines:

• regular recovery:
x̂reg(y) ∈ Argmin

v∈Rn

{‖v‖1| ‖HT (Av − y)|∞ ≤ δ},

where H ∈ Rm×n is the contrast matrix;

• penalized recovery:
x̂pen(y) ∈ Argmin

v∈Rn

{‖v‖1|+ θ‖HT (Av − y)|∞},

where H ∈ Rm×n is the contrast matrix and θ > 0 is the parameter of penalization.3

We provide the confidence intervals for the error ‖x̂reg − x‖ (and ‖x̂pen − x‖ of the regular and penalized
recovery which involve efficiently computable characteristics of the sensing matrix A. Further, we show how
the optimal with respect to these bounds contrast matrices can be computed. We also justify our approach
with two oracle inequalities and show how the approximation to x̂reg may be computed using a specific
version of the Basis Pursuit algorithm.

2 Accuracy bounds for ℓ1-Recovery Routines

2.1 Problem statement and notations

We consider an observation y ∈ Rm

y = Ax+ u+ σξ, (2)

where x ∈ Rn is an unknown signal and A ∈ Rm×n is the sensing matrix. We suppose that σξ is a Gaussian
disturbance, where ξ ∼ N(0, Im) (i.e., ξ = (ξ1, ...., ξn)

T , where ξi are independent normal r.v. with zero
mean and unit variance), σ > 0 being known, and u is a nuisance parameter known to belong to a given set
U ⊂ Rm which we will suppose to be convex, compact and symmetric w.r.t. the origin.

For a vector x ∈ Rn and 1 ≤ s ≤ n we denote xs the vector obtained from x by setting to 0 all but the
s largest in magnitude components of x. We use the notation ‖x‖s,p for the usual ℓp-norm of xs (obviously,
‖x‖s,∞ = ‖x‖∞). We say that a vector z is s-sparse if it has at most a given number s of nonzero entries.
Finally, for a set I ⊂ {1, ..., n} we denote by Ī its complement {1, ..., n}\I; and given x ∈ Rn, we denote xI
the vector obtained from x by zeroing the entries with indices outside of I, so that x = xI + xĪ .

We say that a vector z is s-sparse if it has at most a given number s of nonzero entries.
Our goal is to recover x from y, provided that x is “nearly s-sparse”. Specifically, we consider the set

X(s, υ) = {x ∈ Rn : ‖x− xs‖1 ≤ υ}.

Further, given ǫ and σ > 0 let us denote

ν(v) = sup
u∈U

uT v + σ
√

2 ln(nǫ−1)‖v‖2, (3)

3Observe that regular and penalized recoveries can be seen as appropriate modifications of Dantzig Selector and Lasso
methods.
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and let ν∗ be the norm on Rn conjugate to ν:

ν∗(u) = max
v

{vTu| ν(v) ≤ 1}.

Since U is convex, closed and symmetric with respect to the origin, ν(·), indeed, is a norm.
Let x̂(y) be an estimate of x (a Borel function x̂(·) : Rm → Rn) given the observation y in (2). Give

the tolerance level ǫ ∈ (0, 1) we quantify the risk of x̂ by its worst-case, over x ∈ X(s, υ), confidence set.
Specifically, we define the associated ǫ-risk of x̂ as

Riskp(x̂(·)|ǫ, σ, s, υ) = inf

{
δ : sup

x∈X(s,υ), u∈U
Prob {‖x̂(y)− x‖p > δ) ≤ ǫ

}
.

Consider the following condition on the matrices A and H ∈ Rm×n:

H(γ, ρ): there are γi > 0 and ρi > 0, i = 1, ..., n such that for all x ∈ Rn, and 1 ≤ i ≤ n,

|xi| ≤ |hTi Ax|+ γi‖x‖1, (4)

and

ρi(ǫ, σ,U ;hi) = ν(hi), (5)

where ν(·) is defined in (3).

Observe that H(γ, ρ) implies, in particular, that

Prob
{
∃(i ≤ n, u ∈ U) : |hTi (u+ σξ)| ≥ ρi

}
≤ ǫ.

2.2 Regular ℓ1 Recovery

In this section we discuss the properties of the regular ℓ1-recovery x̂reg given by:

x̂reg = x̂reg(y) ∈ Argmin
v∈Rn

{‖v‖1| |hTi (Av − y)| ≤ δi, i = 1, ..., n}, (6)

where y is as in (2), hi, i = 1, ..., n are some vectors in Rm and δi > 0, i = 1, ..., n.
The starting point of our developments is the following

Proposition 1 Given an m × n sensing matrix A, noise intensity σ, uncertainty set U and a tolerance
ǫ ∈ (0, 1), let the matrix H = [h1, ..., hn] ∈ Rm×n satisfy the condition H(γ, ρ) and let δi ≥ ρi = ρi(ǫ, σ,U),
i ≤ n.

Then there exists a set Ξ, Prob{ξ ∈ Ξ} ≥ 1 − ǫ, of ”good” realizations of ξ such that whenever ξ ∈ Ξ,
for every x ∈ Rn, every u ∈ U and every subset I ⊂ {1, ..., n} such that

γI :=
∑

i∈I
γi <

1

2
, (7)

the regular ℓ1-recovery x̂reg, associated with H and {δi}i≤n satisfies:

(a) ‖x̂reg(y)− x‖1 ≤ 2‖xĪ‖1+2δI+2ρI
1−2γI

;

(b) | [x̂reg(y)− x]i | ≤ δi + ρi + γi‖x̂reg(y)− x‖1 ≤ δi + ρi + γi
2‖xĪ‖1+2δI+2ρI

1−2γI
, i = 1, ..., n,

(8)

where δI =
∑

i∈I δi and ρI =
∑

i∈I ρi.

4



The proof of the proposition is put into the appendix.
Let for 1 ≤ s ≤ n

δ̂s = ‖[δ1, ..., δn]‖s,1, ρ̄s = ‖[ρ1, ..., ρn]‖s,1, γ̄s := ‖[γ1, ..., γn]‖s,1,
δ = δ̄1 = maxi δi, ρ = ρ̄1 = max

i
ρi, γ = γ̄1 = max

i
γi.

Corollary 1 Assume that γ̄s <
1

2
and δi ≥ ρi, 1 ≤ i ≤ n. Then for all 1 ≤ p ≤ ∞ and υ ≥ 0:

Riskp(x̂reg(·)|ǫ, σ, s, υ) ≤ φs[= φ(ǫ, σ, υ, s, ρ̄; γ̄, δ)],

where

φs =
2

1− 2γ̄s

[
υ + δ̄s + ρ̄s

] 1

p
[
γυ + 1

2
[δ + ρ] + γ[δ̄s + ρ̄s]− γ̄s[δ + ρ]

] p−1

p . (9)

Further, if sγ < 1/2, we have also

φs ≤
2s

1

p

1− 2sγ

[
γυ + 1

2
[δ + ρ]

] p−1

p
[
s−1υ + δ + ρ

] 1

p ≤ (2s)
1

p

1− 2sγ
(s−1υ + δ + ρ). (10)

2.3 Penalized ℓ1 Recovery

Now consider the penalized ℓ1-recovery x̂pen as follows:

x̂pen(y) ∈ Argmin
v∈Rn

{‖v‖1 + θs‖HT (Av − y)‖∞}, (11)

where y is as in (2), an integer s ≤ n and a positive θ, same as matrix H, are parameters of the construction.

Proposition 2 Given an m × n sensing matrix A, an integer s ≤ n, a matrix H = [h1, ..., hn] ∈ Rm×n,
positive reals γi, ρi, 1 ≤ i ≤ n, satisfying the contrast condition H(γ, ρ), and a θ > 0, assume that

ρ = max
i

ρi; γ = max
i

γi < (2s)−1 (12)

and
(1− sγ)−1 < θ < (sγ)−1 (13)

and consider the associated estimate x̂pen(·).
(i) For every ǫ ∈ (0, 1), there exists a set Ξ, Prob{ξ ∈ Ξ} ≥ 1 − ǫ, of ”good” realizations of ξ such that

whenever ξ ∈ Ξ, for every σ ≥ 0, every signal x ∈ Rn and every u ∈ U one has

(a) ‖x̂pen(y)− x‖1 ≤ 2‖x−xs‖1+2sθρ
min[θ(1−sγ)−1,1−θsγ]

(b) ‖x̂pen(y)− x‖∞ ≤
(

1
sθ + γ

)
‖x̂pen(y)− x‖1 + 2ρ ≤ 2( 1

sθ
+γ)‖x−xs‖1+2(1+min[θ−1,1])ρ

min[θ(1−sγ)−1,1−θsγ]

(14)

here, same as in Proposition 1, ρ = maxi ρi(ǫ, σ,U).
(ii) When θ = 2, one has for every ǫ ∈ (0, 1), σ ≥ 0, υ ≥ 0 and 1 ≤ p ≤ ∞:

Riskp(x̂pen(·)|ǫ, σ, s, υ) ≤ 1

1− 2sγ
[2υ + 4sρ]

1

p [(s−1 + 2γ)υ + 4ρ]
p−1

p ≤ 2s
1

p

1− 2sγ
(s−1υ + 2ρ). (15)
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2.4 Goodness certificate of A and the origin of condition H(·, ·)
Condition H(γ, ρ) and the results of this section merit some comments. Let A be an m× n matrix and let
s ≤ n be a positive integer. We say that A is s-good if for all s-sparse x ∈ Rn the ℓ1-recovery x̂,

x̂ ∈ argmin {‖v‖1| Av = y}

is exact in the case of noiseless observation y = Ax. Let us consider the condition:

Hs(γ) ‖x‖s,1 ≤ ‖HTAx‖∞ + γ‖x‖1 for all x ∈ Rn.

The existence of a matrix H ∈ RM×n which satisfies Hs(γ, ρ) is intimately related to the necessary and
sufficient conditions of s-goodness of A. Namely, whenever the sensing matrix A is s-good, a matrix H with
γ < 1

2
always exists. We have the following simple lemma:

Lemma 1 Suppose that the sensing matrix A is such that the ℓ1-recovery x̂ is exact for any x which is
s-sparse. Then there exist a matrix H which satisfies Hs(γ) with γ < 1

2
.

We refer to H which satisfy Hs(γ) as certificate of s-goodness of A.
In fact, Hs(γ) is not only necessary but also a sufficient condition of s-goodness of the matrix A. As

such, condition Hs(γ) may be also used to provide bounds for the accuracy of ℓ1-recovery. For instance, we
have the following analogue of Proposition 1 (the reader may easily reproduce its proof):

Proposition 3 Given an m × n sensing matrix A, let the matrix H = [h1, ..., hM ] ∈ Rm×M , ν(hi) ≤ ρi,
i = 1, ...,M , satisfy the condition H(γ) and let δi ≥ ρi = ρi(ǫ, σ,U), i ≤ M . Then the regular recovery x̂reg
in (6) satisfies

Risk1(x̂reg(·)|ǫ, σ, s, υ) ≤ 2
δ + ρ+ υ

1− 2γ
, (16)

where δ = maxi δi and ρ = maxi ρi.

Further, a reader familiar with the results of [2, 3, 19] will recognize in Hs(γ) an extended version of the
Compatibility condition. Indeed, the latter condition on the sensing matrix A means exactly (cf. [3, Section
2.1]) that for some “compatible” norm ‖ · ‖ and φ > 0 one has

‖xs‖1 ≤
√
s

φ
‖Ax‖, for all x ∈ {x ∈ Rn| 3‖xs‖1 ≥ ‖x− xs‖1}.

Obviously, the Compatibility conditions implies that for all x ∈ Rn:

‖x‖s,1 ≤
√
s

φ
‖Ax‖ + 1

4
‖x‖1. (17)

One can easily show (we leave the proof as an exercise for the reader) that (17) implies the existence of a
matrix H ∈ Rm×M such that

‖x‖s,1 ≤ ‖HTAx‖∞ + 1

4
‖x‖1,

where H = [h1, ...., hM ] is such that ‖hi‖∗ ≤
√
s

φ (here ‖u‖∗ = max‖v‖≤1 v
Tu is the norm conjugate to ‖ · ‖).

Though result of Lemma 3 is a good news – it states that when the matrix A allows for exact recovery
of s-sparse signals, one can conceive a regular recovery of such signals from noisy observation (2) with the
error which satisfies (16), it is of very limited practical interest. In fact, it cannot be used to construct
contrast matrices simply because the condition Hs(γ), same as Compatibility condition, cannot be verified
in any reasonable time.

On the other hand, the condition H(γ, ρ) which is sufficient for Hs(γ) to be satisfied, can be, as we
shall see in an instant, efficiently verified. Furthermore, to the best of our knowledge, the contrast matrix
H which satisfying H(γ, ρ) with γ < 1

2s and some ρ < ∞ is nearly the best efficiently computable certificate
of s-goodeness of A [14].
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3 Efficient construction of the contrast matrix H

The accuracy bounds for ℓ1-recovery established in Section 2 (e.g. Corollary 1 and Proposition 2) are
completely defined by values of two characteristics of the matrix H satisfying condition H(γ, ρ): γ = maxi γi
in (4) and ρ = maxi ρi in 5. One way to design a “good contrast matrix” for a given problem estimation
problem (parameterized with A, U , σ and s) may be to choose among the matrices which satisfy H(γ, ·)
with the desirable value γ < 1

2s the matrix with the smallest value of ρ.
Namely, consider for i = 1, ..., n the system linear inequalities:

(Ii) : gT [A]i ≥ 1− µ, |gT [A]j | ≤ µ, j 6= i. (18)

We start with the following observation:

Lemma 2 Let us fix ρ, γ > 0 and 1 ≤ i ≤ n. Then the following statements are equivalent:

(i) there exists a vector h with ν(h) ≤ ρ which satisfies for any x ∈ Rn:

|xi| ≤ |hTAx|+ γ‖x‖1; (19)

(ii) there exists a feasible solution g to the inequality (Ii) with µ = γ such that ν(g) ≤ ρ. Further, it holds
for all x ∈ Rn:

|xi| ≤ |gTAx|+ γ‖x‖1;
(iii) It holds for all x ∈ Rn:

|xi| ≤ ρν∗(Ax) + γ‖x‖1,
where ν∗ is the conjugate to ν norm.

Now consider for i = 1, ..., n the series of optimization problems

(Pi) : Opt(i) = min
g∈Rm

{
ν(g)

∣∣ gT [A]i ≥ 1− µ, |gT [A]j | ≤ µ, j 6= i
}
. (20)

The following result is an immediate consequence of Lemma 2:

Proposition 4 Let all problems (Pi), 1 ≤ i ≤ n, be feasible (and thus solvable), hi be an optimal solution
to (Pi), i = 1, ..., n and let

H = [h1, ..., hn], ̺i = ̺i(ǫ, σ,U , A;µ) = Opt(i).

(i) For i = 1, ..., n ̺i is the minimum of ρi(ǫ, σ,U ;h) (cf the definition (5)) over all vectors h which satisfy
(19) with γi ≤ µ. In particular, ̺ = maxi ̺i is the minimal value of ρ = maxi ρi over the matrices H which
satisfy for all x ∈ Rn:

‖x‖∞ ≤ ‖HTAx‖∞ + µ‖x‖1.
(ii) One has

̺ = min
r

{r| ‖x‖∞ ≤ rν∗(Ax) + µ‖x‖1 for all x ∈ Rn} . (21)

When putting together our findings (Corollary 1, Proposition 1 and Proposition 4) we obtain

Theorem 1 Let µ < (2s)−1 and all problems (Pi), 1 ≤ i ≤ n, be feasible (and thus solvable), hi be optimal
solution to (Pi) and let

H = [h1, ..., hn], ̺i = Opt(i), ̺ = max
i=1,...,n

̺i.

Then

7



(i) the regular ℓ1 recovery x̂reg, as in (6) with δi ≥ ̺i,satisfies for 1 ≤ p ≤ ∞

Riskp(x̂reg, ǫ) ≤ (2s)
1

p
s−1υ + (δ + ̺)

1− 2sµ

(here δ = maxi δi).

(ii) the penalized ℓ1 recovery x̂pen, as in (11) with θ = 2, satisfies for 1 ≤ p ≤ ∞

Riskp(x̂p, ǫ) ≤ 2s
1

p
s−1υ + 2̺

1− 2sµ
;

4 Numerical examples

To illustrate the result of the previous section we present here simulation results for the observation model
with “input nuisance”:

y = A(x+ v) + σξ,

where x ∈ Rn is an unknown sparse signal, the nuisance v ∈ V with known V ⊂ Rn, σ is known and ξ ∈ Rm

is standard normal ξ ∼ N(0, Im) (in other words, u = Av in the model (2)). We compare the performance
of the proposed algorithms (regular and penalized recovery) to that of the “classical” Lasso and Dantzig
Selector procedures. To deal with our problem (recovery of the signal x in the presence of the nuisance)
those methods were modified as follows: instead of the Lasso estimator we use the estimator

x̂las(y) ∈ argmin x∈Rn, v∈V
{
‖x‖1 + κ‖A(x + v)− y‖22

}
,

where the penalization coefficient κ is chosen according to [2, Theorem 4.1]; in its turn, the Dantzig Selector
is substituted with

x̂DS(y) ∈ argmin x∈Rn, v∈V
{
‖x‖1 | |[AT (A(x+ v)− y)]i| ≤ δi, i = 1, ...,m

}

with λi = σ
√

2 ln(nǫ−1)‖[A]i‖2, where ǫ is given (e.g., in what follows ǫ = 0.01).
We present below the simulation results for two setups with n = 256:

1. Gaussian setup: a 161 × 256 sensing matrix AGauss with independent N(0, 1) entries is generated, then
its columns are normalized. The nuisance set V = V(L) ⊂ R256 is as follows:

V(L) = {v ∈ R256, |vi+1 − 2vi + vi−1| ≤ L, for i = 2, ..., 255, v2 = v1 = 0},

where L is a known parameter.

2. Convolution setup: a 240 × 256 sensing matrix Aconv is constructed as follows: consider a signal x
“living” on Z2 and supported on the 16 × 16 grid Γ = {(i, j) ∈ Z2 : 0 ≤ i, j ≤ 15}. We subject such
a signal to discrete time convolution with a kernel supported on the set {(i, j) ∈ Z2 : −7 ≤ i, j ≤ 7},
and then restrict the result on the 16 × 15 grid Γ+ = {(i, j) ∈ Γ : 1 ≤ j ≤ 15}. This way we obtain
a linear mapping x 7→ Aconvx : R

256 → R
240. The nuisance set V = V(L) ⊂ R256 is composed of

zero-mean signals u on Γ which satisfy
|[D2u]i,j| ≤ L,

where D is the discrete (periodic) homogeneous Laplace operator:

[Du]i,j =
1

4

(
ui,j−1 + ui−1,j + ui,j+1 + ui+1,j − 4ui,j

)
, i, j = 1, ..., 16,

with i = i mod 16, j = j mod 16.
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In our simulations we follow the following protocol: given the sensing matrix A, the nuisance set V and the
values of s and σ we compute that contrast matrix H according to (20) with a prescribed 0 < µ < 1

2
. Then

k = 100 samples of random signal x, random nuisance v ∈ V and random perturbation ξ are generated, and
the mean values ℓ∞ and ℓ1 error of recovery are presented on the below plots.4

Recovery procedure.are implemented using Mosek optimization software [1].
We start with Gaussian setup in which the signal x has s = 2 non-vanishing components, randomly

drawn, with ‖x‖1 = 10. For the penalized and regular recovery algorithms the contrast matrix H is
computed according to (20) with µ = 0.1. Given a matrix A, we run N = 100 independent simulations
of the signal and the noise ξ. On Figure 1 we plot the average error of recovery as a function of the value
of the parameter L of the nuisance set V for fixed σ = 0.1. For reference, we also trace the corresponding
values of ̺ and s̺, where ̺ = maxi ̺i, the optimal values Opt(i) of the problems (20) (solid line on the
below plots).
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Figure 1: Mean error of recovery of the sparse signal as a function of the nuisance amplitude L. Gaussian
setup parameters: σ = 0.1, s = 2, µ = 0.1, ‖x‖1 = 10.

On Figure 2 we plot in the same conditions the average error of recovery as a function of σ for fixed
value of L = 0.01.

In the next experiment we fix the parameters of estimation and vary the number of non-vanishing
components of the signal x. On Figure 3 we present the error of recovery as a function of s. In this
experiment ‖x‖1 = 5s.

We run the same simulations in the convolution setup. The contrast matrix H for the penalized and
regular recovery algorithms is computed according to (20) with µ = 0.2. On Figure 4 we plot the average
error of recovery as a function of the value of the parameter L of the nuisance set V for σ = 0.1. We provide
on Figure 5 the plot of the average error of recovery as a function of σ for fixed value of L = 0.01. Finally,
on Figure 6 we present the error of recovery as a function of s when parameters of estimators are fixed.

We observe quite different behavior of the recovery procedures in our two setups. In the Gaussian setup
the nuisance signal v ∈ V does not mask the true signal x, and the performance of the Lasso and Dantzig
Selector is quite good in this case. The situation changes dramatically in the convolution setup, where the
performance of the Lasso and Dantzig Selector degrades rapidly when the parameter L of the nuisance set
increases.5

4The fact that the sparse signal x is randomly generated is important. Using the techniques of [14] one can verify that in
the convolution setup there are signals with only 3 non-vanishing components which cannot be recovered even in the noiseless
case (when V = {0} and ξ = 0). In other words, the s-goodness characteristic of the corresponding matrix A is equal to 2.

5The error plot for these estimators on Figure 4 flatters for higher values of L simply because they always underestimate the
signal, and the error of recovery is always less than the corresponding norm of the signal.
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Figure 2: Mean error of recovery of the sparse signal as a function of the noise StD σ. Gaussian setup
parameters: L = 0.01, s = 2, µ = 0.1, ‖x‖1 = 10.
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Figure 3: Mean error of recovery of the sparse signal as a function of the number s of non-vanishing
components of the signal. Gaussian setup parameters: L = 0.01, σ = 0.1, µ = 0.1, ‖x‖1 = 5s.

5 Bounding ̺(ǫ, σ,U , A;µ)
We address the crucial question of what can be said about the magnitude of the quantity ̺(ǫ, σ,U , A;µ),
involved in the risk bounds of Theorem 1. Note that a simple answer to this question is as follows: one
can compute the value by solving the corresponding sequence of problems (Pi) in (20). Yet one may be
interested to know what may be theoretical guaranties of the bounds of Theorem 1 in certain “reference”
situations. In this section we provide two results of this type.

5.0.1 The case of A satisfying the Restricted Isometry Property

Proposition 5 Let A satisfy RIP(δ, k) with some δ ∈ (0, 1) and with

k ≥ 2δ2

(1− δ)2µ2
+ 1, (22)
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Figure 4: Mean error of recovery of the sparse signal as a function of the nuisance amplitude L. Convolution
setup parameters: σ = 0.1, s = 2, µ = 0.2, ‖x‖1 = 10.
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Figure 5: Mean error of recovery of the sparse signal as a function of the noise StD σ. Convolution setup
parameters: L = 0.01, s = 2, µ = 0.2, ‖x‖1 = 10.

and let U be contained in the centered at the origin Euclidean ball of radius r. Then

̺(ǫ, σ,U , A;µ) ≤ 1√
1− δ

[
r + σ

√
2 ln(n/ǫ)

]
. (23)

5.0.2 Oracle inequality

Here we assume that

O(S, ρ∗): A is such that for certain ̺∗ < ∞ and positive integer S and υ > 0 there exists
a routine R with the following property: for every i ∈ {1, ..., n} and every S-element subset
I ⊂ {1, ..., n}, containing i, the routine, given at input I, i and observation

y = Ax+ u+ σe,

associated with unknown sparse signal x ∈ Rn, known to be supported on I, produces an

11
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Figure 6: Mean error of recovery of the sparse signal as a function of the number s of non-vanishing
components of the signal. Convolution setup parameters: L = 0.01, σ = 0.1, µ = 0.2, ‖x‖1 = 5s.
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Figure 7: A typical signal/worst Lasso nuisance. Gaussian setup with parameters: L = 0.05, σ = 0.1, s = 2,
‖x‖1 = 10, µ = 0.1.

estimate Ri(y) of xi such that for any u ∈ U

P (|Ri(Ax+ u+ σe)− xi| ≥ ̺∗) ≤ ǫ.

We intend to demonstrate that in this situation for all s in certain range (which depends on S, A and
̺∗) the quantity ̺ as defined in Theorem 1 is “close” to ̺∗, so that the performance of the penalized and
the regular ℓ1-recoveries for those s is “close” to the performance of the routine R, postulated in O(S, ρ∗).
This allows us to provide a justification for our approach which is as follows:

if there exists a routine which recovers S-sparse signals with a priori known sparsity pattern
within certain accuracy (measured component-wise), then our recovering routines exhibit “close”
performance without any knowledge of the sparsity pattern, albeit in a smaller range of values
of the sparsity parameter.

The precise statement is as follows:
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Figure 8: A typical signal/recovery in Convolution setup. Parameters: L = 0.025, σ = 0.1, s = 2, ‖x‖1 = 10,
µ = 0.2.

Proposition 6 Let ǫ ≤ 1/16. Assume that O(S, ρ∗) takes place, and let µ be a positive real satisfying

µ ≥ ‖A‖̺∗
σ
√
2S ln ǫ−1

. (24)

Then the quantity ̺ associated with ǫ, σ, U , A and µ according to Theorem 1, admits the bound

̺ ≤ 2̺∗

√
1 +

lnn

ln(ǫ−1)
. (25)

6 Non-Euclidean matching pursuit algorithm

The Matching Pursuit algorithm for signal recovery is motivated by the desire to provide a reduced complex-
ity alternative to the ℓ1-recovery problem. Several implementations of Matching Pursuit has been proposed
in the Compressive Sensing literature (see, e.g., [11, 10, 12]). They are based on successive Euclidean projec-
tions of the signal and the corresponding performance results rely upon the bounds on mutual incoherence
parameter µ(A) of the sensing matrix. We are about to show how the construction of Section 3 can be used
to design a specific version of the Matching Pursuit algorithm which we refer to Non-Euclidean Matching
Pursuit (NEMP) algorithm. The NEMP algorithm can be an interesting option if the ℓ1-recovery is to be
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used repeatedly on the observations obtained with the same sensing matrix A; the numerical complexity of
the pursuit algorithm for a given matrix A may only be a fraction of that of the ℓ1-recovery, especially when
used on high-dimensional data.

Suppose that we have in our disposal τ ≥ 0 and a matrix H = [h1, ..., hn], such that

|[I −HTA]ij | ≤ τ, and ν(hj) ≤ ̺ for all 1 ≤ i, j ≤ n, (26)

where ν(·) is the norm defined in (3).
Consider a signal x ∈ Rn such that ‖x− xs‖1 ≤ υ, where, as usual, xs is the vector obtained from x by

replacing all but s largest magnitudes of entries in w with zeros, and let y be an observation as in (2).
Suppose that sτ < 1. Consider the following iterative procedure:

Algorithm 1

1. Initialization: Set v(0) = 0,

α0 =
‖HT y‖s,1 + s̺+ ν

1− sτ
.

2. Step k, k = 1, 2, ...: Given v(k−1) ∈ Rn and αk−1 ≥ 0, compute

(a) u = HT (y −Av(k−1)) and ∆ ∈ Rn with the entries

∆i = sign(ui)[|ui| − ταk−1 − ̺]+, 1 ≤ i ≤ n

(here [a]+ = max[0, a]).

(b) Set v(k) = v(k−1) +∆ and
αk = 2sταk−1 + 2s̺+ υ. (27)

and loop to step k + 1.

3. The approximate solution found after k iterations is v(k).

Proposition 7 Assume that sτ < 1 and that x ∈ Rn is such that ‖x − xs‖1 ≤ υ with a known in advance
value of υ. Then there exists a set Ξ, Prob{ξ ∈ Ξ} ≥ 1 − ǫ, of ”good” realizations of ξ such that whenever
ξ ∈ Ξ, for every x ∈ Rn, every u ∈ U , the approximate solution v(k) and the value αk after the k-th step of
Algorithm 1 satisfy

(ak) for all i v
(k)
i ∈ Conv{0;xi}

(bk) ‖x− v(k)‖1 ≤ αk and ‖x− v(k+1)‖∞ ≤ 2ταk + 2̺.

The proof of Proposition 7 is given Appendix A.8.
Note that if 2sτλ < 1 then also sτ < 1 and Proposition 7 holds true. Furthermore, by (27) the sequence

αk converges exponentially fast to the limit α∞ := 2s̺+υ
1−2sτ :

‖v(k) − x‖1 ≤ αk = (2sτ)k[α0 − α∞] + α∞.

Along with the second inequality of (bk) this implies the bounds:

‖v(k) − x‖∞ ≤ 2ταk−1 + 2ρ ≤ αk

s
,

and, since ‖a‖p ≤ ‖a‖
1

p

1 ‖a‖
p−1

p
∞ for 1 ≤ p ≤ ∞,

‖v(k) − x‖p ≤ s
1−p
p

(
(2sτ)k[α0 − α∞] + α∞

)
.

The bottom line here is as follows:
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Corollary 2 Let G = [g1, ..., gn] be a solution to the series (Pi), i = 1, ..., n of optimization problems (20)
with the optimal values ̺i ≤ ̺. Let x ∈ X(s, υ), and let y be defined in (2). Then the approximate solution
v(t) found by Algorithm 1 after t iterations satisfies

Riskp(v
(t)|ǫ, σ, s, υ) ≤ s

1

p

(
2̺+ s−1υ

1− 2sµ
+ (2sµ)t

[
̺+ s−1(‖GT y‖s,1 + υ)

1− sµ
− 2̺+ s−1υ

1− 2sµ

])
.

Our concluding remark is on the condition

µ(A)

1 + µ(A)
<

1

2s
, (28)

where µ(A) is the mutual incoherence of A.This condition is usually used in order to establish convergence
results for the Matching Pursuit algorithms (see, e.g. [11, 10, 12]). As it is immediately seen, when µ(A) is
well defined (i.e., all columns in A are nonzero), the matrix H = [h1, ..., hn] with the columns

hi =
Ai

(1 + µ(A))AT
i Ai

satisfies for all i = 1, ...,m and j = 1, ..., n the relations

|[I −HTA]ij | ≤
µ(A)

1 + µ(A)
.

It follows that H certifies the validity of the condition Hs(ξ, σ, 1) with the outlined ξ and with all

̺ ≥ max
i

ν(Ai)

(1 + µ(A))‖Ai‖22
, and thus the above H can be readily used in Matching Pursuit. Note that in the situation in question
Corollary 2 recovers some results from [10, 11, 12].
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A Proofs

A.1 Proof of proposition 1

Let
Ξ = {ξ : |hTi y| ≤

√
2 ln(nǫ−1)‖hi‖2 1 ≤ i ≤ n},

so that Prob{ξ ∈ Ξ} ≥ 1 − ǫ. Let us fix ξ ∈ Ξ, a set I ⊂ {1, ..., n} satisfying (7), a signal x ∈ Rn and a
realization u ∈ U of the nuisance, and let x̂ be the value of the estimate (6) at the observation y = Ax+u+σξ.
We are about to verify that x̂ satisfies (8), which, of course, will complete the proof.

Observe that because ξ ∈ Ξ, we have

|hTi (u+ σξ)| ≤ max
u′∈U

|hTi u′|+ σ
√

2 ln(nǫ−1)‖hi‖2 = ρi, 1 ≤ i ≤ n.
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Now, since by assumption δi ≥ ρi, we conclude that |hTi (y − Ax)| ≤ δi for all i, and thus x is a feasible
solution to the optimization problem in (6). It follows that ‖x̂‖1 ≤ ‖x‖1, whence

‖x̂Ī‖1 ≤ ‖x‖1 − ‖x̂I‖1 = ‖xĪ‖1 + ‖xI‖1 − ‖x̂I‖1 ≤ ‖xĪ‖1 + ‖xI − x̂I‖1.
Setting z = x̂− x, the resulting inequality reads ‖x̂Ī‖1 ≤ ‖xĪ‖1 + ‖zI‖1, and thus

‖zĪ‖1 ≤ ‖x̂Ī‖1 + ‖xĪ‖1 ≤ ‖zI‖1 + 2‖xĪ‖1. (29)

Further, |hTi A(x̂ − x)| ≤ |hTi (Ax̂ − y)| + |hTi (Ax − y)|. Since x̂ is feasible for the optimization problem in
(6), we have |hTi (Ax̂− y)| ≤ δi, and we have already seen that |hTi (Ax− y)| ≤ ρi, hence

|hTi Az| ≤ δi + |hTi η| ≤ δi + ρi (30)

for all 1 ≤ i ≤ n. Applying (4) we now get

‖zI‖1 =
∑

i∈I
|zi| ≤

∑

i∈I
[|hTi Az|+ γi‖z‖1] ≤

∑

i∈I
(δi + ρi) +

[
∑

i∈I
γi

]
[‖zI‖1 + ‖zĪ‖1]

= δI + ρI + γI [‖zI‖1 + ‖zĪ‖1] ≤ δI + ρI + 2γI [‖zI‖1 + ‖xĪ‖1] ,
where the concluding ≤ is given by (29). Taking into account that γI < 1

2
, we get

‖zI‖1 ≤
δI + ρI + 2γI‖xĪ‖1

1− 2γI
.

Invoking (29) once again, we finally get

‖z‖1 = ‖zI‖1 + ‖zĪ‖1 ≤ 2‖zI‖1 + 2‖xĪ‖1 ≤ 2
δI + ρI + 2γI‖xĪ‖1

1− 2γI
+ 2‖xĪ‖1,

and we arrive at (8.a).
30. To prove (8.b), we apply (4) to z = x̂− x, thus getting

|zi| ≤ |hTi Az|+ γi‖z‖1.
As we have already seen, |hTi Az| ≤ δi + ρi, and the first ≤ in (8.b) follows; the second ≤ in (8.b) is then
readily given by (8.a).

A.2 Proof of Corollary 1

For x ∈ X(s, υ), when denoting by I the support of xs, we have

‖xĪ‖1 ≤ υ, δI ≤ δ̄s ≤ sδ, ρI ≤ ρ̄s ≤ sρ, γI ≤ γ̄s ≤ sγ.

Assuming γ̄s <
1

2
, for ξ ∈ Ξ (which happens with probability ≥ 1− ǫ), (8) implies that for all u ∈ U it holds

‖x̄reg(y)− x‖1 ≤ 2

1− 2γ̄s
[υ + δ̄s + ρ̄s]

︸ ︷︷ ︸
P

, and ‖x̄reg(y)− x‖∞ ≤ δ + ρ+ 2γ
υ + δ̄s + ρ̄s
1− 2γ̄s︸ ︷︷ ︸

Q

,

which combines with the standard bound ‖z‖p ≤ ‖z‖
1

p

1 ‖z‖
p−1

p
∞ to imply (9). When sγ < 1

2
, we clearly have

P ≤ 2

1− 2sγ
[υ + s(δ + ρ)],

Q ≤ δ + ρ+
2γ

1− 2sγ
[υ + s(δ + ρ)] =

2

1− 2sγ
[γυ + 1

2
[δ + ρ]],

and (10) follows due to φs = P
1

pQ
p−1

p .
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A.3 Proof of Proposition 2

. (i): Let us fix ǫ ∈ (0, 1), and let, same as in the proof of Proposition 1,

Ξ = {ξ : |hTi ξ| ≤
√

2 ln(nǫ−1)‖hi‖2, 1 ≤ i ≤ n},
so that Prob{ξ ∈ Ξ} ≥ 1− ǫ. Let us fix ξ ∈ Ξ, σ ≥ 0, u ∈ U and a signal x ∈ Rn, and let us prove that for
these data (14) takes place, this clearly will prove (i). Let us set x̂ = x̂(y), z = x̂− x, η = u+ σξ. Let also
I be the support of xs.

Observe that by the origin of x̂, we have

‖x̂‖1 + sθ‖HT (Ax̂− y)‖∞ ≤ ‖x‖1 + sθ‖HT (Ax− y)‖∞ = ‖x‖1 + sθ‖HTη‖∞, (31)

and

‖HT (Ax̂− y)‖∞ = ‖HT (Az +Ax− y)‖∞ ≥ ‖HTAz‖∞ − ‖HT (Ax− y)‖∞ = ‖HTAz‖∞ − ‖HT η‖∞.

Combining the resulting inequality with (31), we get

‖x̂‖1 + sθ‖HTAz‖∞ ≤ ‖x‖1 + 2sθ‖HT η‖∞ ≤ ‖x‖1 + 2sθρ, (32)

where the concluding ≤ is due to ξ ∈ Ξ combined with the origin of ρ. Further,

‖x̂‖1 = ‖x+ z‖1 = ‖xI + zI‖1 + ‖xĪ + zĪ‖1 ≥ ‖xI‖1 − ‖zI‖1 + ‖zĪ‖1 − ‖xĪ‖1,
which combines with (32) to imply that

‖xI‖1 − ‖zI‖1 + ‖zĪ‖1 − ‖xĪ‖1 + sθ‖HTAz‖∞ ≤ ‖x‖1 + 2sθρ,

or, which is the same,
‖zĪ‖1 − ‖zI‖1 + sθ‖HTAz‖∞ ≤ 2‖xĪ‖1 + 2sθρ. (33)

Since, by (4),
‖z‖∞ ≤ ‖HTAz‖∞ + γ‖z‖1, (34)

we now get due to ‖zI‖1 ≤ s‖z‖∞:

(1− sγ)‖zI‖1 − sγ‖zĪ‖1 − s‖HTAz‖∞ ≤ 0.

Multiplying the latter inequality by θ and summing up with (33), we get

[θ(1− sγ)− 1]‖zI‖1 + (1− θsγ)‖zĪ‖1 ≤ 2‖xĪ‖1 + 2sθρ.

In view of condition (13), the coefficients in the left hand side are positive, and (14.a) follows.
To prove (14.b), note that from (32) it follows that

‖HTAz‖∞ ≤ 1

sθ
[‖x‖1 − ‖x̂‖1] + 2ρ ≤ 1

sθ
‖z‖1 + 2ρ

which combines with (34) to imply that

‖z‖∞ ≤ 1

sθ
‖z‖1 + 2ρ+ γ‖z‖1.

Recalling that z = x̂− x and invoking (14.a), (14.b) follows.
(ii): Assuming that x ∈ X(s, υ) and θ = 2 we obtain from (14) that uniformly on ξ ∈ Ξ and u ∈ U

‖x̄reg(y)− x‖1 ≤
2υ + 4sρ

1− 2sγ︸ ︷︷ ︸
P

, ‖x̄reg(y)− x‖∞ ≤ (s−1 + 2γ)υ + 4ρ

1− 2sγ︸ ︷︷ ︸
Q

.

Using, as in the proof of Corollary 1, the standard bound

‖z‖p ≤ ‖z‖
1

p

1 ‖z‖
p−1

p
∞ ≤ P

1

pQ
p−1

p

we come to (15), where the second ≤ is due to the fact that in the premise of the theorem γ ≤ 1
2s .
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A.4 Proof of Lemma 1

Recall (cf, e.g., Theorem 2.1 in [14]) that a necessary and sufficient condition for an m × n matrix A to
be s-good, i.e. to allow for exact ℓ1-recovery of s-sparse vectors from the noiseless observation, is the
existence of γ < 1

2
such that for any set I ⊂ {1, ..., n} of cardinality ≤ s and any collection of signs

χ(k) = {χ(k)
i ∈ {±1}, i ∈ I}, k = 1, ...,M [=

(n
s

)
2s], there is a vector hk ∈ Rm such that

χ
(k)
i hTk [A]i ≥ 1− γ and χ

(k)
i hT [A]j ≤ γ for all j 6= i. (35)

Let H = [h1, ...., hM ] ∈ Rm×M . It is obvious that H satisfies Hs(γ) with γ < 1

2
. Indeed, for any x ∈ Rn let

I be the support set of s largest in magnitude components of x and let χ(x) ∈ {χ(x)
i , i ∈ I} the collection of

signs of xi, i ∈ I. We have for the corresponding hx:

‖x‖s,1 − xTAThx =
∑

i∈I
χ
(x)
i xi −

n∑

i=1

(AThx)ixi ≤ γ‖x‖1,

thus
‖x‖s,1 ≤ hTxAx+ γ‖x‖1 ≤ ‖HTAx‖∞ + γ‖x‖1.

A.5 Proof of Lemma 2

(i)⇔(ii) Because of the homogeneity of (19), it is obviously equivalent to

|xi| ≤ |hTAx|+ γ, for all x such that ‖x‖1 ≤ 1.

Then we can write:

γ = max
x

{
eTi x− |hTAx| | ‖x‖1 ≤ 1

}
= max

x
min
g

{
eTi x− gTAx | ‖x‖1 ≤ 1, g ∈ [−h, h]

}

= min
g

max
x

{
(ei −AT g)Tx | ‖x‖1 ≤ 1, g ∈ [−h, h]

}
= min

g

{
‖ei −AT g‖∞ | g ∈ [−h, h]

}

= min
g

{
[AT g]i − 1, |[AT g]j |, j 6= i | g ∈ [−h, h]

}
.

The latter exactly means that there is g ∈ [−h, h] (and thus ν(g) ≤ ν(h) ≤ ρ) which is feasible to (Ii) with
µ = γ. By inverting the above chain of equalities we conclude that h = g will satisfy (19) if g is feasible to
(Ii) with µ = γ.
(ii)⇔(iii) This is immediate too: if (Ii) is feasible for some g, ν(g) ≤ ρ and µ = γ, then, due to the
compactness of the ball {g ∈ Rm| ν(g) ≤ ρ},

γ ≥ min
g

{
‖ei −AT g‖∞ | ν(g) ≤ ρ

}
= min

g
max
x

{
(ei −AT g)x | ν(g) ≤ ρ, ‖x‖1 ≤ 1

}

= max
x

min
g

{
eTi x− gTAx | ν(g) ≤ ρ, ‖x‖1 ≤ 1

}
= max

x

{
eTi x− ρν∗(Ax) | ‖x‖1 ≤ 1

}
,

and we come to |xi| ≤ ρν∗(Ax) + γ for all x such that ‖x‖1 ≤ 1.
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A.6 Proof of Proposition 5

By (ii) of Proposition 4, all we need to prove is the bound

‖x‖∞ ≤ ̺ν∗(Ax) + γ‖x‖1

for all x ∈ Rn. We are in the situation where the unit ball U + σ
√

2 ln(n/ǫ)B of the norm ν∗(·), where
B is the unit Euclidean ball, is contained in the Euclidean ball of radius λ = r + σ

√
2 ln(nǫ−1), whence

ν∗(z) ≥ ‖z‖2/λ for all z. In other words, it suffices to prove that for all x ∈ Rn,

‖x‖∞ ≤ ̺λ−1‖Ax‖2 + γ‖x‖1. (36)

When proving this relation, we can assume w.l.o.g. that |x1| ≥ |x2| ≥ ... ≥ |xn|. Setting t = floor(k/2), let
x0 be the vector obtained from x by zeroing all entries except for the first one, x1 be the vector obtained
from x by zeroing all entries with indices outside of 2, 3, ..., t, x2 be obtained from x by zeroing all entries not
in t+ 1, ..., 2t, x3 be obtained from x by zeroing all entries not in 2t+1, 2 + 2, ..., .3t, and so on. We clearly
have ‖x2‖2 ≤ t−1/2‖x0 + x1‖1 and ‖xj‖∞ ≤ t−1/2‖xj−1‖1, j = 3, ..., q, where q is such that

∑q
i=0 x

i = x.
Setting ‖Ax‖2 = α and ‖A(x0 + x1)‖2 = β, we have

αβ = ‖Ax‖2‖A(x0 + x1)‖2 ≥ (Ax)TA(x0 + x1)

= (x0 + x1)TATA(x0 + x1) +
1∑

j=2

(x0 + x1)TATAxj ≥ β2 −
q∑

j=2

δ‖x0 + x1‖2‖xj‖2,

where the last ≥ is given by the following well known fact [8]: if A is RIP(δ, k) and u, v are supported on
a common set of indices I of cardinality k and are orthogonal, we have |uTATAv| ≤ δ‖u‖2‖v‖2. It follows
that

αβ ≥ β2 − δ‖x0 + x1‖2
q∑

j=2

‖xj‖2 ≥ β2 − δt−1/2‖x0 + x1‖2
q∑

j=2

‖xj−1‖1

≥ β2 − δt−1/2‖x0 + x1‖2
q∑

j=1

‖xj‖1 ≥ β2 − δt−1/2‖x0 + x1‖2‖x‖1.

Hence

β ≤ α+
δ‖x‖1‖x0 + x1‖2√

tβ
≤ α+

δ‖x‖1√
t(1− δ)

,

and

‖x‖∞ ≤ ‖x0 + x1‖2 ≤
β√
1− δ

≤ α√
1− δ

+
δ‖x‖1

(1− δ)
√
t
.

Recalling that α = ‖Ax‖2 and t = floor(k/2), (36) follows.

A.7 Proof of Proposition 6

Proof. We start with an appropriate translation of O(S, ρ∗). Let i ∈ {1, ..., n} and let I ∋ i be a subset of
{1, ..., n} of cardinality S. Let R(S) be the linear space of all vectors supported on I, and let XR = {x ∈
R(S)| ‖x‖2 ≤ R}. Assume that we are given a noisy observation y of the signal z = (x, u) ∈ (XR,U), and
that we want to recover from this observation the linear form xi of the signal. From O(S, ρ∗) it follows that
there exists a recovering routine such that for every x ∈ XR and u ∈ U the probability of recovering error
to be ≥ ̺∗ is ≤ ǫ. Assuming ǫ ≤ 1/16 and applying the celebrated result of Donoho [9] there exists a linear
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estimate φT
Ry such that for every x ∈ XR and u ∈ U the probability for the error of this estimate to be

≥ 1.22̺∗ is ≤ ǫ. Moreover (cf Proposition 4.2 of [13]), one can pick φR such that

∀x ∈ XR, u ∈ U ,
{

P (φT
R[u+ σe+AIx]− xi > 1.22̺∗) ≤ ǫ/2,

P (φT
R[u+ σe+AIx]− xi < −1.22̺∗) ≤ ǫ/2,

where AI is the m×S submatrix of A comprised of columns with indexes from I. Setting p(R) = max
u∈U

|φT
Ru|

and r(R) = ‖AT
I φR − ei‖2, where ei is the i-th basic orth (so that xi = eTi x), we conclude that

P (σφT
Re > 1.22̺∗ −Rr(R)− p(R)) ≤ ǫ/2,

P (σφT
Re < −1.22̺∗ +Rr(R) + p(R)) ≤ ǫ/2.

Hence, denoting by erfinv(ǫ) the value of the inverse error function at ǫ, we obtain

erfinv
( ǫ
2

)
σ‖φR‖2 ≤ 1.22̺∗ −Rr(R)− p(R).

It follows that as R → ∞ φR remains bounded and r(R) = ‖ei−AT
I aR‖2 → 0. Thus, there exists a sequence

Rk → +∞, of values of R such that φRt goes to a limit φ as k → ∞, and this limit satisfies the relations

erfinv
( ǫ
2

)
σ‖φ‖2 ≤ 1.22̺∗, and AT

I φ = ei.

Taking into account that erfinv
(
ǫ
2

)
≥ 0.92

√
ln(1/ǫ) when ǫ ≤ 1/16, we arrive at the following result:

Lemma 3 In the premises of O(S, ρ∗), for every i ≤ n and every S-element subset I ∋ i of {1, ..., n} there
exists φ ∈ Rm such that φTAi = 1, φTAj = 0 for all j ∈ I, j 6= i, and

max
u∈U

|uTφ|+ σ
√

ln(ǫ−1)‖φ‖2 ≤
√
2̺∗.

We claim that in this case for all x ∈ Rn it holds:

‖x‖∞ ≤ 2

√
1 +

lnn

ln(ǫ−1)
̺∗ν∗(Ax) +

̺∗‖A‖
σ
√

2S ln(ǫ−1)
‖x‖1. (37)

Note that this claim combines with the result of Proposition 4 to imply (25). To prove (37), let us fix
x; w.l.o.g. we may assume that x1 = |x1| ≥ |x2| ≥ ... ≥ |xn|. Let us set x0 = [x1; ...;xS ; 0; ...; 0] and
x1 = [0; ...; 0;xS+1; ...;xn]. Observe that

‖x1‖2 ≤ ‖x1‖1/2∞ ‖x1‖1/21 ≤ S−1/2‖x0‖1/21 ‖x1‖1/21 ≤ 1

2
S−1/2‖x‖1.

By Lemma 3 there exists φ ∈ Rm such that

‖φ‖2 ≤
√
2̺∗

σ
√

ln(ǫ−1)
and ν(φ) ≤ 2̺∗

√
1 +

ln(n)

ln(ǫ−1)
,

with φTA1 = 1 and φTAi = 0 for 2 ≤ i ≤ S. We have

ν(φ)ν∗(Ax) ≥ φTAx = φTAx0 + φTAx1 = x1 + φTAx1 = ‖x‖∞ + φTAx1

≥ ‖x‖∞ − ‖φ‖2‖Ax1‖2 ≥ ‖x‖∞ − 1

2
‖A‖S−1/2

√
2̺∗

σ
√

ln(ǫ−1)
,

as required in (37).
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A.8 Proof of Proposition 7

Let for ǫ ∈ (0, 1), same as in the proofs of Proposition 1 and 2, Ξ = {ξ : |hTi ξ| ≤
√

2 ln(nǫ−1)‖hi‖2, 1 ≤ i ≤
n}, so that, indeed, Prob{ξ ∈ Ξ} ≥ 1− ǫ. Then for η = y −Ax = u+ σξ, by the definition (3) of the norm
ν and because ν(hi) ≤ ̺, we have ‖HT η‖∞ ≤ ̺ for all u ∈ U and ξ ∈ Ξ.

Now, let us proceed by induction. First, let us show that (ak−1, bk−1) implies (ak, bk). Thus, assume
that (ak−1, bk−1) holds true. Let z(k−1) = x − v(k−1). By (ak−1), z

(k−1) is supported on the support of x.
Note that

z(k−1) − u = x− v(k−1) −HT (y −Av(k−1)) = (I −HTA)(x− v(k−1))−HT η

= (I −HTA)z(k−1) −HT η,

Then by (26) for any 1 ≤ i ≤ n,

−τ
∑

j

|z(k−1)
j | − ̺ ≤ z

(k−1)
i − ui ≤ τ

∑

j

z
(k−1)
j + ̺,

consequently,

− γ := −ταk−1 − ̺ ≤ z
(k−1)
i − ui ≤ ταk−1 + ̺ := γ, (38)

so that the segment Si = [ui− γ, ui+ γ] of the width ℓ = 2ταk−1+2̺, covers z
(k−1)
i , and the closest to zero

point of this interval is

∆̃i =

{
[ui − γ]+, ui ≥ 0,
−[|ui| − γ]+, ui < 0,

that is, ∆̃i = ∆i for all i. Since the segment Si covers z
(k−1)
i and ∆i is the closest to 0 point in Si, while

the width of Si is at most ℓ, we clearly have

(a) ∆i ∈ Conv
{
0, z

(k−1)
i

}
,

(b) |z(k−1)
i −∆i| ≤ ℓ.

(39)

Since (ak−1) is valid, (39.a) implies that

v
(k)
i = v

(k−1)
i +∆i ∈

[
v
(k−1)
i +Conv

{
0, xi − v

(k−1)
i

}]
⊆ Conv{0, xi},

and (ak) holds. Further, let I be the support of xs. Relation (ak) clearly implies that |z(k)i | ≤ |xi|, and we
can write due to (39.b):

‖x− v(k)‖1 =
∑

i∈I
|xi − [v

(k−1)
i +∆i]|+

∑

i 6∈I
|z(k)i |

≤
∑

i∈I
|z(k−1)

i −∆i|+
∑

i 6∈I
|xi| ≤ sℓ+ µ = αk.

Since by (39.b)

‖x− v(k)‖∞ = ‖x− v(k−1) −∆‖∞ ≤ ℓ = 2ταk−1 + 2̺,

we conclude (bk). The induction step is justified.
It remains to show that (a0, b0) holds true. Since (a0) is evident, all we need is to justify (b0). Let

α∗ = ‖x‖1,
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and let u = HT y. Same as above (cf. (38)), we have for all i:

|xi − ui| ≤ τα∗ + ̺.

Then

α∗ =
∑

i∈I
|xi|+

∑

i 6∈I
|xi| ≤

∑

i∈I
[|ui|+ τα∗ + ̺] + υ ≤ ‖u‖s,1 + sτα∗ + s̺+ υ.

Hence

α∗ ≤ α0 =
‖u‖s,1 + s̺+ υ

1− sτ
,

which implies (b0).
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