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Abstract—Development of dynamic spectrum access and al-
location techniques recently have made feasible the vision of
cognitive radio systems. However, a fundamental question arises:
Why would licensed primary users of a spectrum band allow
secondary users to share the band and degrade performance
for them? This incentive issue has been sought to be addressed
by designing incentive-compatible auction mechanisms [3]. This,
however, does not solve the problem as the auctioneer (usually
the primary user) is also an interested party. So, why would
the secondary user trust the primary user to not manipulate
the auction. We propose that a more appropriate mechanism
to solve this incentive problem is a contractual mechanism.
In this paper, we consider a simple setting: A single primary
transmitter-receiver pair and a single secondary transmitter-
receiver pair with a Gaussian interference channel between them.
We consider the setting of complete information when channel
attenuation coefficients and noise levels at the receivers are
common knowledge. We consider when receivers cooperate to
do successive-interference cancellation. In contrast to the results
of [4] for unlicensed bands, we show that it is possible to achieve
socially optimal rate allocations with contract mechanisms in
licensed bands.

I. INTRODUCTION

The scarcity of spectrum is becoming an impediment to
the growth of more capable wireless networks. Several mea-
sures are sought to address this problem: Freeing up unused
spectrum, sharing of spectrum through new paradigms such as
cognitive radio sensing, as well as sophisticated information
theoretic schemes and network coding methods. Nearly all
such methods presume perfect user cooperation. This, how-
ever, is an unjustified assumption. And with non-cooperative,
selfish users who act strategically, network (sum-rate) capacity
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can be arbitrarily bad as shown for the single-hop Gaussian
interference channel in unlicensed bands [4].

For licensed bands, one of the key challenges is when users
have cognitive radio capability, why would primary users give

up their ownership rights over their spectrum and share it

with secondary users at the cost of performance degradation to

themselves? FCC mandates are not going to solve the problem
as primary users can always transmit junk to keep channels
busy and deter secondary users [12], [1].

This incentive issue has been sought to be addressed by
guaranteeing the primary user a payment in lieu of sharing his
spectrum and suffering some performance degradation. This
has been sought to be implemented in various ways: dynamic
competitive pricing [13], [9], [11], and spectrum auctions [7],
[6], [3] . While competitive pricing is usually not incentive-
compatible and not robust to manipulation by strategic users,
carefully designed auctions can potentially be strategy-proof
and yield socially optimal outcomes. In many scenarios, we
can even operate them as double-sided auctions or markets
when there are both buyers and sellers. Unfortunately, for
auctions to be practical, they must be operated by a neutral,
disinterested party as an auctioneer. Otherwise, the auctioneer
can manipulate the auctions to his advantage. This situation is
unlikely to arise in most cognitive radio systems. The spectrum
sharing and allocation must happen as a direct result of
interaction between a primary user and one or more secondary
users. Thus, a principal-agent model is more appropriate for
such a scenario [10], [2]. One user (possibly the primary)
acts as a principal, and offers several contracts to the agent(s)
(possibly the secondary user(s)). The agent(s) then picks one
of the possible contracts or may reject all of them. We specify
the class of contracts that a primary user can offer such
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that both the primary and the secondary users are able to
maximize their individual utilities while still achieving a social
welfare objective. The principal-agent model has been used
in solving some problems in communication networks such
as network formation [8] and wireless multihop routing [5].
The principal-agent model and the contractual mechanism
approach to spectrum sharing is new.

II. MODEL AND RELATED WORK

Suppose there are M transmitter-receiver pairs that share the
Gaussian Interference Channel (GIC) of bandwidth W . We can
model it as: yi[n] = ΣMj=1hj,ixj [n]+zi[n]; i = 1, . . .M where
xi is the signal from the transmitter i, yi is the signal received
at the receiver i, hj,i is the channel attenuation coefficient from
transmitter j to receiver i, and the noise process zi are i.i.d.
over time with distribution N (0, N0). Each user could treat the
signal from other users as interference. We also assume that
the users use random Gaussian codebooks for transmission.
Then, the maximum rate that the system can achieve is given
by Ri = W log

(
1 + ci,iPi

N0W+Σj 6=icj,iPj

)
, ∀i where Pi is the

transmitted power of the user i, and ci,j = |hi,j |2. Also, due
to power constraints, Pi must satisfy Pi ≤ P̄i for all i.

The spectrum sharing problem is to determine a set of power
allocations P = (P1, · · · , PM ) that maximize a given global
utility function (such as the achievable sum-rate

∑
iRi) while

satisfying the power constraints. However, users are selfish and
may not cooperate with each wanting to maximize its’ own
rate. Thus, they pick their power allocations P each wanting
to maximize their own rate and leading to a spectrum sharing
game between them. To predict the outcome of such a game,
we look at its’ Nash equilibrium P ∗ such that given the power
allocations of all the other users P ∗−i, user i’s rate is maximized
at P ∗i , i.e., Ri(P ∗i , P

∗
−i) ≥ Ri(Pi, P ∗−i), ∀Pi ≤ P̄i. In [4], it

was shown that in a flat fading GIC a Nash equilibrium (NE)
exists, all NE are pure strategy equilibria, and under certain
conditions, full-spread power allocation is a NE. Moreover
they have shown that under some conditions, full-spread is
the unique NE. However, in most cases, the set of rates that
result from the full-spread NE is not Pareto efficient. So there
may be a significant performance loss if the M users operate
at this point due to lack of cooperation. In fact, in many cases
this inefficient outcome is the only possible outcome of the
game. For the more general parallel GIC, existence of Nash
equilibrium was proved in [14].

The above discussion assumed that users did not use cooper-

ative schemes from multi-user information theory. A particular
scheme of relevance is Successive Interference Cancellation

(SIC) which works as follows. Suppose user 1 decodes his own
signal by treating interference from all other users as noise,
then he can achieve a rate R1 = log

(
1 + c1,1P1

N0W+Σj>1cj,1Pj

)
.

Now, user 2 can do the same and decode user 1’s signal first
as above. Then, he can subtract this signal from the received
signal, and decode his own signal by treating all other users
as noise and achieve a rate R2 = log

(
1 + c2,2P2

N0W+Σj>2cj,2Pj

)
,

which is greater than what he could have received if he had
treated user 1’s signal as noise as well. Proceeding in this way,
user M then achieves a rate RM = log

(
1 + cM,MPM

N0W

)
.

Fig. 1. Gaussian Interference channel with a primary and secondary user

When there are only two users, we will call user 2 as
a dominant user, and the other as a non-dominant user.
If we proceed according to a different permutation on the
users, we will achieve a different rate vector R

′
. By time-

sharing between the various achievable rate vectors, we get
an achievable rate region RSIC that is strictly larger than that
obtained with the naive non-cooperative schemeRnaive. Thus,
all users could potentially gain if we could find a way for them
to cooperate. This would be successful if their incentives are
aligned for cooperation.

III. CONTRACT DESIGNS FOR SPECTRUM SHARING

Spectrum sharing with naive coding, i.e., treating inter-
ference from other users as noise can lead to inefficient
outcomes as Nash equilibria. Thus, a question arises whether
it is possible to alleviate this inefficiency by introducing an
incentive alignment mechanism. Our focus in this paper is a
licensed band setting with cognitive radios where there is a
primary user who owns the spectrum band and a secondary

user who wants to share the spectrum with the primary
user. When there are only two users sharing a Gaussian
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interference channel, if they both agree to cooperate in doing
successive interference cancellation, the dominant user suffers
no performance degradation at all. His achievable rate is the
same as if the other user were not present. However, the
primary user still may not want to share spectrum as sharing
spectrum by doing more sophisticated coding (e.g., SIC) can
entail a coding complexity cost, thus pointing out to a clear
need for an incentive alignment scheme for sharing spectrum
using advanced cooperative communication schemes such as
SIC.

We now introduce the principal-agent model [10][2] where
the principal offers one or more contracts to the agent. The
agent then selects one or rejects all. Denote the power used
by the principal as Pp and that used by the agent as Pa. Let
the utility of the principal be its rate Rp(Pp, Pa) and utility
of the agent be its rate Ra(Pa, Pp). Denote by λ(Pp, Pa) the
payment that the agent makes to the principal. This can be
positive or negative.

We define a spectrum contract to be the tuple
(λ(Pp, Pa), Pp, Pa) such that the operating point is (Pp, Pa)
and the payment is λ(Pp, Pa). The principal wants to design
a contract payment function λ(Pp, Pa) that maximizes his
payoff Rp + λ once the agent has accepted and picked the
operating point (Pp, Pa). Let Ūp and Ūa denote the reservation
utilities for the principal and the agent that they can derive if
the contract is not accepted. The agent will accept a contract
only if he can find a feasible operating point at which his
payoff is at least as large as his reservation utility Ūa. This is
called an individual rationality (IR) constraint, i.e., it has to be
rational for the agent to participate. Furthermore, among the
IR and IC operating points, he will pick one that maximizes
his payoff. This is called incentive compatibility (IC). Thus,
in designing the contracts, the principal should take both the
IR and IC constraints into account. The principal’s problem
is then given by the following optimization problem.

CD-OPT:

max
Pp,Pa,λ

Rp(Pp, Pa) + λ(Pp, Pa)

s.t. [IR]: Ra(Pa, Pp)− λ(Pp, Pa) ≥ Ūa
[IC]: Ra(Ps, Pp)− λ(Pp, Pa) ≥

Ra(P
′

a, Pp)− λ(Pp, P
′

a),∀Pa′ ≤ P̄a.

The rate functions Rp, Ra above are given by R1(P1, P2) =
W log(1 + c1,1P1

N0W+c2,1P2
). The optimization problem CD-OPT

above is a non-convex, variational problem, solving which, in
general, is difficult. The existence of a solution (λ∗, P ∗P , P

∗
a )

will be established by construction in subsequent discussion.

We assume a complete information setting. The primary and
the secondary user, if they agree to a contract, use successive
interference cancellation (SIC). Either the primary or the
secondary user can act as a dominant user. Furthermore, either
of the dominant or the non-dominant user can be the principal,
i.e., the one who proposes the contract. We denote the trans-
mission powers of the dominant and non-dominant users as
Pd and Pnd respectively with power constraints Pd ≤ P̄d and
Pnd ≤ P̄nd. Without loss of generality, we will assume W = 1
and N0 = 1. We will assume the utilities of the two users to
be equal to their rates, i.e., ud = Rd(Pd, Pnd) = log(1 + Pd)
and und = Rnd = log

(
1 + Pnd

1+Pd

)
.

We define a social welfare function as S(Pd, Pnd) =
ud(Pd, Pnd) + und(Pnd, Pd). We say that a rate allocation
(R∗∗d , R

∗∗
nd) is socially optimal if it is achieved by a power

allocation (P ∗∗d , P ∗∗nd) that maximizes the social welfare func-
tion subject to the power constraints. We will say that a
spectrum contract is optimal if it achieves a socially optimal
rate allocation.

IV. OPTIMAL CONTRACTS WITH ASYMMETRIC CHANNEL

GAINS

In an earlier paper [15], we have considered the setting when
the channels gains are symmetric, i.e., when ci,i = ci,j . In this
paper, we generalize those results. We denote Pij = ci,jPi

to be the received power from the ith transmitter at the jth

receiver. Thus, Pps will denote the power from the primary’s
transmitter at the secondary’s receiver with similar interpreta-
tions for Ppp, Psp, Pss. We would like to specify the conditions
under which (i) an optimal contract exists, (ii) the optimal
contract results in a Pareto-optimal operating point, and (iii)
the optimal contract results in a socially optimal operating
point.

The dominant user’s rate depends only on its received power
at its own receiver. For example, when the primary acts as
the dominant user, its transmission rate will be log(1 +Pp,p).
For the SIC to be successful, the transmission rate of the non-
dominant user must be less than a maximum value. This maxi-
mum rate will depend only on the power levels at the dominant
user’s receiver, not on the power levels at the non-dominant
user’s receiver. Thus, the rate of the non-dominant user must
be less than this maximum allowed rate, Rallowed. For example,
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when the primary acts as the dominant user, the Rallowed for the
secondary is Rnd(Ps,p, Pp,p) = log

(
1 + Ps,p

1+Pp,p

)
. However,

the maximum rate at which the non-dominant user can transmit
to its own receiver depends only on its received power and
the interference power level at its own receiver, not on the
power levels at the dominant user’s receiver. We denote this
as the maximum achievable rate, Rachieve. For example, when
the primary is the dominant user, the Rachieve for the secondary
is Rnd(Ps,s, Pp,s) = log

(
1 + Ps,s

1+Pp,s

)
. So, when Rachieve is

greater than the Rallowed, the non-dominant user can transmit
at the rate Rallowed. But, when Rachieve is less than Rallowed,
the secondary’s receiver cannot decode a data stream which
is transmitted at a rate Rallowed, since it is greater than the
capacity Rachieve. So, the best that the non-dominant user can
do is to transmit at the maximum achievable rate Rachieve.
Since the contract design optimization problem depends on
the actual transmission rate, the solution also depends on the
relative values of Rallowed and Rachieve.

A. Optimal Contracts Without Time-Sharing

We can address the optimal contract design problem by con-
sidering a particular case of principal-agent model spectrum
sharing game in a two user cognitive radio setting. The results
obtained in this case can be generalized to other cases very
easily.

Case (1): Primary user is the dominant user and the principal

: Since the primary is acting as the dominant user, it can
transmit at its maximum rate Rd(Pp,p, Ps,p) = log(1 + Pp,p).
The secondary, which is the non-dominant user, is allowed
to transmit at maximum rate Rallowed = Rnd(Ps,p, Pp,p) =
log
(

1 + Ps,p

1+Pp,p

)
. The maximum rate that the secondary user

can successfully transmit to its own receiver is given by
Rachieve = Rnd(Ps,s, Pp,s) = log

(
1 + Ps,s

1+Pp,s

)
. We solve the

optimization problem by considering two sub cases separately.

Case (1.a): When Rachieve > Rallowed : Here, the primary being
the dominant user, will transmit at the rate Rd(Pp,p, Ps,p).
The secondary user will transmit at the rate Rallowed. So, the
primary user’s optimization problem is as follows,

maxPp,Ps,λ Rd(Pp,p, Ps,p) + λ(Pp, Ps) s.t.

[IR]: Rnd(Ps,p, Pp,p)− λ(Pp, Ps) ≥ 0

[IC]: Rnd(Ps,p, Pp,p)− λ(Pp, Ps) ≥

Rnd(P
′

s,p, Pp,p)− λ(Pp, P
′

s),∀Ps′ ≤ P̄s.

The [IR] constraint implies that the maximum payment λ that

the primary user can get is Rnd(Ps,p, Pp,p). Thus, the principal
can offer a contract λ∗d(Pp, Ps) = Rnd(Ps,p, Pp,p). So the
optimization problem reduces to

max
Pp≤P̄p,Ps≤P̄s

Rd(Pp,p, Ps,p) +Rnd(Ps,p, Pp,p)

which can be reduced further to

max
Pp≤P̄p,Ps≤P̄s

log (1 + Pp,p + Ps,s) .

The solution for this is P ∗p = P̄p, P
∗
s = P̄s. Thus, when

Rachieve > Rallowed, we can find an optimal contract, and
the operating point is on the Pareto-optimal boundary of the
capacity region. The issue of social optimality is deferred to
the last subsection.

Case (1.b): When Rachieve < Rallowed : In this case, the
primary user will transmit at its maximum rate Rd(Pp,p, Ps,p).
As the non-dominant user, the secondary user can transmit
at a rate Rallowed. However, since this rate is greater than
its achievable rate, secondary user’s receiver cannot decode
the data stream at this rate. So, the best that the secondary
user can do is to transmit at its achievable rate Rachieve =
Rnd(Ps,s, Pp,s) = log

(
1 + Ps,s

1+Pp,s

)
. Then, the primary user’s

optimization problem is the following:

maxPp,Ps,λ Rd(Pp,p, Ps,p) + λ(Pp, Ps) s.t.

[IR]: Rnd(Ps,s, Pp,s)− λ(Pp, Ps) ≥ 0

[IC]: Rnd(Ps,s, Pp,s)− λ(Pp, Ps) ≥

Rnd(P
′

s,s, Pp,s)− λ(Pp, P
′

s),∀Ps′ ≤ P̄s.

Again, the [IR] constraint implies that the maximum payment
λ that the primary user can get is Rnd(Ps,s, Pp,s). Thus, the
principal can offer a contract λ∗d(Pp, Ps) = Rnd(Ps,s, Pp,s).
So, the optimization problem reduces to

max
Pp≤P̄p,Ps≤P̄s

log
(

(1 + Pp,p)(1 + Ps,s + Pp,s)
(1 + Pp,s)

)
.

Since Ps,s = cs,sPs, the above expression is monotonically
increasing in Ps. So, one part of the solution is P ∗s = P̄s.
Now, when cp,p > cp,s, the expression (1+Pp,p)

(1+Pp,s) = (1+cp,pPp)
(1+cp,sPp)

is monotonically increasing in Pp. So, we are looking for the
solution of a monotonically increasing function in Pp. Thus,
the obvious solution for the optimization problem stated above
is P ∗p = P̄p, P

∗
s = P̄s.

So, when the direct channel gain cp,p of the dominant user
is greater than or equal to its cross channel gain cp,s, we have
an optimal contract, and the operating point is on the Pareto-
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optimal boundary. Remarkably, the result depends only on the
channel gain of the dominant user. However, when cp,p < cp,s,
we are no longer trying to solve the optimization problem
for a monotonically increasing sequence. We can rewrite the
optimization problem as:

max
Pp≤P̄p

log
(

(1 + cp,pPp)(1 + cs,sP̄s + cp,sPp)
(1 + cp,sPp)

)
.

Since log is a monotonically increasing function, this is
equivalent to

max
Pp≤P̄p

(1 + cp,pPp)(1 + cs,sP̄s + cp,sPp)
(1 + cp,sPp)

.

To simplify the optimization problem, we can make a
variable change as follows. We define P

′

p = cp,pPp and
P̄
′

p = cp,pP̄p. Since (1 + cs,sP̄s) is a constant in this
optimization problem, we write K = 1 + cs,sP̄s. Also, we
define, α = cp,s

cp,p
and from the condition cp,p < cp,s, we see

that α > 1. So, the optimization problem is:

max
P ′p≤P̄

′
p

(1 + P
′

p)(K + αP
′

p)
(1 + αP ′p)

.

Treating it as an unconstrained optimization problem, and
differentiate with respect to P

′

p to find critical points, we obtain
the equation

(α2)P
′

p

2
+ (2α)P

′

p + (K + α− αK)
(1 + αP ′p)2

= 0

The above equation will have a real solution only if the
discriminant 4α2−4α2(K+α−αK) is non-negative. This im-
plies that at the candidate maxima/minima, (K+α−αK) < 1.
To check whether this is a maxima or minima, we have to
look at the second derivative of the objective function, which
is equal to (2α−2α(α+K−Kα))

(1+αP ′p)3
. Since (K + α − αK) < 1 at

the candidate maxima/minima, the second derivative is always
positive and these are the minima of the objective function.
Thus, we can conclude that the maximum of the objective
function is achieved at either of the two boundary points where
P
′

p = P̄
′

p, or at P
′

p = 0. If we do away with the variable change
we applied, this is equal to Pp = P̄p, or Pp = 0. So, the
solution of the optimization problem is P ∗p = P̄p, P

∗
s = P̄s

or, P ∗p = 0, P ∗s = P̄s. The exact solution depends on the
channel gains, and the maximum power constraints of each
user. Interestingly, the solution P ∗p = 0, P ∗s = P̄s suggest that
the best possible strategy for the primary user is not to transmit
anything, which is not a Pareto-optimal solution. In short,

when the direct channel gain ci,i of the dominant user is less
than its cross channel gain ci,j , a Pareto-optimal equilibrium
contract does not exist.

B. Moral Hazards

When the channels are asymmetric and Rachieve < Rallowed,
the non-dominant user can only transmit at Rachieve and he has
no incentive to deviate from an agreement. However, when
Rachieve > Rallowed, the non-dominant user can increase his
rate from the agreed upon Rallowed to a higher rate Rachieve

and thus increase his payoff. There is a moral hazard problem
due to hidden action by the non-dominant user. Thus, if a
contract mechanism is not robust to this moral hazard problem,
such a mechanism will fail. From the previous discussion, it is
clear that at an equilibrium, the dominant user transmits at the
maximum possible rate and has no incentive to deviate. Thus,
the moral hazard problem is due only to the hidden action by
the non-dominant user. We now propose mechanisms to avoid
such a problem.

When the primary user is a non-dominant user, the sec-
ondary user transmits at the dominant user rate Rd(Ps,s, Pp,s),
and makes a non-zero payment λ∗(Pp, Ps) to the primary
user for sharing the spectrum. The primary user can accept
such a payment but then deviate from the agreed operating
point causing the secondary user to obtain a lower rate. Such
a hidden action by the primary user can be prevented by a
deferred payment by the secondary user. The payment is made
after accessing the channel at the agreed rate. With this simple
modification, if the primary user deviates, the secondary user
simply does not pay the primary user whose utility will then
fall below his reservation utility.

When the secondary user acts as the non-dominant user,
a deferred payment mechanism does not help to solve the
moral hazard problem. The secondary user can make the
payment, deviate from the agreed operating point, derive a
positive payoff and leave the game. A rational primary user
can anticipate that such a deviation by the secondary user will
cause his payoff to fall below his (positive) reservation utility
and thus not participate in the mechanism. To prevent such
a hidden action by the secondary user, the primary can be
paid a refundable access fee equal to his reservation utility in
addition to the usage payment. If the secondary user deviates,
the primary user forfeits the secondary user’s access fee else
it is refunded.

Thus, through simple payment mechanisms that exploit
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timing, the moral hazard problem in spectrum sharing contract
mechanisms can be alleviated.

C. Socially Optimal Contracts

Fig. 2. Capacity region of the Gaussian Interference Channel

When the channel coefficients are symmetric, the capacity
region of a two user GIC with SIC is defined by the constraints
R1 ≤ log(1 + P̄1), R2 ≤ log(1 + P̄2), R1 + R2 ≤ log(1 +
P̄1 + P̄2). Thus, the Pareto-optimal boundary of the capacity
region is a straight line with slope −1 and all the points on
the Pareto-optimal boundary are socially optimal (i.e., the sum
rate is maximum).

When the channel coefficients are asymmetric, this is no
longer the case. When the primary user acts as a dominant
user, it can transmit at a maximum rate Rd = log(1 + Pp,p),
whereas the secondary user which acts as the non-dominant
user is allowed to transmit at a maximum rate Rnd =
log
(

1 + Ps,p

1+Pp,p

)
. Thus, the sum rate at the operating point

A is Rsum,A = log(1 + Pp,p + Ps,p). Similarly, when the
secondary user acts as the dominant user, it will transmit
at a maximum rate Rd = log(1 + Ps,s) and the primary
which acts as non-dominant user is allowed to transmit at a
maximum rate Rnd = log

(
1 + Pp,s

1+Ps,s

)
. So, the sum rate at

the operating point B is Rsum,B = log(1 + Ps,s + Pp,s).
Any operating point on the line segment AB in Figure 2
can be achieved by appropriate time sharing between the
primary and the secondary user. However, since the slope
is different from −1, the maximum value of the sum rate
is achieved either at A (when Rsum,A > Rsum,B) or at B
(when Rsum,A < Rsum,B). So the socially optimal operating
point is either A or B. However the operating point is decided
based not on this optimality condition, but based on the

preference of the users. So, if the contractual mechanism
selects the non-optimal operating point, the efficiency loss can
be characterized by price of anarchy.

However, the question we now need to address is, is there
an optimal contract in which the player’s preferred operating
point coincides with the socially optimal operating point? We
can show that if we allow the option of time sharing, the
operating point resulting from the optimization problem will
coincide with the socially optimal operating point.

D. Optimal Contracts with Time-Sharing

We can set up the problem of time sharing between the
primary and secondary user as follows. Denote by α the time-
sharing variable. The principal acts as dominant user α fraction
of the time, and as a non-dominant user ᾱ = 1 − α fraction
of the time with α ∈ [0, 1]. When the primary user acts as the
principal, his optimization problem is:

max
Pp,Ps,α,λ

αRd(Pp,p, Ps,p) + ᾱRnd(Pp,s, Ps,s) + λ(Pp, Ps, α)

[IR]: αRnd(Ps,p, Pp,p) + ᾱRd(Ps,s, Pp,s)− λ(Pp, Ps, α) ≥ 0

[IC]: αRnd(Ps,p, Pp,p) + ᾱRd(Ps,s, Pp,s)− λ(Pp, Ps, α) ≥

αRnd(P
′

s,p, Pp,p) + ᾱRd(P
′

s,s, Pp,s)− λ(Pp, P
′

s, α),∀P
′

s ≤ P̄s.

The [IR] constraint implies that the maximum pay-
ment λ that the principal can get is αRnd(Ps,p, Pp,p) +
ᾱRd(Ps,s, Pp,s). Thus, the principal can offer a contract

λ∗p(Pp, Ps, α) = αRnd(Ps,p, Pp,p) + ᾱRd(Ps,s, Pp,s)

= log
(

(1 + Ps,p + Pp,p)α(1 + Ps,s)ᾱ

(1 + Ps,s)α

)
,

which satisfies the [IR] constraint with equality. The [IC]
constraint is now trivially satisfied. With this, the principal’s
optimization problem reduces to

max
Pp,Pa,α

αRd(Pp,p, Ps,p) + ᾱRnd(Pp,s, Ps,s)

+αRnd(Ps,p, Pp,p) + ᾱRd(Ps,s, Pp,s)

which further reduces to

max
Pp,Ps,α

log
(

(1 + Pp,p + Ps,p)α(1 + Ps,s + Pp,s)
(1 + Ps,s + Pp,s)α

)
.

It can be seen easily that for any power allocation, the
optimum value for α is either 0 or 1. The principal chooses
α = 1 when (1 + P̄p,p + P̄s,p) > (1 + P̄s,s + P̄p,s), or
equivalently when Rsum,A > Rsum,B . But, α = 1 implies
that primary is acting as the dominant user and hence the
operating point is at A in Figure 2. At the same time, since
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Rsum,A > Rsum,B , the socially optimal operating point is
also A. Thus, the equilibrium operating point coincides with
the socially optimal operating point. Similarly, we can see
that when Rsum,A < Rsum,B , the primary user will choose
α = 0 and thus his preferred operating point coincides with
the socially optimal operating point. Thus, allowing the option
of time sharing in the contract design results in equilibrium
outcomes that are socially optimal.

V. DISCUSSION AND FURTHER WORK

This paper presents a new approach to incentivized spectrum
sharing for licensed bands in cognitive radio systems. One
of the impediments is that such schemes require cooperation
between various users each of whom is an independent and
selfish user. There is little justification in assuming that users
will expend their resources and particularly battery power to
aid communications of other users. Here, we have proposed an
incentive mechanism approach that not only enables deploy-
ment of sophisticated cooperative communication schemes
(such as SIC) but also is natural and easy to implement.
In most cases, the contract mechanism yields social welfare
maximizing rate allocations. Also, we have showed that we
can design contract mechanisms that are robust to possible
hidden actions by the primary or secondary user.

One issue with using cooperative communication schemes
such as the successive interference cancellation is that it
requires codebook exchange, and hence has set-up high over-
head. Thus, it can be difficult to implement the proposed
solution on a per connection basis. The proposed approach
is likely more suitable where there is interaction on a longer
time-scale.

The setting we have considered in this paper is that of
complete information, i.e., channel gains and power budgets
are common knowledge. However, the asymmetric information
scenario when channel gains of other users are not known, and
furthermore, the actions (i.e., the transmit powers used) by the
other players cannot be observed, is a lot more realistic and
interesting. This can be viewed as a double sided moral-hazard

adverse selection problem that to our knowledge has not been
solved even in the game theory literature [10], [2]. As part of
further work, we will address these issues.
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