
HAL Id: lirmm-00495559
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00495559

Submitted on 28 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum Logic Unites Compositional Functional
Semantics and Distributional Semantic Models

Anne Preller, Violaine Prince

To cite this version:
Anne Preller, Violaine Prince. Quantum Logic Unites Compositional Functional Semantics and Dis-
tributional Semantic Models. ESSLLI: European Summer School in Logic, Language and Information,
Aug 2010, Copenhagen, Denmark. �lirmm-00495559�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00495559
https://hal.archives-ouvertes.fr

Quantum logic unites compositional functional

semantics and distributional semantic models

Anne Preller, Violaine Prince∗†

Informatique
LIRMM/CNRS

Montpellier, France

1 Introduction

When we retrieve information from text by statistical methods, we apply these
methods not to random strings of words but to sentences, paragraphs etc. They
are ruled by laws of logic inherent to language. Natural language conveys in-
formation about individuals (extension) using concepts (intension). The exten-
sional aspect is captured by the familiar logical models, the intensional aspect
by distributional semantic models, DSM’s. We propose a unique frame for both
DSM’s and functional logical models and show how compositionality of the latter
transfers to compositionality of the former. The frame is the theory of compact
closed monoidal categories, materialised by the category of finite-dimensional
vector spaces for semantics and the category of proofs of compact bilinear logic
for syntax, [Lambek 1993].

An essential difference with previous approaches is that we consider a DSM
as a finite-dimensional space over the lattice of real numbers and not over the
field of real numbers as do for example [Clark, Coecke, Sadrzadeh]. In this way,
we capture both the logical and the numerical content of a DSM. Indeed, the
lattice structure of subspaces, with logical operators defined by quantum logic,
[van Rijsbergen], on one hand and the partial order of vectors on the other hand
are isomorphic. Moreover, the lattice structure is distributive, unlike in Hilbert
spaces. Negation, however, remains orthogonality.

Next, we study compositionality in the particular case where the basis vec-
tors of the DSM correspond to strings of key words, the so-called concept space.
The logic of a concept spaces corresponds to a classification of words by a the-
saurus. A particular meaning of a word is given by a set of (present or absent)
features. This meaning is represented by the vector standing for the conjunc-
tion of the features. In the case where the features are the same as the key
words, the conjunction coincides with a tensor product. An ambiguous word

∗Support by TALN/LIRMM is gratefully acknowledged
†preller, prince@lirmm.fr

1

with several meanings gives rise to a disjunction of conjunctions in a concept
space that includes the concept spaces of the particular meanings. Concepts de-
fined by strings of words are vectors in a superspace that depends on the concept
space of every word, including the words figuring under ‘noise’ like determiners,
prepositions etc.

Syntactical analysis is required to define the meaning vector of a string of
words. Pregroup grammars, [Lambek 1999], are particularly appropriate for
this task, because the meaning expressions they associate to words can be read
as vectors in a finite dimensional space. Moreover, parsing consists in a proof
of compact bilinear logic and can be read as a linear map between finite dimen-
sional vector spaces. The vectors belong to tensor products of three basic spaces,
one for individuals, one for truth-values and an arbitrary DSM. The meaning of
a grammatical string of words is obtained by forming the tensor product of the
word vectors and applying the parsing map to it. Every word in a grammatical
string contributes to its meaning vector. Words that are distributional ‘noise’
are decoded as functions used in the computation of the vector of the string.
Moreover, a sentence vector is true if and only if the corresponding formula
in predicate logic holds if and only if the corresponding inequality of concepts
holds. There are two reasons for this. First, the basis vectors of the DSM, i.e.
words, carry an inbuilt logic inherited from a concept space. Second, the mean-
ing vectors are expressions in compact closed monoidal categories, which can
also be read as predicates and functions in two-sorted first order logic, [Preller,
2005, 2007].

2 A simplified quantum logic

Distributional semantic models represent words by vectors of a finite dimen-
sional real space. The coordinates of the vectors are in general obtained by a
frequency count in text-windows and belong to a bounded set, which can be as-
sumed to be the real interval I = [0, 1] . The order of real numbers induces
a distributive and implication-complemented lattice structure on I, namely
α ∨ β = max {α, β}, α ∧ β = min {α, β}, α → β = max {γ ∈ I : α ∧ γ ≤ β}
and ¬α = α → 0 . It also defines a semi-ring structure on I

α+ β = α ∨ β α · β = α ∧ β ,

with 0 the neutral element of addition and 1 the unit of multiplication. Hence,
semantic vectors belong to a semi-module over the semi-ring I.

Many of the definitions familiar from vector spaces over the field R carry
over to vector spaces (semi-modules) over the semi-ring I, called I-spaces for
short. Among them are the inner product, orthogonality, the tensor product,
linear maps f : V → W with the corresponding matrix f ∈ V ∗ ⊗W , where V ∗

is the dual of V .
The lattice structure on I lifts to the vectors in an I-space V , where the

lattice operators (v, v) 7→ v ∨ v = v + v, are defined coordinate by coordinate.

2

Hence the I-space V is an implication-complemented distributive lattice with

smallest element
−→
0 and largest elements

−→
1 .

The lifted lattice structure is isomorphic to the lattice structure defined by
quantum logic on the projectors (equivalently, subspaces) of the I-space V .
Indeed, according to [van Rijsbergen], the logical connectives of quantum logic
are defined by

¬E = E⊥, E ∨ F = E ⊕ F, E ∧ F = E ◦ F, E → F = {u : F (E(u)) = E(u)} .

Indeed, we prove that the map

w 7→ Ew = {v : v ≤ w}

that sends w ∈ V to a closed subspace is the required lattice isomorphism.
The vector w such that E = Ew is unique. It is said to internalises E .

Subspaces generated by a subset of m basis vectors are maximal among the
subspaces of dimension m . The maximal subspaces form a Boolean sublattice.
They are internalised by vectors with coefficients in {0, 1} . Indeed, the space
generated by a set A of basis vectors is internalised by the vector

∑
x∈A x .

Viewing the basis vectors as the elements of some ‘universe of discourse’, the
lattice operators of the I-space work like union, intersection and complement
of subsets. Viewing the basis vectors as concepts, the same operators work like
propositional logical connectives. Quantum logic defines both the set-theory of
the universe of discourse as well as its logic. In the next section, we consider the
case where the lattice operators are logical connectives. In the last section, pre-
group grammars unite the extensional (individuals) and the intensional aspect
(concepts) of discourse.

3 Concept Spaces

Roughly speaking, concept spaces are distributional semantic models that are
based on a classification of concepts by key words. They play an essential
role when linking the inbuilt quantum logic of a DSM with the predicate logic
introduced on vector spaces via pregroup grammars in the next section. A
concept space may be also viewed as an event space, the basic event being the
occurrence of a key word.

Indeed, consider a set P = {p1, . . . , pd} of basic concepts or key words. The
concept space defined by P is the tensor product C(P) = C1 ⊗ . . . ⊗ Cd of
two-dimensional I-spaces Ci with basis vectors pi⊤, pi⊥. A basis vector bf ∈

C1 ⊗ . . . ⊗ Cd is essentially a choice f ∈
∏d

i=1 {pi⊤, pi⊥} between ‘yes’ =pi⊤
and ‘no’= pi⊥ for every feature pi. Therefore, the vector of C(P) corresponding
to the key word pi is

−→pi =
∑

f,f(i)=pi⊤

bf ∈ C(P)

Then C(P) includes the free Boolean algebra B(P) generated by P , namely the
lattice generated the set {−→p1, . . . ,

−→pd} ∪ {¬−→p1, . . . ,¬
−→pd} .

3

Moreover, every individual x defines a basis vector bx = q1 ⊗ . . .⊗ qd, where
qi = pi⊤ if the individual x satisfies the feature pi and qi = pi⊥ else. For
example, the word bank is represented by the concept vector

−−→
bank =

∑

x∈Bank

bx ∈ C(P) ,

where Bank is the set of individuals designated by the word bank.
Suppose that a disambiguation algorithm returns the word bank similar to

p1 = slope, p2 = shore and p3 = space in one context and to p4 = store, p5 =
treasury and p6 = volition in another context. Hence the vectors b1 = −→p1 ∧
−→p2 ∧ −→p3 ∈ C(P) respectively b2 = −→p4 ∧ −→p5 ∧ −→p6 ∈ C(P) must correspond to
concepts approximating the two meanings conveyed by bank. In fact, we prove
that every individual (thing) designated by the word bank satisfies the property
b1 + b2 = b1 ∨ b2, i.e. the following inequality holds in C(P)

−−→
bank ≤ b1 + b2 .

Concept spaces are explicit in classification systems, but they also lurk in
the background of an arbitrary distributional semantic model C. For example,
if each word occurring in a set of documents is identified with a basis vector of
the distributional semantic model C, the basis vectors also live in a space C(P)
of a thesaurus, be it the mental thesaurus of the speaker or the Roget’s The-
saurus. Otherwise said, the set A of basis vectors of C identifies with the lattice
of vectors of C(P) with coordinates in {0, 1} or, equivalently, the lattice of sub-
spaces of C(P) generated by subsets of basis vectors. For a given set P , we refer
to the lattice structure of the basis of C by writing C = VC(P) . This explains
to a large extent the working of the classification algorithm, [Clark, Pulman],
applied to large corpora and based on the French thesaurus [Larousse 1992].

The set of key words P may vary from one set of documents to the next
and from one speaker to the next. The logic remains unchanged. Indeed,
there are embeddings from C(P1) and C(P2) into C(P1 ∪ P2) preserving the
logical connectives. If, as in the example above, P1 and P2 are disjoint then
C(P1 ∪ P2) = C(P1)⊗ C(P2) . Hence, C(P) = C({p1})⊗ . . .⊗ C({pd}), where
each C({pi}) is a 2-dimensional I-space. Note that C(∅) is isomorphic to I.

The understanding that the tensor product of constituent vectors allows to
represent strings of words can be found already in [Smolensky], [Clark, Pulman]
and [Widdows] among others. Our contribution is to reduce the spaces to
tensor products of two-dimensional spaces, the linguistic analogue to quan-
tum protocols, [Abramsky, Coecke], where the basic space is the 2-dimensional
Hilbert space of ‘qubits’. The concept spaces are the linguistic analogue of
‘compound systems’ of quantum mechanics, which are finite tensor products of
two-dimensional Hilbert spaces. Choosing the lattice structure instead of the
field structure of the real numbers, we embed classical logic into quantum logic.
Natural language uses concepts but talks (also) about individuals. This brings
the quantum phenomenon of ‘entanglement’ to DSM’s, illustrated by the vec-

tor
−−→
bank of the example above, because it cannot be decomposed into a tensor

4

product of vectors belonging to the basic factors. Teleportation also has its
linguistic analogue, as we shall see in the next section. It is caused by a word
which is distributional ‘noise’, but is known as a generalised quantifier in logic.

4 Compositional functional semantics for DSM’s

Grammatical analysis steps in for a compositional representation of grammatical
strings of words in a DSM. Pregroup grammars, [Lambek 1999], are particularly
appropriate for the task, because they interpret words and sentences in a com-
pact closed symmetric monoidal category in general vector spaces in particular.
Syntactical analysis consists in a proof of compact bilinear logic, [Lambek 1993].
Such a proof is a map in the free compact closed monoidal category and therefore
also a linear map of vector spaces.

In fact, the linear maps can be avoided, because they identify with vectors.
To be precise, the linear map f : V → W identifies with a matrix f , a vector in
W ∗⊗V or in the isomorphic space V ⊗W ∗, whichever is more convenient. Here,
W ∗ denotes the dual space of W . On the other hand, vectors identify with linear
maps, namely the vector v ∈ V identifies with the linear map v : I → V that
assigns to the unique basis vector of the one-dimensional space I the element v
of V . In this case, v = v .

This double representation is exploited by pregroup grammars. The mean-
ings of words wi are vectors mi : I → Wi. The reduction, (the pregroup
equivalent of a parsing tree) of a grammatical string w1 . . . wn defines a lin-
ear map r : W1 ⊗ . . . ⊗ Wn → V . The meaning of the string is the vector
r ◦ (m1 ⊗ . . .⊗ mn) : I → V .

The space V depends on the grammatical analysis of the string. For a
sentence, it is a two-dimensional space S = VC(∅) with basis vectors ⊤ and ⊥,
called truth-values. For a noun phrase, it is a space E, the basis vectors of
which stand for individuals (entities). For a predicative adjective phrase, it is a
space of ‘properties’ C, the distributional semantic model C = VC(P) . The basis
vectors of C bring with them the logical operators of C(P) . For example, the

vector
−−→
safe ∈ C(P), which is not a basis vector in C(P), is considered a basis

vector, denoted safe, in C. Hence, the logical connectives of C(P) define maps
from and to basis vectors of C. They extend uniquely to linear maps defined
for all vectors of C . Note that they are different from the lattice operators of
the I-space C .

For example, the negation ¬ : C(∅) → C(∅) defines a linear map not : S → S

satisfying

not(⊤) = ⊥, not(⊥) = ⊤, not(
−→
0) =

−→
0 , not(⊤+⊥) = ⊤+⊥ .

Hence, the linear map not maps basis vectors to orthogonal basis vectors, but
this does not hold for all vectors of S . The linearity of the logical connectives
for sentences intervenes decisively when interpreting plurals and quantifiers.

Like all categorial grammars, a pregroup grammar has a lexicon. It consists
of triples w : T :: m, where w is a word, T a type and m a vector. For example, a

5

pregroup grammar that parses the sentence banks are safe includes the entries

banks : n2 :: I
bank
−−−→ E

are : n2
r
sa

ℓ :: I
are
−−→ E∗ ⊗ S ⊗ C∗

safe : a :: I
safe
−−−→ C

The basic types n2, s,a stand for ‘plural noun phrase’, ‘sentence’, ‘predicative
adjective’ and are interpreted in the I-spaces E, S and C, in that order. In-
tuitively, a basic type with a superscript r or ℓ denotes a slot that has to be
filled. If the superscript is r, the filler moves to the right. If it is ℓ, the filler
moves leftward. A type with a superscript is interpreted by the dual of the
space corresponding to the basic type.

Both the reduction to the sentence type and its corresponding linear map
(on the right below) have a common graphical representation

banks are safe

(c2) (n2
r
s a

ℓ) (a)

s

r = (E)⊗ (E∗ ⊗ S ⊗ C∗)⊗ (C)

S
��

<< bb
.

The underlinks of the reduction become the inner product when computing
the values of the corresponding linear map. Parsing with pregroup grammars is
cubic polynomial in the worst case and linear in many practical cases. The extra-
work needed for computing the meaning vector of the string is proportional to
the number of words.

The meaning vectors of the words have a graphical representation as well,
for example

bank =

I

E
��bank

are =

I

 }}
E∗ ⊗ S ⊗ C∗

are
safe =

I

C
��safe

Here, bank is the element in E identified with bank and are : E×C → S is the
bilinear map the matrix of which is are ∈ E∗ ⊗ S ⊗ C∗ .

To compute the meaning of the sentence, form the tensor product of the
word vectors and compose it with the linear map, which for the graphs means
to connect them at the common interface

r ◦ (bank⊗ are⊗ safe) =
bank

I

yyrrrrrrrrrrr

 }}
are

I

%%LLLLLLLLLLL

safe

(E)⊗ (E∗ ⊗ S ⊗ C∗)⊗ (C)

S
��

<< bb = are(bank, safe) .

6

The easiest way to compute the equality between the lefthand and righthand
expressions is to walk along the paths starting at I and picking up the labels
as you encounter them. The plain arrows stand for channels through which the
‘resources’ are transmitted. The dotted arrows indicate ‘entanglement’. The
values of the arrows above the interface are provided by the semantic model.
The values of the arrows below the interface are provided by syntactic analysis.

Pregroup grammars interpret words in several spaces and the outcome of
a grammatical string may be in yet another space. The same quantum logic,

however, operates on all spaces and therefore the representation
−−→
bank ≤

−−→
safe

of the statement banks are safe by the vector model C is equivalent to its
representation are(bank, safe) = ⊤ by the pregroup grammar. In fact, both
are equivalent to the familiar representation ∀x(x ∈ Bank ⇒ safe(x)) of the
sentence in predicate calculus.

Theorem 1. The following are equivalent

−−→
bank ≤

−−→
safe

are(bank, safe) = ⊤
∀x(x ∈ Bank ⇒ safe(x))

Proof. First we remark that a predicate is either true or false for a given indi-
vidual. Therefore the map x 7→ are(x, safe) takes a basis vector x of E either
to the basis vector ⊤ of S or to the basis vector ⊥ of S .

Next, let Safe = {x : safe(x)} = {x : are(x, safe) = ⊤} be the set of indi-

viduals for which the predicate safe holds. Then
−−→
safe =

∑
x∈Safe bx ∈ C(P) is

the corresponding concept vector. The definition of the basis vector bx ∈ C(P)
associated to the individual x then implies that are(x, safe) = ⊤ if and only

if bx ≤
−−→
safe .

On the other hand, the vector bank =
∑

x∈Bank x ∈ E internalises the sub-
space generated by the individuals designated by the word bank. By bilinearity,

are(bank, safe) = are(
∑

x∈Bank

x, safe) =
∑

x∈Bank

are(x, safe) .

By the initial remark, the equality
∑

x∈Bank are(x, safe) = ⊤ holds exactly
when are(x, safe) = ⊤ holds for every x ∈ Bank . Hence, definition of bx

implies
−−→
bank =

∑
x∈Bank bx ≤

−−→
safe if and only if are(bank, safe) = ⊤ .

A similar argument shows these equivalences for other sentences. Here is an
example that illustrates how no provokes ‘teleportation’ in

no banks are safe
−−→
bank ≤ ¬

−−→
safe

not(are(bank, safe)) = ⊤
∀x(x ∈ Bank ⇒ ¬safe(x)) .

The relevant lexical entry of the pregroup grammar is

no : ssℓn2n2
ℓ :: I

no
−→ S ⊗ S∗ ⊗ E ⊗ E∗

7

where the vector no is the matrix of the linear map not⊗ idE : S⊗E → S⊗E .
The reduction of the sentence, its corresponding linear map, and the graph

representing the vector no are

s

No banks are safe

(ssℓn2c2
ℓ)(c2)(n2

r
sa

ℓ)(a)

r′ =

S
��

dd 77gg dd(S ⊗ S∗ ⊗ E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S ⊗ C∗)⊗ (C)

no : I → S ⊗ S∗ ⊗ E ⊗ E∗ =

I

S ⊗ S∗ ⊗ E ⊗ E∗

not

�� ��
.

Again, the meaning vector of the sentence is the tensor product of the word
vectors composed with the reduction to the sentence type.

r′ ◦ (no⊗ bank⊗ are⊗ safe) =

I

����
�
�
�
�
�
�
I

''PPPPPPPPPPPPPPPPPP

S
��

dd 77gg

not

�� �� ��
dd

��
(S ⊗ S∗ ⊗ E ⊗ E∗)⊗ (E)⊗ (E∗ ⊗ S ⊗ C∗)⊗ (C)

bank are safe

= not(are(bank, safe))

Again, one computes the result by walking the paths from I, picking up the
labels encountered on each path.

The vector no has two pieces: the overlink labelled not standing for the
negation in the determiner no and the unlabelled overlink for the universal
quantification contained in no. The negative quantum is ‘teleported’ from the
noun to the verb.

Making or hearing a statement is the linguistic analogue of an experiment
in quantum mechanics. Lining up the semantic vectors as you hear the words
corresponds to ‘preparation’ or putting into focus. Preparation concerns the
arrows above the interface in the graph. Finding the meaning is ‘observation’.
The experiment requires time proportional to the number of words. Indeed,
the algorithm processes the string of words from left to right. For every word
it downloads the syntactic type and the meaning vector. It constructs the
reduction by placing an underlink as soon as possible. If a path through several
arrows comes into existence it is ‘walked’ at once. The intermediary nodes along

8

the path are erased. We illustrate the procedure with the sentence no banks are
safe.

no

��
not

��
S ⊗ S∗ ⊗ E ⊗ E∗

(download the vector no)

no banks

not

�� ��
aa

bank

��
S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ E

= not

��
bank

��
S ⊗ S∗ ⊗ E

(add bank, place E-underlink) (walk path till leftmost E)

no banks are

not

��
bank

�� ����
==S ⊗ S∗ ⊗ E ⊗ E∗ ⊗ S ⊗ C∗

are = not

�� E

bank
��

��
S ⊗ S∗ ⊗ S ⊗ C∗

are
= not

�� E

bank
��

��
aaS ⊗ S∗ ⊗ S ⊗ C∗

are

(add are, E-underlink) (walk path till are) (S-underlink)

no banks are safe

not

�� E

bank
�� safe

����
^^ __S ⊗ S∗ ⊗ S ⊗ C∗ ⊗ C

are
=

not

��

E

bank
��
C

safe
��

^^S ⊗ S∗ ⊗ S

are

��

=

E

bank
��
C

safe
��

S

are
��

S

not
��

(add safe, C-underlink) (walk path till are) (continue path till end) .

5 Conclusion

Behind the numerical coordinates of a vector in a distributional semantic model
there is a logical structure. A grammatical string also has a logical structure
brought into focus by syntactical analysis, taking into account the meaning of
each word in the string. The coordinates of word(-vector)s with logical content
like no are given by logic and therefore are the same in all models. Preposi-
tions also carry meanings independent of the distribution, e.g. with and without
correspond to presence respectively absence. They are irrelevant for the distri-
bution of single words, but relevant when it comes to analyse strings of words
and construct the corresponding concepts. The interaction of extensional and
intensional representation relies on the fact that certain words define both an
extensional vector and a concept vector, linked by an equivalence. The coordi-
nates of concept vectors like bank, safe are provided by the ‘user’, for example
frequencies in a set of documents. As already mentioned, a concept space may
be viewed as an event space. A direction for future work is the comparison of

9

the properties of the probability distribution with the logical and grammatical
properties of strings of words.

References

[Abramsky, Coecke] Samson Abramsky, Bob Coecke (2004), A categorical se-
mantics of quantum protocols, in: Proceedings of the 19th Annual
IEEE Symposium on Logic in Computer Science, pp. 415 - 425

[Chauché, Prince] Jacques Chauché, Violaine Prince (2007), Classifying texts
through natural language parsing and semantic filtering, Proceedings
of the 3rd International Language a. Technology Conference, Poznan

[Clark, Coecke, Sadrzadeh] Stephen Clark, Bob Coecke, Mehrnoosh Sadrzadeh
(2008), A Compositional Distributional Model of Meaning, Proceed-
ings of the Conference on Quantum Interactions, U. of Oxford

[Clark, Pulman] Stephen Clark, S. Pulman (2007), Combining symbolic and
distributional models of meaning, AAAI Press, Proceedings of the
AAAI Spring Symposium on Quantum Interaction

[Lambek 1993] Joachim Lambek (1993), From categorial grammar to bilinear
logic, in: K. Dos̆en, P. Schroeder-Heister, (Eds.), Substructural Log-
ics, Oxford University Press, pp. 207-237

[Lambek 1999] Joachim Lambek (1999), Type grammar revisited, in: A.
Lecomte et al., (Eds.), Logical Aspects of Computational Linguistics,
LNAI 1582, pp. 1-27

[Larousse 1992] Thésaurus Larousse - des idées aux mots, des mots aux idées,
(1992), Ed. Larousse, Paris

[Preller 2005] Anne Preller (2005), Category Theoretical Semantics for Pre-
group Grammars, in: Philippe Blache and Edward Stabler (Eds.),
Logical Aspects of Computational Linguistics, LNAI 3492, pp. 254-
270

[Preller 2007] Anne Preller (2007), Toward Discourse Representation Via Pre-
group Grammars, JoLLI, Vol.16, pp. 173-194

[van Rijsbergen] C. van Rijsbergen (2004), The Geometry of Information Re-
trieval, Cambridge University Press

[Smolensky] Paul Smolensky (1988), Connectionism, Constituency and Lan-
guage of Thought, in Robert Cummins, Denise Dellarosa Cummins,
(Eds.), Minds, Brains, and Computers, pp.284-308

[Widdows] Dominic Widdows (2008), Semantic Vector Products: Some Initial
Investigations, Second AAAI Symposium on Quantum Interaction,
Oxford

10

