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Abstract: Modern systems involve a complex organization of computational processes sharing
access to both processors and resources. The use of threads in programming provides a method
in which lightweight processes may be given specific tasks that can be carried out either inde-
pendently or in cooperation with other threads. The correct and efficient use of shared resources
between threads relies on synchronisation methods, such as semaphores, mutexes, or events. Our
work demonstrates a semi-automated method of translating threaded software to the synchronous
programming language Signal in order to verify the correctness of thread synchronisations in the
source code.

This work is part of the FoToVP Project supported by Agence Nationale de la Recherche.
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A Synchronous Approach to Threaded Program Verification

Résumé : Les systémes actuels s’appuient sur une organisation complexe de processus de
calcul partageant l’accés aux processeurs et aux ressources. La programmation au moyen de
”threads” fournit une méthode dans laquelle des processus légers se voient attribuer des tâches
spécifiques qui peuvent être menées soit indépendamment, soit en coopération avec d’autres threads.
L’utilisation correcte et efficace de ressources partagées entre les threads repose sur des mécanismes
de synchronisation tels que les sémaphores, les sections critiques ou les événements. Notre travail
décrit une méthode semi-automatique de traduction de logiciels organisés en threads vers le langage
synchrone Signal dans le but de vérifier la correction des synchronisations des programmes sources.

Ce travail s’inscrit dans le cadre du projet FoToVP (projet ANR).

Mots-clés : Signal, polychrony, threads, model generation, model checking
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4 Johnson, et al.

1 Introduction

Difficulties in providing fast and intuitive applications of formal methods to the software engineering
community have resulted in the development of several tools for the automated generation of models
from engineering languages such as C or Java. The aim of these tools is to allow the programmer
to include formal methods as a regular task in day to day software development.

This may include formal approaches to software testing as in [18] where a preliminary automaton
that accepts known system behaviour is generalised by querying the user with additional test-case
scenarios. Other approaches involve a direct translation of programming code to a formal language
for analysis. Java PathFinder [10] is one such tool that verifies multi-threaded java code via an
automatic translation to the modelling language Promela. Using the SPIN model checker, assertions
may be proved and deadlocks between threads detected.

Our work follows in this approach and introduces an “almost automatic” method of formal
verification of threaded C programs. We show how programs written in C may be automatically
translated into the synchronous language Signal via an intermediate Static Single Assignment
(SSA) representation. SSA is language independent and many compilers such as the GCC compiler
perform this translation. The translation to a synchronous formalism allows us to reason about
program control-flow in a formal clock calculus.

Programs containing threads execute concurrently and often interact via synchronisation com-
mands. Extending our translation method to threads requires a hand-written specification of the
scheduling policies of the operating system. As the scheduling of native threads in the operating
system is non-deterministic and complex, we base our work on the deterministic and cooperative
scheduling policies of the FairThreads framework. In this case, the scheduler organises execution of
threads using a deterministic round-robin approach, and threads cooperate with each other using
basic communication and synchronization primitives.

1.1 Outline

The content of the paper is as follows. In Section 2, we give introduce the Signal programming
language and review the basic scheme of translating a C program to its SSA representation.

We introduce the FairThreads framework in Section 3 and present a summary of the synchro-
nisation commands. We illustrate their use in the cooperative scheduling of the framework and a
formal specification of thread behaviour is given. We give an example which highlights the problem
of thread deadlocks due to misplaced synchronisation commands. Section 4 outlines our translation
method from imperative programming language to the synchronous language Signal, illustrated
with an example. A formal Signal specification of the FairThreads scheduler is given in Section 5
and we outline its construction in detail. We show how threads communicate with the scheduler via
control signals and outline the important components of the scheduler itself. Section 6 shows how
our method can be used to prevent deadlocks and inefficient code by the detection of poor event
synchronisations between threads. We conclude in Section 7 and give directions for further work.

2 Preliminaries

2.1 The Signal Language

Signal is a multi-clocked data-flow specification language for the high-level specification of real-
time systems in which computations over streams of data called signals are specified by systems of
equations.

A signal x is a possibly infinite flow of values from simple data types such as booleans, integers
or events1 and are sampled at a discrete clock denoted x̂. The clock of a signal is the set of tags
representing symbolic periods in time in which a data value is present on the signal. If two signals
x and y have the same clock, we call them synchronous. In symbols, x̂ = ŷ.

1The data type consisting of the single value true, representing the presence or absence of a signal.

INRIA



A Synchronous Approach to Threaded Program Verification 5

A Signal process
z := P (x1, . . . , xn)

consists of the composition of simultaneous equations which equate the output signal z as a function
of the input signals x1, . . . , xn. The equations express logically consistent constraints on both the
clocks and the data transmitted by the signals. Processes are constructed from (i) a single equation
z := f(x1, . . . , xn), (ii) a synchronous composition of processes P | Q, (iii) or the restriction
P where x of a signal x to the lexical scope of process P .

Signal Equations

There are five different types of equations defining primitive processes used to specify computations
over signals. We list each equation used in the Signal language along with its mathematical
meaning and the implicit relationships between the clocks of the input and output signals. A
complete account of the mathematical framework of Signal is found in [14].

Equations on Data. Let f denote an n-ary function or relationship over numerical or boolean
valued data. For input signals x1,...,xn the Signal equation z := f(x1,...,xn) specifies math-
ematically a process equating pointwise for each tag t z(t) = f(x1(t), . . . , xn(t)). The relationship
between the clocks of the input and output signals is ẑ = x̂1 = · · · = x̂n.

Delay. For input signal x and constant value a, the equation z := x 1 init a specifies mathe-
matically a process whose output is defined by z(ti) = a if ti is the first tag t0, and for every other
tag we set z(ti) = x(ti−1). The relationship between the clocks of the input and output signals is
ẑ = x̂.

Merge. For input signals x and y the equation z := x default y specifies mathematically a
process whose output at t is z(t) = x(t) when t ∈ x̂ and z(t) = y(t) if t /∈ x̂∧ t ∈ ŷ. The relationship
between the clocks of the input and output signals is ẑ = x̂ ∪ ŷ.

Sampling. For the input signal x and a signal b carrying boolean type values, the equation z

:= x when b specifies mathematically a process whose output z(t) has the value x(t) when defined
and when the value b(t) is defined and carries the value true. The relationship between the clocks

of the input and output signals is ẑ = x̂ ∩ [b] where [b] = {t ∈ b̂ | b(t) = true }. The unary form of
the sampling operation given by the syntax z := when b specifies an event typed signal z which is
present at instant t whenever b(t) is present and true.

Equations on Clocks. In the primitive equations we have given so far, the clocks of signals are
defined implicitly by the operations on the signals. The Signal language allows clock relationships
and contraints to be defined explicitly using a special clock operator. For a signal x we define its

clock ^x to be ^x
def
= (x=x), where the boolean proposition (x=x) is true whenever x is present and

absent otherwise. We write ^0 for the null clock (the clock that is never present).
Combining the clock operator with the primitive equations we express clock relationships in

the Signal language: (i) The synchronisation relation x^= y between the clocks of signal x and y

corresponds to the process (z := (^x = ^y)) where z. (ii) clock union relationship z := x ^+

y corresponds to the process z := ^x default ^y, (iii) clock intersection relationship z := x ^*

y corresponds to the process z := ^x when ^y.
Primitive operations on signals are composed to derived more complex operations such as the

cell operation x := y cell z init v, that stores in x the most recent value carried by the signal y
when y is present or when z is true. The cell operation is defined by the process

x := (|y default (x$1 init v) | x ^= y ^+ when z|).

2.2 C programs in SSA Representation

For control-flow analysis it is useful to represent a program by a directed graph where nodes are
labeled blocks containing a sequence of statements and program control-flow between blocks is
represented by an edge. Statements may be operations x = f(y*) or tests if x goto L and each
block is terminated by either a return or goto L statement.

RR n 7320



6 Johnson, et al.

A program is said to be in static single assignment form whenever each variable in the program
appears only once on the left hand side of an assignment. Following [7], a program is converted
to SSA form by replacing assignments of a program variable x with assignments to new versions
x1, x2, . . . of x, uniquely indexing each assignment. Each use of the original variable x in a program
block is replaced by the indexed variable xi when the block is reachable by the ith assignment. For
variables in blocks reachable by more than one program block, a special φ operator is used to choose
the new variable value depending on the program control-flow. For example, x3 = φ(x1, x2) means
“x3 takes the value x1 when the flow comes from the block where x1 is defined, and x2 otherwise”.
This is needed to represent C programs where a variable can be assigned in both branches of a
conditional statement or in the body of a loop. We display the grammar rules for C programs in
SSA form in Figure 1

<program> ::= L:<block>;<program> | L:<block>
<block> ::= <stm>;<block> | <term>

<stm> ::= x = f(y*) | x = phi(y*)| if x goto L

<term> ::= goto L | return

Figure 1: Grammar Rules for C programs in SSA form

void fact(int inData,

int *outData){

int f=1;

int i=1;

while (i<=inData){

f *= i;

i++;

}

*outData=f;

}

f3 = 1
i4 = 1

outData6 = f1
return

f7 = f1 * i2
i8 = i2 + 1

i2 = phi(i4,i8)
f1 = phi(f3,f7)

if (i2 <= inData5)

else goto L2
goto L0

bb0

L1

L0

L2

Figure 2: From C to SSA form

2.3 Example: the fact program

The left side of Figure 2 depicts a C program fact which takes an integer value input inDate and
outputs its factorial. On the right is its SSA form represented as a control-flow diagram consisting
of four blocks labelled bb0, L0, L1 and L2.

The block bb0 is the entry point of the program which initialises the variables f3 and i4 then
passes control to block L1. The phi operator sets the value of the variables i2 and f1 depending on
the source of control flow, either from block bb0 or L0. If the terminal condition i2 <= inData5 is
satisfied control goes to L0 where f7 is updated with the new factorial value and the index counter
is incremented. Once the index counter is equal to the inData5 the loop terminates and control
goes to block L2 where the output is set to the factorial value in f1 and returned.

3 The FairThreads Framework

FairThreads [3, 5] is a framework for concurrent and parallel programming of software systems
mixing both cooperative and preemptive threads. In a purely cooperative context, schedulers are
defined to which threads may dynamically link and unlink. Threads attached to a scheduler cooperate

INRIA



A Synchronous Approach to Threaded Program Verification 7

with each other by willingly yielding their control of the processor to another thread. They can
synchronise and communicate data with other threads using events. The scheduling of cooperative
threads follows a simple round-robin approach, and with all threads linked to a single scheduler, the
system runs in a deterministic fashion with a simple well defined semantics [4].

The execution sequence of a FairThreads scheduler is decomposed into a series of execution
instants2 during which each thread linked to the scheduler has an equal opportunity to

1. run until its next cooperation point, and

2. respond to events generated by threads linked to the scheduler.

Cooperation points come in two flavours: explicit, when a thread calls a synchronisation primitive
or implicit, when a thread is waiting for an event to be received. In FairThreads, events are used
for thread synchronisation and to communicate data between threads and can be associated with
one or more data values. Events generated by a thread are broadcast to all other threads linked to
the scheduler. In doing this, each thread witnesses the presence and absence of events in exactly
the same way and all threads waiting for an event have the possibility to react to it during the
same instant. At the end of each instant, events generated during the instant are reset or cleared
and threads who missed an event may react to its absence in the next instant. A summary of the
FairThreads synchronisation primitives is given in Figure 3.

ft thread await(e) Wait for event e
ft thread await n(e,k) Wait until event e is received

or issue a timeout after k instants
ft thread generate value(e,v) Generate event e with value v
ft thread get value(e,k,v) Get the kth value associated with

event e and store in v

ft thread cooperate n(k) Yield control from the calling thread
to the scheduler for k instants

ft thread join n(t,k) Suspend execution of the calling thread
until thread t has terminated or
issue a timeout after k instants

Figure 3: Fairthreads Commands

3.1 Cooperative Thread Scheduling in FairThreads

We present two examples to illustrate the scheduling of cooperative threads in FairThreads.

3.1.1 Example: Good Synchronisation

Figure 4 depicts threads A and B each represented by a sequence of blocks containing program
code and dashed arrows represents control-flow between threads. The control-flow dictated by the
scheduler is deterministic, and arrows labelled start and finish show the beginning and end points
of the execution sequence.

Starting with thread A, the code in A1 is executed sequentially until blocked by the synchro-
nisation command await(e). This command blocks the thread until event e is received, and so
the scheduler selects the next thread to be run. Thread B starts by executing the code in B1 and
generates event e by the command generate(e), and continues to execute code in B2. Using the
cooperate command, control is returned to thread A which receives event e. Unblocked, thread A
executes A2 and terminates, leaving thread B to execute the code in block B3 and then terminate.
Both threads have finished running and terminate normally.

2Note that the word instant is used in both the Signal language and the FairThreads framework but with entirely

different meanings

RR n 7320



8 Johnson, et al.

A1

A2

term(A) coop

B1
await(e)

term(B)

B2

Thread A Thread B

B3

generate(e)

finish

start

Figure 4: Scheduling Threads A and B

awaitA1 B1 gen B2 coop A2 term(A)instant 0

B3 term(B)instant 1

A receives eB sends e

Figure 5: Instant decomposition of Threads A and B

Figure 5 displays the series of instants produced by the scheduler executing threads A and B. In
instant 0, thread B sends event e and eventually cooperates, leaving thread A to receive the event,
finish running and terminate in the same instant. Since all threads have had an opportunity to run
and respond to all sent events, the instant ends. In instant 1 thread B runs until it terminates.

3.1.2 Example: Bad Synchronisation

C1

coop

C2

await(e)

term(C)

D1

coop

term(D)

D2

Thread C Thread D

generate(e)

D3

start

Figure 6: Scheduling Threads C and D

Another scheduling example between threads C and D is presented in Figure 6. Execution
begins with thread C running the code in C1 and then cooperating, allowing thread D to start and
execute D1. Continuing the sequential execution of D, an event e is generated by the command
generate(e) and then D2 is executed. Executing the cooperate command, control is returned to
thread C where it awaits event e, blocked by command await(e). Control immediately returns
to thread D which executes D3 and then terminates. The scheduler returns control to thread C

INRIA



A Synchronous Approach to Threaded Program Verification 9

but execution is blocked, waiting for an event that will never appear. The shaded blocks C2 and
term(C) are never executed.

To see why these threads failed to synchronise properly we examine the instant decomposition
in Figure 7. In instant 0 thread C begins running and then cooperates. Thread D begins running
and generates an event e and eventually cooperates. As both threads C and D have already run to
their cooperation point, the instant is finished and event e is cleared to prepare for a new instant.
In instant 1 thread C awaits an event e and is thus blocked, leaving thread D to run and terminate.
With thread C blocked and no other threads left for the scheduler to run, the program is deadlocked.

coopC1 D1 gen D2 coop

await term(D)D3

instant 0

instant 1

e cleared

C misses e

D sends e

Thread C blocked

Figure 7: Instant decomposition of Threads C and D

3.2 Modelling FairThreads Scheduling Behaviour

The behaviour of each thread linked to the scheduler is formally described by the state machine
depicted in Figure 8. Each state of the machine corresponds to a possible state the thread may be in
during the course of execution and each transition models the effect of the FairThreads operations
on the thread. It is the responsibility of the scheduler to observe the state of each of the threads
and determine which thread is to be executed next, according to the scheduling policy. For our
discussion we ignore the state codes displayed in the figure, returning to them later in Section 5.

Join

001

Dormant

010

Await

011

Yield

111

Term

000

Run

110

Ready

100

select=i

term(i)

coop

join(m)

await(e)

reset

recv(e)

reset term(m)

Figure 8: State Machine of Thread i

Before the scheduler starts, we assume that all threads are attached and are in the Dormant
state. When the scheduler starts, a reset event is issued signaling the beginning of a new execution
instant and each of the threads are placed in the Ready state. Following the round-robin scheduling
policy, the ith thread is selected and moves into the Run state. This thread now has control of the
processor and may run until it terminates term(i). If an await(e) command is executed, the thread
is blocked and moves into the Await state until the event e is present. Similarly when the command
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10 Johnson, et al.

join(m) is executed the thread is placed in the Join state until thread m terminates. When the
thread executes the command coop it moves into the Yield state until the scheduler determines
that the end of the execution instant has occurred and a reset event is issued, returning all yielded
threads to the Ready state.

3.3 A FairThreads Example

We present an example of a FairThreads program listed in Figure 9 where a scheduler is defined and
a new event is created in the scheduler. Connected to the scheduler are two threads 1 and 2 whose

void main(){

ft_scheduler_t sched = ft_scheduler_create();

ft_event_t e = ft_event_create(sched);

ft_thread_create(sched,thread1,NULL,NULL);

ft_thread_create(sched,thread2,NULL,NULL);

ft_scheduler_start(sched);

}

Figure 9: FairThreads Example

function bodies are listed in Figure 10. Thread 1 initializes variables and waits for events to occur
on the scheduler by executing the ft thread await(e) command. When an event is present the
thread is unblocked and the value associated with the event is retrieved and the factorial function
fact is computed, after which the thread terminates. If no event should occur, the thread is blocked
indefinitely.

Thread 2 initializes and receives an integer value from some input device via the getValue

function. A new event with the value associated with it is generated and the thread cooperates and
afterwards terminates.

void thread1(){

int v,f;

// ft_thread_cooperate_n(1);

ft_thread_await(e);

ft_thread_get_value(e,0,&v);

fact(v,&f);

finalizethread1();

}

void thread2(){

int num;

initthread2();

num = getValue();

ft_thread_generate_value(e,(void*)&num);

ft_thread_cooperate_n(1);

finalizethread2();

}

Figure 10: Threads connected to FairThreads Scheduler

The sequence of executions performed by the FairThreads scheduler for threads 1 and 2 corre-
sponds to the example illustrated in Section 3.1.1 with the instant decomposition identical to that
in Figure 5. The addition of an ft thread coop n(1) command to thread 1 results in the event
generated by thread 2 to be missed, causing a deadlock. This execution sequence is identical to the
situation of the second example in Section 3.1.2.

A study of this example gives the fundamental reason for the occurrence of synchronisation
problems in cooperative threads: events are generated, but misplaced synchronisation commands
make it impossible for any thread to receive and react to them. By defining a Signal specification
modelling the behaviour of the scheduler and threads, we show how it is possible to give a formal
method to automatically detect poorly placed synchronisation commands in threaded programs.

4 From Imperative Programs to a Synchronous Formalism

Translating an imperative program to a synchronous paradigm involves decomposing potentially
unbounded computations produced by while-loop constructions into a sequence of bounded and

INRIA



A Synchronous Approach to Threaded Program Verification 11

finite computations to be performed in a series of logical instants. The main point to be made
about this method is that it allows us to reason about program control-flow and computation using
a well-founded formal calculus on clocks based on a synchronous model of computation.

We outline our approach to translating imperative programming code into the synchronous
formalism Signal using the fact program as an example. For a full account of the translation
process and implementation details of this method, the interested reader may consult [11] and [2].

The Signal process proFact listed in Figure 11 models the sequence of computations performed
by the fact program.

The input of the process is the integer valued signal inData and the output signal outData
carries the factorial value once the computation has finished. In lines 22, 25-27 the control-flow in
the SSA diagram is modelled by defining block labels as boolean typed signals which are present and
carry a true value whenever control is in the corresponding block. Block bb0 is the entry point of the
program and is defined to be true for the beginning of the computation and then false afterwards.
When control-flow is possible from two different blocks in the diagram the phi statement is used,
and this is naturally modelled by the merging of two signals using the Signal command default.

The computations performed in each block are specified in lines 9-10, 12-13, 18 and 21. Each
block statement is sampled over the block’s corresponding boolean signal using the Signal command
when and is thus performed only when control-flow is at that block.

The while-loop computation is performed in a series of logical instants, each consisting of a
single iteration. For each instant the statements in block L0 are computed and the loop condition
is checked. The result of the condition is carried by the signal next L0. This value determines
whether or not another iteration is required in the next instant. Accordingly, the boolean signal L0
modelling the body of the loop is defined as the previous value of next L0.

5 Modelling FairThreads in Signal

In this section we describe our approach of using Signal processes to model and simulate the
operation of a software system executing threaded programs.

The model we develop simulates the FairThreads cooperative scheduling policy and is composed
of a collection of processes representing key components of the system: the operating system orga-
nizing the scheduling of the thread execution, mechanisms for communication between components,
and of course the threads themselves. The components of the software system and their intercon-
nections with two threads are depicted in Figure 12. For simplicity we illustrate our method with
two threads.

Our approach is based on the generation of a Signal model from a threaded program that
maintains information on the state of each thread and event. For this reason we require that they
be statically created in the program and our translation scheme assigns each a numerical value.

In Figure 12, the boxes labelled Thread1 and Thread2 depict the Signal processes generated
from threads statically created and attached to the scheduler. For example, we may use threads 1
and 2 in the FairThreads example of Section 3.3. These processes are automatically generated by
extending the method described in Section 4: an SSA representation of the original threaded code
is generated, and then it is translated into the synchronous formalism of a Signal process. The key
idea of this translation is that the SSA blocks are modelled by boolean signals, which are present
and carry a true value whenever control is in the corresponding block.

5.1 Thread Control Signals

This idea is extended to processes modelling threads in a simple way. In the SSA representation of
the threads, synchronisation primitives (commands from the FairThreads library) are considered as
external function calls. This means that they are isolated from the regular programming constructs
of the language and placed into separate labelled blocks in the SSA representation.

Now, synchronisation primitives are special commands that are used for cooperation and com-
munication with other threads. They often change the state of the thread executing the command

RR n 7320



12 Johnson, et al.

1 process proFact = (?integer inData; !integer outData;)

2 (| (| pK__1 := inData_5 ^+ i_2

3 | pK__2 := Z_i_2 ^+ Z_f_1

4 |)

5 | (| Z_f_1 := f_1$1

6 | Z_i_2 := i_2$1

7 |)

8 | inData_5 ^= L0 ^= f_1 ^= i_2 ^= bb_0

9 | (| f_3 := 1 when bb_0

10 | i_4 := 1 when bb_0

11 |)

12 | (| f_7 := ((Z_f_1 cell pK__2)*(Z_i_2 cell pK__2)) when L0

13 | i_8 := (Z_i_2+1) when L0

14 |)

15 | (| i_2 := i_8 default (i_4 default Z_i_2)

16 | f_1 := f_7 default (f_3 default Z_f_1)

17 |)

18 | outData_6 := f_1 when L2

19 | when bb_0 ^= inData

20 | (| inData_5 := inData cell (^bb_0) |)

21 | (| outData := (outData_6 cell L2) when L2 |)

22 | (| bb_0 := (not (^bb_0))$1 init true

23 | next_L0 := (((i_2 cell pK__1)<=(inData_5 cell pK__1)) when L1)

24 default false

25 | L0 := next_L0$1 init false

26 | L1 := (true when L0) default (true when bb_0)

27 | L2 := (not ((i_2 cell pK__1)<=(inData_5 cell pK__1)))

28 when L1

29 |)

30 |)

31 where ... end

Figure 11: Listing of Signal process proFact

ROUND ROBIN

SETSTATUS{i}

thread1running

thread2running

init

Operating System

Thread1

output1

SCHEDULER

Thread2

output2

output i

Si1, Si2, Si3

S1,S2

selected

reset

Figure 12: Components of a Threaded Software System

(cf. Figure 8). In order to notify the operating system of a state change, threads must communicate
with the operating system.

The isolation of synchronisation primitives provides an easy method of modelling these com-
munication requirements: the signals modelling the blocks containing FairThreads commands are
defined as output signals of the thread process. An output signal is present whenever the command
it is modelling is currently being executed in the thread, and carries the parameter value supplied to
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the command. Additional output signals are required for commands with more than one parameter.
If a command does not appear in a thread then the clock of its output signal is defined to be the
null clock (the thread never executes that command).

The output signals for thread 1 and 2 are depicted in Figure 12 as double arrows labelled output1
and output2. We list all ten output signals in Figure 13 and their corresponding FairThreads
commands and parameters.

For example, the command ft thread await n(e,k) requires two control signals: integer

await which carries the number of the event e, and integer awaitTimeout carries the length of
time k to wait for the event before continuing execution. The output signal endProcessing is not
associated with a command but rather the last block in the SSA diagram. This signal is present
whenever the thread executes the last instruction and thus informs the operating system that the
thread has terminated.

FairThreads Command Output Signal

ft thread await n(e,k) integer await,

awaitTimeout

ft thread generate value(e,v) integer genEvent,

genEventValue

ft thread get value(e,k,v) integer getValueFromEvent,

getithValueOfEvent

ft thread cooperate n(k) integer cooperate

ft thread join n(t,k) integer join,

joinTimeout

event endProcessing

Figure 13: Output Signals for Thread Communication

In addition to output signals used to announce the thread status, an input signal is required
connecting the operating system to the thread to notify it that it has been selected to start or
resume its execution. The input signals of threads 1 and 2 are depicted in the diagram by arrows
labelled thread1running and thread2running.

These special input and output signals are called control signals and they provide an interface
between the operating system and the thread.

5.2 The Operating System

The role of the operating system model is to observe control signals, maintain and update the state
of each thread and events generated by threads, and deterministically select and notify threads
to execute, as required by the specifications of the FairThreads scheduling policy. The operating
system model is composed of many components, and we highlight the most essential ones and their
interconnections, depicted inside the dashed box in Figure 12.

The box labelled SCHEDULER represents a Signal process which takes as input the control signals
for each of the threads and selects and notifies the next thread to execute via the output signals
thread1running and thread2running. This notification is dependent on the state of each thread
and which thread, if any, is ready to run.

5.2.1 The State of Threads and Events

Now, the state of a thread is often determined by synchronisation commands. For example, a thread
that executes the command await(e) is in the Await state and is not able to run: another thread
must be selected by the scheduler. Our model is required to maintain and update each thread
state according to the signals present on the control signals. The states in the finite state machine
depicted in Figure 8 are represented by a unique three-valued boolean code, and thus a thread i is
described by a tuple
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boolean Si1,Si2,Si3.

For each separate thread i, it is the task of the process SETSTATUS{i} to observe the thread’s
control signals depicted by the double arrow labelled outputi on the figure, determine the values
carried by the state signals in the next logical instant, and output the resulting state, depicted by
the arrow labelled Si1, Si2, Si3 in the figure. This process essentially models the behaviour of the
state machine in Figure 8 by enumerating every possible state transition and setting the next state
variables accordingly. For example, suppose thread i is currently in the Run state when a signal is
present on the await control signal. According to the state diagram the next state is Await, which
is specified in Signal by the equations listed in Figure 14. Note also that the equations specify
that each thread is initialized to the Dormant state.

| Si1 := NEXT_Si1 $ 1 init false

| Si2 := NEXT_Si2 $ 1 init true

| Si3 := NEXT_Si3 $ 1 init false

| NEXT_Si1 := ... default false when await ...

| NEXT_Si2 := ... default true when await ...

| NEXT_Si3 := ... default true when await ...

Figure 14: Listing from Signal process SETSTATUS

Control signals also supply the scheduler with parameter values which must be maintained and
updated accordingly by the scheduler. The execution of the command Await(e) results in the
control signal await carrying the number associated with event e. As this value is necessary to
describe the execution state of the thread the scheduler maintains the value in the signal

integer Sia.

The other synchronous command parameters are handled similarly, with each having a special state
signal associated with it.

By using state signals to carry the values of the current thread states, and the parameters of the
synchronous primitives, a complete description of the execution state for all threads in the program
is given. We denote all state signals for a thread i by Si.

The scheduler must maintain the state of events generated by any of the executing threads.
Thus, each event created via the command generate(e,v) is specified in the scheduler by the event
signals

boolean pe; integer ve

whereby the signal pe is present and carries the value true when event represented by the number
e is present, and ve carries the integer value v associated with the event.

The operating system components we describe require synchronous state signals such that we
may perform basic operations and comparisons on the values they carry. The state signals for
threads and events are synchronous with the master clock of the software system given by the input
signal init. Intuitively speaking, each state signal must be present to specify the thread and event
state throughout the entire execution sequence.

5.2.2 Deterministic Thread Selection

The box labelled ROUNDROBIN in Figure 12 depicts the process responsible for modelling the FairThreads
cooperative round-robin selection outlined in Section 3. This process observes the current state of
each thread, the number of the thread currently executing, and transmits the number of the selected
thread to the scheduler whereby the thread is notified via its input control signal. All state signals
S1,S2 maintained by the scheduler are provided as input signals and the number of the selected
thread is output to the scheduler via the signal labelled selected.
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To model correct scheduling behaviour, the ROUNDROBIN process specifies the duration of each
FairThreads instant. Recall that once each thread has had an opportunity to run and yields control
back to the scheduler or has otherwise been blocked, the instant is complete and a new instant
begins. This means all events generated during the instant are reset and threads in the Yield state
are returned to Ready.

This behaviour is modelled simply by the Signal equation in Figure 15, where the reset signal
is present whenever all threads are in a blocked or terminated state. Since a signal presence on
reset causes a thread state change (cf. Figure 8) it is an input signal to the process SETSTATUS.

| reset := when initialize default

when ((yield1 or term1 or await1 or join1) and

(yield2 or term2 or await2 or join2))

Figure 15: Specification of the reset signal for two threads

We provide a complete listing of the FairThreads scheduler specification in Signal for the good and
bad synchronisation examples in Section 3.3 in Appendix A.

6 Threaded Program Verification in Signal

In this paper we have outlined a semi-automatic translation of imperative threaded programs into a
synchronous formalism that allows us to reason about control-flow sequences of threads in terms of
a formal clock calculus. Using the Signal compiler included in the Polychrony toolset, we are able
to check static properties such as contrary clock constraints, cycles, null clocks, exclusive clocks.

To check dynamic properties, we use the model checker Sigali [17] which is an interactive tool
specialized on algebraic reasoning in Z/3Z = {0, 1,−1} logic. The compiler can automatically gen-
erate sets of dynamic polynomial equations from Signal specifications that defines an automaton
describing the dynamical behaviour of the specification. The software tool can analyze this automa-
ton and prove properties such as liveness, reachability, and deadlock. It provides an analysis of the
logical and synchronisation properties of boolean signals, where the values carried by the signals
are encoded by the three values: 1 for present and true, −1 for present and false, and 0 for absent.
This is practical in the sense that true numerical verification quickly results in state spaces that
are no longer manageable, however it requires, depending on the nature of the underlying model,
major or minor modifications prior to formal verification. For many properties, numerical values
are not needed at all and can be abstracted away thus speeding up verification. When verification
of numerical manipulations is sought, an abstraction to boolean values can be performed, that is
sufficient in most cases.

For example, using Sigali with only slight modifications to the FairThreads scheduling model,
we can prove important dynamical properties of thread execution. The boolean signal

thread1running := S11 and S12 and (not S13)

is defined over the state signals of thread 1 and carries a true value whenever thread 1 is currently
in the Run state. The signal thread2running is defined likewise. We add to the model a testing
signal exclusiveRunning shown in Figure 16 and using Sigali prove that there is no state in the
automaton such that the property is true. Thus we conclude that our model does not schedule more
than one thread to run at a time.

| exclusiveRunning := thread1Running and thread2Running

| Sigali(Never(B_True(exclusiveThreadRun)))

Figure 16: Property One. Exclusive Thread Execution
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Size

Program Never(RECV) State vars States Reachable Transitions Time

Ex. 3.1.1 false 34 234 84 548.931 1.18s

Ex. 3.1.2 true 30 230 19 286.755 2.92s

Table 1: Verification Time and Complexity

We use Sigali to detect missed events in threaded programs which result in missynchronisations
of threads or at the very least ineffective code. Encoding the state signals S1a and S2a as boolean
signals we define the property

RECV := (S1a or S2a) and pe1

which is true when either thread 1 or thread 2 are waiting for event 1 and the event is present.
By defining a special signal boolean observer which records the history of values of this property,
we use Sigali in Figure 17 to prove RECV is sometimes true for Example 3.1.1 and never true for
Example 3.1.2. Table 1 summarises these results.

|observer := RECV default observer$1 init false

|observer ^= initialize

|Sigali(Never(B_True(observer)))

Figure 17: Property Two. Detecting Missed Events

7 Conclusion and Future Work

In this paper we have presented a deterministic threaded framework called FairThreads in which
threads are attached to a scheduler and cooperative with each other for access to resources and
the processor. To illustrate the scheduling policy of FairThreads two examples are presented. The
first example exhibits correct synchronisation between threads using an event to send and receive
data. The second example is a variation of this, but with a synchronisation error: a FairThreads
primitive ft thread cooperate is misplaced causing the event never to be received. These types
of synchronisation problems cause deadlocks and are difficult to detect in complex programs with
several threads.

Our solution to detecting these types of synchronisation problems semi-automatically is based on
the synchronous data-flow language Signal. Imperative programs written in software engineering
languages such as the C programming language are automatically converted into an SSA representa-
tion by the GCC compiler. We outline a method of translating the SSA code to Signal where each
SSA block is assigned a boolean signal, enabling us to reason about control-flow in a formal calculus
on signals and clocks. This translation is automatic and we describe how the notion of control
signals extends our method to programs which use synchronisation commands in the FairThreads
library.

The FairThreads scheduler is modelled in Signal and we highlight the most important compo-
nents. The model was written by hand and is specific to the FairThreads scheduling policy. The
Signal compiler is used for code generation which simulates the scheduling of the two examples we
have presented. Our model is general and is easily extended to an arbitrary number of threads and
events. As we need to maintain the states of all threads and events, our method is limited to the
static creation of threads and generation of events.

The Signal compiler automatically generates a polynomial dynamical system which defines an
automaton simulating the behaviour of the FairThreads specification. Using the Sigali software
tool we prove dynamical properties of our specification. Formal properties defined over boolean
signals modelling thread states are easily verified by the tool, and we give the exclusive thread
execution property as an example. More complex properties are formulated over the thread state
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signals and boolean signals modelling generated events allowing us to verify the threads are free
from deadlocks arising from missed events.

Though the work presented here was focused specifically on the scheduling policies of FairThreads,
we envisage a generalisation of the scheduler model to simulate other scheduling policies. For exam-
ple, we may consider modelling and verification tasks in the context of other cooperative threaded
frameworks such as SHIM [8].

A Signal Specification Listing

We present the complete Signal specification of the FairThreads scheduler including the threads
from in Examples 3.1.1 and 3.1.2. This specification is modified for the purpose of Sigali verifica-
tion.

process FairThreadsRapportBinaryExamples1and2 = ( ? ! integer TASKID;)

(| initialize := INITIALIZING()

| TASKID := APPLICATION(initialize)

|)

where

boolean initialize;

type ft_event_t:=integer;

type timeout_type:=integer;

%-----------------------------------------------------------------------%

process exiting = (? event e;);

%-----------------------------------------------------------------------%

% FairThreads primitives %

process ft_thread_generate_value = (? ft_event_t e; integer n; !)

spec (|e ^= n|);

process ft_thread_cooperate_n = (? integer x; !);

action ft_thread_cooperate = (? !);

process ft_thread_await_n = (? ft_event_t e; integer n;!integer r)

spec (|e ^= n ^= r|);

process ft_thread_await = (? ft_event_t e;!) ;

process ft_thread_get_value = (? ft_event_t e; integer n; ! integer value)

spec (|e ^= n ^= value|);

process ft_thread_join = (? integer n);

% Printings %

process printStates = (? boolean S11, S12, S13, S21, S22, S23,S31,S32,S33; !) ;

process printBool = (? strings; boolean b;)

spec (| strings ^= b |);

process printInteger = (? strings; integer b;)

spec (| strings ^= b |);

process printEvent = (? strings; boolean b1,b2;)

spec (| strings ^= b1 ^= b2 |);

% --------------- State managing ------------%

process IN_RUNNING = ( ? boolean S1, S2, S3; ! boolean B)

(| B := S1 and S2 and (not S3) |);

process IN_TERM = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (not S1 and not S2 and not S3) |);

process IN_READY = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (S1 and (not S2) and not S3) |);

process IN_YIELD = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (S1 and S2 and S3) |);

process IN_DORMANT = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (not S1) and S2 and (not S3) |);

process IN_JOIN = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (not S1) and (not S2) and S3 |);
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process IN_AWAIT = ( ? boolean S1, S2, S3; ! boolean B)

(| B:= (not S1) and S2 and S3 |);

% --------------- State managing ------------%

%

We modify the roundrobin process as follows.

selected is encoded by two booleans B1 and B2 and the integer

values are encoded as follows.

B1 B2

0 0 0

1 0 1

2 1 0

3 1 1

Next, we define some processes to make the specification easier to read.%

%-----------------------------------------------------------------------%

process IS_EQUAL = (?boolean B1,B2,C1,C2!boolean answer;)

(|answer := (B1=C1) and (B2=C2)

|);

%-----------------------------------------------------------------------%

process SET_ONE = (?!boolean B1,B2;)

(|B1 := false

|B2 := true

|);

%-----------------------------------------------------------------------%

process ONE = (?boolean B1,B2 !boolean answer)

(|answer := (not B1) and B2

|);

%-----------------------------------------------------------------------%

process SET_TWO = (?!boolean B1,B2;)

(|B1 := true

|B2 := false

|);

%-----------------------------------------------------------------------%

process TWO = (?boolean B1,B2 !boolean answer)

(|answer := B1 and (not B2)

|);

%-----------------------------------------------------------------------%

process SET_THREE = (?!boolean B1,B2;)

(|B1 := true

|B2 := true

|);

%-----------------------------------------------------------------------%

process THREE = (?boolean B1,B2 !boolean answer)

(|answer := B1 and B2

|);

%-----------------------------------------------------------------------%

process JOIN = {integer numTask1, numTask2;}

(? integer join; % thread number%

integer joinn; % timeout %

event e1, e2; % terminate %

! event joinresume;

integer sw;%thread number that we are waiting for. not waiting sw=-1%

integer jc;%once this value has reached 0, issue joinresumei%

)

% if join timed out or the thread terminated, issue a resume event.%

(| (| sw := n_sw $ 1 init (-1)

| n_sw := join default (-1 when joinresume) default sw

|)

| (| jc := n_jc $1 init (8888888)
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| n_jc := joinn default ((jc-1) when (jc>=0)) default jc

|)

| joinresume := when ((sw=numTask1) when e1) default

(when (sw=numTask2) when e2) default when (jc=0)

|)

where

integer n_jc ,n_sw;

end;

%-----------------------------------------------------------------------%

process Qe = {boolean index_evt1,index_evt2; string s1,s2;}

(? boolean reset;

boolean GE11,GE12;integer GV1;

boolean GE21,GE22;integer GV2;

boolean GE31,GE32;integer GV3;

! boolean pe1;integer ve1;)

(| eventarrived := when (IS_EQUAL(GE11,GE12,index_evt1,index_evt2)) default

when (IS_EQUAL(GE21,GE22,index_evt1,index_evt2)) default

when (IS_EQUAL(GE31,GE32,index_evt1,index_evt2))

| (| zpe1 := pe1$1 init false

| pe1 := true when eventarrived default

false when reset default

zpe1

|)

| (| zve1 := ve1$1 init 9999999

| ve1 := ((GV1 default GV2 default GV3) when eventarrived)

default (9999999 when not pe1) default zve1

|)

| printBool(s1,pe1)

| printInteger(s2,ve1)

|)

where

event eventarrived;

boolean zpe1;

integer zve1;

end;

%-----------------------------------------------------------------------%

process AWAIT1EVENT = (? boolean await1,await2;%number of event we are

waiting for %

integer awaitn;%number of ticks we should wait before resuming%

event awaitresume;

! boolean Sa1,Sa2; %event we are waiting for. otherwise Sa1=F,Sa2=F%

integer ac; ) % when value has reached 0, issue awaitresumei%

(| (| zSa1 := Sa1 $ 1 init false

| zSa2 := Sa2 $ 1 init false

| Sa1 := await1 default false when awaitresume default zSa1

| Sa2 := await2 default false when awaitresume default zSa2

|)

| (| ac := zac $1 init (-1)

| zac := awaitn default (ac-1) when ( (ac > -1)) default (-1)

|)

| printBool("awaitresume = ",awaitresume)

| printEvent("event: ",await1,await2)

|)

where

integer zac;

boolean zSa1,zSa2;
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end;

%-----------------------------------------------------------------------%

process SET_STATUS={ boolean INIT_STATUS1, INIT_STATUS2, INIT_STATUS3;}

(? boolean initialize;

event reset, is_selected;

boolean await1;

integer awaitn;

event coop;

integer join,joinn;

event terminate,joinresume,awaitresume;boolean Continue;

! boolean Si1, Si2,Si3;

event start;)

% Si1 Si2 Si3

TERM 0 0 0

DORMANT 0 1 0

READY 1 0 0

RUN 1 1 0

JOINE 0 0 1

AWAITE 0 1 1

YIELD 1 1 1

%

(| Si1 := NEXT_Si1 $ 1 init INIT_STATUS1

| Si2 := NEXT_Si2 $ 1 init INIT_STATUS2

| Si3 := NEXT_Si3 $ 1 init INIT_STATUS3

| DORMANT := IN_DORMANT(Si1, Si2, Si3)

| RUNNING := IN_RUNNING (Si1, Si2, Si3)

| TERM := IN_TERM (Si1, Si2, Si3)

| JOIN := IN_JOIN(Si1,Si2,Si3)

| AWAIT := IN_AWAIT(Si1,Si2,Si3)

| NEXT_Si1 := ((true when DORMANT)

default (true when RUNNING when Continue)

default (true when reset when (not (AWAIT OR JOIN)))

default (false when ^await1)

default (false when ^awaitn)

default (true when is_selected)

default (false when terminate)

default (true when coop)

default (true when joinresume)

default (false when ^join)

default (false when ^joinn)

default (true when awaitresume)) when not TERM

default Si1

| NEXT_Si2 := ((false when DORMANT)

default (true when RUNNING when Continue)

default (false when reset when (not (AWAIT OR JOIN)))

default (true when ^await1)

default (true when ^awaitn)

default (true when is_selected)

default (false when terminate)

default (true when coop)

default (false when joinresume)

default (false when ^join)

default (false when ^joinn)
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default (false when awaitresume)) when not TERM

default Si2

| NEXT_Si3 :=( (false when DORMANT)

default (false when RUNNING when Continue)

default (false when reset when (not (AWAIT OR JOIN)))

default (true when ^await1)

default (true when ^awaitn)

default (false when is_selected)

default (false when terminate)

default (true when coop)

default (false when joinresume)

default (true when ^join)

default (true when ^joinn)

default (false when awaitresume)) when not TERM

default Si3

|)

where

boolean NEXT_Si1,NEXT_Si2,NEXT_Si3,DORMANT,RUNNING,JOIN,AWAIT,TERM;

end;

%-----------------------------------------------------------------------%

process ROUNDROBIN = (? boolean initialize;

boolean S11,S12,S13,S21,S22,S23,S31,S32,S33;

boolean Continue1, Continue2, Continue3;

! boolean B1,B2;

event reset;)

(| ready1 := IN_READY(S11, S12, S13)

| ready2 := IN_READY(S21, S22, S23)

| ready3 := IN_READY(S31, S32, S33)

| (| term1 := IN_TERM (S11, S12, S13)

| term2 := IN_TERM (S21, S22, S23)

| term3 := IN_TERM (S31, S32, S33)

| term12 := term1 and term2

| term13 := term1 and term3

| term23 := term2 and term3

|)

| (| yield1 := IN_YIELD (S11, S12, S13)

| yield2 := IN_YIELD (S21, S22, S23)

| yield3 := IN_YIELD (S31, S32, S33)

|)

| (| no_running1 := not IN_RUNNING (S11, S12, S13)

| no_running2 := not IN_RUNNING (S21, S22, S23)

| no_running3 := not IN_RUNNING (S31, S32, S33)

|)

|

(| await1 := IN_AWAIT (S11, S12, S13)

| await2 := IN_AWAIT (S21, S22, S23)

| await3 := IN_AWAIT (S31, S32, S33)

|)

|

(| join1 := IN_JOIN (S11, S12, S13)

| join2 := IN_JOIN (S21, S22, S23)

| join3 := IN_JOIN (S31, S32, S33)

|)

| (| resetEvents(when reset)
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|reset := when initialize default when

((yield1 or term1 or await1 or join1) and

(yield2 or term2 or await2 or join2) and

(yield3 or term3 or await3 or join3))

|)

| no_running := when ( no_running1 and no_running2 and no_running3 )

|B1 ^= B2

|B1 ^= when no_running

|zB1 := B1 $1 init true %initialised to THREE%

|zB2 := B2 $1 init true

| B2 := ( (true when reset)

default zB2 when ( Continue1 or Continue2 or Continue3)

default (true when ready1 when ((zB2 =true) or ((zB2=false) and

(term3 when ^B2)) or (term23 when ^B2) ))

default (false when ready2 when ((zB2 =true) or ((zB2=true) and

(term1 when ^B2)) or (term13 when ^B2) ))

default (true when ready3 when ((zB2 =false) or ((zB2=true) and

(term2 when ^B2)) or (term12 when ^B2) ))

default false ) when no_running

| B1 := ( (true when reset)

default zB1 when ( Continue1 or Continue2 or Continue3)

default (false when ready1 when ((zB1 =true) or ((zB1=true) and

(term3 when ^B1)) or (term23 when ^B1) ))

default (true when ready2 when ((zB1 =false) or ((zB1=true) and

(term1 when ^B1)) or (term13 when ^B1) ))

default (true when ready3 when ((zB1 =true) or ((zB1=false) and

(term2 when ^B1)) or (term12 when ^B1) ))

default false ) when no_running

|printBool("Continue1 = ",Continue1)

|printBool("Continue2 = ",Continue2)

|printBool("Continue3 = ",Continue3)

|)

where

boolean zB1,zB2;

event resetStatus1,resetStatus2,resetStatus3;

event no_running;

boolean ready1, ready2, ready3;

boolean yield1,yield2,yield3;

boolean join1, join2, join3;

boolean await1, await2, await3;

boolean no_running1, no_running2, no_running3;

boolean term1,term2,term3,term12, term13, term23;

process resetEvents = (? event b!);

process eventPresent = (? integer event_index ! boolean value)

spec (|event_index ^= value|);

end;

%-----------------------------------------------------------------------%

process UNDEFINED_THREAD = (? ! boolean await1; timeout_type awaitn;

integer coop;

integer join; timeout_type joinn;

boolean GE1,GE2; integer genevalue;

ft_event_t getValueFromEvent; integer getIthvalueOfEvent;

event terminate;)

(| await1 := false when (^0)

| awaitn := 0 when (^0)

| coop := 0 when (^0)
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| join := 0 when (^0)

| joinn := 0 when (^0)

| GE1 := false when (^0)

| GE2 := false when (^0)

| genevalue := 0 when (^0)

| getValueFromEvent:= 0 when (^0)

| getIthvalueOfEvent:= 0 when (^0)

| terminate := ^0

|);

%-----------------------------------------------------------------------%

process SCHEDULER_1_EVENT={boolean T1, T2, T3}

% Ti at true when the i-th thread exists %

( ? boolean initialize;boolean await11;integer awaitn1;event coop1;

integer join1,joinn1;

boolean GE11,GE12;integer genevalue1;event terminate1;

boolean await21;integer awaitn2;event coop2;integer join2,joinn2;

boolean GE21,GE22;integer genevalue2;event terminate2;

boolean await31;integer awaitn3;event coop3;integer join3,joinn3;

boolean GE31,GE32;integer genevalue3;event terminate3;

! boolean THREAD1RUNNING,THREAD2RUNNING,THREAD3RUNNING;)

(| (pe1,ve1) := Qe {false,true, "pe1 = ", "ve1 = "}

(reset,GE11,GE12,genevalue1,GE21,GE22,genevalue2,GE31,

GE32,genevalue3)

| initialize ^= pe1 ^= ve1

%=============================== JOIN%

| (|(joinresume1,S1w,jc1) :=

JOIN{2,3}(join1,joinn1,terminate2,terminate3)

|(joinresume2,S2w,jc2) :=

JOIN{1,3}(join2, joinn2, terminate1, terminate3)

|(joinresume3,S3w,jc3) :=

JOIN{1,2}(join3, joinn3, terminate1, terminate2)

|)

%================================ SCHEDULING%

| (| (S11, S12, S13, start1) :=

SET_STATUS{false, T1, false}(initialize,reset,when

(ONE(B1,B2)),await11,awaitn1,coop1,join1,joinn1,

terminate1,joinresume1,awaitresume11,Continue1)

| (S21, S22, S23, start2) := SET_STATUS{false, T2, false}

(initialize,reset,when (TWO(B1,B2)),await21,awaitn2,coop2,

join2,joinn2,terminate2,joinresume2,awaitresume21,Continue2)

| (S31, S32, S33, start3) := SET_STATUS{false, T3, false}

(initialize,reset,when (THREE(B1,B2)),await31,awaitn3,coop3,

join3,joinn3,terminate3,joinresume3,awaitresume31,Continue3)

|)

| printStates(S11,S12,S13,S21,S22,S23,S31,S32,S33)

|Continue1 := true when (await11 when pe1) default false

|Continue2 := true when (await21 when pe1) default false

|Continue3 := true when (await31 when pe1) default false

|Continue1 ^=Continue2 ^= Continue3 ^= initialize

|(B1,B2, reset) := ROUNDROBIN(initialize,

S11,S12,S13,S21,S22,S23,S31,S32,S33,

Continue1, Continue2, Continue3)

| THREAD1RUNNING := IN_RUNNING(S11, S12, S13)

| THREAD2RUNNING := IN_RUNNING(S21, S22, S23)

| THREAD3RUNNING := IN_RUNNING(S31, S32, S33)

|exclusiveThreadRun := (THREAD1RUNNING and THREAD2RUNNING) or

(THREAD1RUNNING and THREAD3RUNNING) or

(THREAD2RUNNING and THREAD3RUNNING)
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|Sigali(Never(B_True(exclusiveThreadRun)))

| jc1 ^= jc2 ^= jc3 ^= S1w ^= S2w ^= S3w ^= ^0

| S11a ^= S12a ^= S21a ^= S22a ^= S31a ^= S32a ^= ac1 ^= ac2 ^= ac3

^= % jc1 ^= jc2 ^= jc3 ^= S1w ^= S2w ^= S3w ^=%

S11 ^= S12 ^= S13 ^= S21 ^= S22 ^= S23 ^= S31 ^=

S32 ^= S33 ^= initialize ^= pe1 ^= ve1

| exiting (when IN_TERM(S11, S12, S13) and IN_TERM(S21, S22, S23)

and IN_TERM(S31, S32, S33))

|printBool ("S11a = ",S11a)

|printBool ("S21a = ",S21a)

|awaitresume11 := when (S11a) and pe1

|awaitresume21 := when (S21a) and pe1

|awaitresume31 := when (S31a) and pe1

|S11a := NEXT_S11a $ 1 init false

|NEXT_S11a := await11 default false when awaitresume11 default S11a

|S21a := NEXT_S21a $ 1 init false

|NEXT_S21a := await21 default false when awaitresume21 default S21a

|S31a := NEXT_S31a $ 1 init false

|NEXT_S31a := await31 default false when awaitresume31 default S31a

|obj1 := ((S11a or S21a or S31a) and pe1) default obj1$1 init false

|obj1 ^= initialize

|Sigali(Never(B_True(obj1)))

|) where

boolean NEXT_S11a,NEXT_S12a,NEXT_S21a,NEXT_S22a,NEXT_S31a,NEXT_S32a;

boolean Continue1,Continue2,Continue3;

use SIGALI;

boolean exclusiveThreadRun,obj1 ;

event reset;

event awaitresume11,awaitresume21, awaitresume31;

event start1, start2,start3;

event joinresume1,joinresume2,joinresume3;

boolean S11, S12, S13, S21, S22, S23, S31, S32, S33;

boolean S11a,S12a,S21a,S22a,S31a,S32a; % which event are we waiting for%

integer ac1,ac2,ac3; % countdown values for the awaitn command%

integer S1w,S2w,S3w; %thread we waiting for to terminate?%

integer jc1,jc2,jc3; %countdown values for the joinn command%

boolean pe1; %true if event1 present%

integer ve1; %value of event 1%

boolean B1,B2;

end;

%-----------------------------------------------------------------------%

process FT_SCHEDULER_2TASKS_1_EVENT =(? boolean initialize;

boolean await11; timeout_type awaitn1; integer coop1;

integer join1; timeout_type joinn1;

boolean GE11,GE12; integer genevalue1; ft_event_t getValueFromEvent1;

integer getIthvalueOfEvent1;event terminate1;

boolean await21; timeout_type awaitn2; integer coop2;

integer join2; timeout_type joinn2;

boolean GE21,GE22; integer genevalue2; ft_event_t getValueFromEvent2;

integer getIthvalueOfEvent2;event terminate2;

! boolean THREAD1RUNNING,THREAD2RUNNING;)

(| (THREAD1RUNNING,THREAD2RUNNING,THREAD3RUNNING) :=

SCHEDULER_1_EVENT {true, true, false} (initialize,

await11,awaitn1, ^coop1,join1,joinn1,GE11,GE12,genevalue1,terminate1,

await21,awaitn2, ^coop2,join2,joinn2,GE21,GE22,genevalue2,terminate2,

await31,awaitn3, ^coop3,join3,joinn3,GE31,GE32,genevalue3,terminate3 )
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| (await31,awaitn3,coop3,join3,joinn3,GE31,GE32,genevalue3,

getValueFromEvent3,getIthvalueOfEvent3, terminate3) := UNDEFINED_THREAD()

|) where

boolean THREAD3RUNNING;

boolean await31;

timeout_type awaitn3;

integer coop3;

integer join3;

timeout_type joinn3;

boolean GE31,GE32;

integer genevalue3;

ft_event_t getValueFromEvent3;

integer getIthvalueOfEvent3;

event terminate3;

end;

%-----------------------------------------------------------------------%

process INITIALIZING=

(? ! boolean initialize;)

(| initialize := (not ^initialize) $1 init true

|);

%-----------------------------------------------------------------------%

process APPLICATION =( ? boolean initialize;! integer TASKID;)

(|(await11,awaitn1,coop1,join1,joinn1,GE11,GE12,genevalue1,

getValueFromEvent1, getIthvalueOfEvent1, endProcessing1) :=

EXAMPLE2_thread1(when THREAD1RUNNING)

|(await21,awaitn2,coop2,join2,joinn2,GE21,GE22,genevalue2,

getValueFromEvent2, getIthvalueOfEvent2, endProcessing2) :=

EXAMPLE2_thread2(when THREAD2RUNNING)

| (THREAD1RUNNING,THREAD2RUNNING) := FT_SCHEDULER_2TASKS_1_EVENT{}

(initialize,await11,awaitn1,coop1,join1,joinn1,GE11,GE12,genevalue1,

getValueFromEvent1,getIthvalueOfEvent1, endProcessing1,

await21,awaitn2,coop2,join2,joinn2,GE21,GE22,genevalue2,

getValueFromEvent2,getIthvalueOfEvent2, endProcessing2)

| TASKID := 1 when THREAD1RUNNING default 2 when THREAD2RUNNING

|)

where

boolean THREAD1RUNNING,THREAD2RUNNING;

boolean await11,await21,await31;

integer awaitn1,awaitn2,awaitn3;

integer getValueFromEvent1, getIthvalueOfEvent1, getValueFromEvent2,

getIthvalueOfEvent2, getValueFromEvent3, getIthvalueOfEvent3;

integer coop1,coop2,coop3;

integer join1,join2,join3;

integer joinn1,joinn2,joinn3;

boolean GE11,GE12,GE21,GE22,GE31,GE32;

integer genevalue1,genevalue2,genevalue3;

event endProcessing1, endProcessing2, endProcessing3;

%-----------------------------------------------------------------------%

process EXAMPLE1_thread2 % D% =

( ? event running;

! boolean _await1;

integer _await_timeout;

integer _cooperate;

integer _join_thread;

integer _join_timeout;

boolean GE1,GE2;

integer _gen_event_value;

ft_event_t _get_value_fromevent;
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integer _get_ithvalue_ofevent;

event endProcessing;

)

(| pK__2 ^= pK__1 ^= bb_0

| (| (| pK__4 :: initthread2()

| pK__4 ^= when bb_0

|)

| D_3218_1 := getValue() % when bb_0 ----% | D_3218_1 ^= when bb_0

| num_2 := D_3218_1 when bb_0

|)

| ft_thread_generate_value(1 when pK__3,num_2 when pK__3)

| ft_thread_cooperate_n(1 when pK__2)

| (| pK__5 :: finalizethread2()

| pK__5 ^= when pK__1

|)

| (| bb_0 := ((not (^bb_0))$1 init true) when running

| pK__3 := true when bb_0 when running

| next_pK__2 := ((true when pK__3) default false) when running

| pK__2 := (next_pK__2$1 init false) when running

| next_pK__1 := ((true when pK__2) default false) when running

| pK__1 := (next_pK__1$1 init false) when running

|)

| (| _await1 := ^0)

| _await_timeout := ^0

| _cooperate := 1 when pK__2

| _join_thread := ^0

| _join_timeout := ^0

% | _gen_event := 1 when pK__3%

| GE1 := false when pK__3

| GE2 := true when pK__3

| _gen_event_value := num_2 when pK__3

| _get_value_fromevent := ^0

| _get_ithvalue_ofevent := ^0

| endProcessing := when pK__1

|)

|)

where

label pK__4,pK__5;

boolean bb_0,pK__3,next_pK__2,pK__2,next_pK__1,pK__1;

integer D_3218_1;

integer num_2;

end

%ThreadD%;

%-----------------------------------------------------------------------%

process EXAMPLE1_thread1 % C% =

( ? event running;

! boolean _await1;

integer _await_timeout;

integer _cooperate;

integer _join_thread;

integer _join_timeout;

boolean GE1,GE2;

integer _gen_event_value;

ft_event_t _get_value_fromevent;

integer _get_ithvalue_ofevent;

event endProcessing;

)

pragmas
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Local_Virtual_SSA_Code {value}

end pragmas

(| (| pK__9 := pK__6 ^+ Z_value |)

| (| Z_value := value$1 | value ::= defaultvalue Z_value|)

| pK__7 ^= pK__6 ^= value ^= bb_0

| ft_thread_await(1 when bb_0)

| value ::= ft_thread_get_value(1 when pK__7, 1)

| (| value_0_2 := (Z_value cell pK__9) when (pK__6 cell pK__9) when pK__6

| D_3214_3 := compute_factorial(value_0_2 when pK__6)

|printInteger("Value of Factorial is: ",D_3214_3)

| f_4 := D_3214_3 when pK__6

|)

| (| bb_0 := ((not (^bb_0))$1 init true) when running

| next_pK__7 := ((true when bb_0) default false) when running

| pK__7 := (next_pK__7$1 init false) when running

| next_pK__6 := ((true when pK__7) default false) when running

| pK__6 := (next_pK__6$1 init false) when running

|)

| (| _await1 := true when bb_0

| _await_timeout := -1 when bb_0

| _cooperate := ^0

| _join_thread := ^0

| _join_timeout := ^0

| GE1 := false when (^0) | GE2 := false when (^0)

| _gen_event_value := ^0

| _get_value_fromevent := 1 when pK__7

| _get_ithvalue_ofevent := 0 when pK__7

| endProcessing := when pK__6

|)

|)

where

event pK__9;

boolean bb_0,next_pK__7,pK__7,next_pK__6,pK__6;

Z_value;

integer value_0_2;

integer D_3214_3;

integer f_4;

shared integer value;

process compute_factorial =

( ? integer inData;

! integer outData;)

spec (| inData ^= outData |) external;

end

%ThreadC%;

%-----------------------------------------------------------------------%

process EXAMPLE2_thread2 =

( ? event running;

! boolean _await1;

integer _await_timeout;

integer _cooperate;

integer _join_thread;

integer _join_timeout;

boolean GE1,GE2;

integer _gen_event_value;

ft_event_t _get_value_fromevent;
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integer _get_ithvalue_ofevent;

event endProcessing;

)

(| pK__2 ^= pK__1 ^= bb_0

| (| (| pK__4 :: initthread2()

| pK__4 ^= when bb_0

|)

| D_3218_1 := getValue() % --when bb_0 % | D_3218_1 ^= when bb_0

| num_2 := D_3218_1 when bb_0

|)

| ft_thread_generate_value(1 when pK__3,num_2 when pK__3)

| ft_thread_cooperate_n(1 when pK__2)

| (| pK__5 :: finalizethread2()

| pK__5 ^= when pK__1

|)

| (| bb_0 := ((not (^bb_0))$1 init true) when running

| pK__3 := true when bb_0 when running

| next_pK__2 := ((true when pK__3) default false) when running

| pK__2 := (next_pK__2$1 init false) when running

| next_pK__1 := ((true when pK__2) default false) when running

| pK__1 := (next_pK__1$1 init false) when running

|)

| (| _await1 := false when (^0)

| _await_timeout := ^0

| _cooperate := 1 when pK__2

| _join_thread := ^0

| _join_timeout := ^0

% | _gen_event := 1 when pK__3%

|GE1 := false when pK__3

|GE2 := true when pK__3

| _gen_event_value := num_2 when pK__3

| _get_value_fromevent := ^0

| _get_ithvalue_ofevent := ^0

| endProcessing := when pK__1

|)

|)

where

label pK__4,pK__5;

boolean bb_0,pK__3,next_pK__2,pK__2,next_pK__1,pK__1;

integer D_3218_1;

integer num_2;

end

%ThreadD%;

%-----------------------------------------------------------------------%

process EXAMPLE2_thread1 =

( ? event running;

! boolean _await1;

integer _await_timeout;

integer _cooperate;

integer _join_thread;

integer _join_timeout;

boolean GE1,GE2;

integer _gen_event_value;

ft_event_t _get_value_fromevent;

integer _get_ithvalue_ofevent;

event endProcessing;

)

pragmas

INRIA



A Synchronous Approach to Threaded Program Verification 29

Local_Virtual_SSA_Code {value}

end pragmas

(| (| pK__11 := pK__6 ^+ Z_value |)

| (| Z_value := value$1 | value ::= defaultvalue Z_value |)

| pK__8 ^= pK__7 ^= pK__6 ^= value ^= bb_0

| (| pK__9 :: ft_thread_cooperate()

| pK__9 ^= when bb_0

|)

| ft_thread_await(1 when pK__8)

| value ::= ft_thread_get_value(1 when pK__7, 1)

| (| value_0_2 := (Z_value cell pK__11) when

(pK__6 cell pK__11) when pK__6

| D_3214_3 := compute_factorial(value_0_2) when pK__6

| f_4 := D_3214_3 when pK__6

|)

| (| bb_0 := ((not (^bb_0))$1 init true) when running

| next_pK__8 := ((true when bb_0) default false) when running

| pK__8 := (next_pK__8$1 init false) when running

| next_pK__7 := ((true when pK__8) default false) when running

| pK__7 := (next_pK__7$1 init false) when running

| next_pK__6 := ((true when pK__7) default false) when running

| pK__6 := (next_pK__6$1 init false) when running

|)

| ( %_await := 1 when pK__8%

| _await1 := true when pK__8

| _await_timeout := -1 when pK__8

| _cooperate := 1 when bb_0

| _join_thread := ^0

| _join_timeout := ^0

% | _gen_event := ^0%

| GE1 := false when (^0) | GE2 := false when (^0)

| _gen_event_value := ^0

| _get_value_fromevent := 1 when pK__7

| _get_ithvalue_ofevent := 0 when pK__7

| endProcessing := when pK__6

|)

|)

where

event pK__11;

label pK__9;

boolean bb_0,next_pK__8,pK__8,next_pK__7,pK__7,next_pK__6,pK__6;

Z_value;

integer value_0_2;

integer D_3214_3;

integer f_4;

shared integer value; % -- %

process compute_factorial =

( ? integer inData;

! integer outData;)

spec (| inData ^= outData |) external;

end

%ThreadC%;

end %RapportExample2%;

%-----------------------------------------------------------------------%

action initthread2 = (?!);

action finalizethread2 = (?!);

process getValue = (?!integer value);
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process nextValueExist = (?!integer value);

process extern_compute =

(? integer inData; !integer outData;)

spec (|inData ^= outData|);

process getEOI = (?!integer value);

process yield = (? integer numTask, val;)

spec (| numTask ^= val |);

process join = (? integer numTask, val;)

spec (| numTask ^= val |);

process SendEndprocessing = (?integer x;);

end;
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[12] M. Le Borgne, H. Marchand, É. Rutten, and M. Samaan. Formal verification of signal programs:
Application to a power transformer station controller. Algebraic Methodology and Software
Technology, pages 271 – 285, 1996.

[13] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time applications
with Signal. Proceedings of the IEEE, 79(9):1321–1336, Sep. 1991.

INRIA

www-sop.inria.fr/mimosa/rp/FairThreads/FTC/index.html
www-sop.inria.fr/meije/rp/FairThreads/FTC/documentation/semantics.pdf


A Synchronous Approach to Threaded Program Verification 31

[14] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system design. Journal for
Circuits, Systems and Computers, 12(3):261–304, April 2003.

[15] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of discrete-event
controllers based on the signal environment. Discrete Event Dynamic Systems, 10:325 – 346,
2000.

[16] H. Marchand and M. Le Borgne. The supervisory control problem of discrete event systems
using polynomial methods. Technical Report 1271, INRIA, 1999. http://hal.inria.fr/inria-
00072869/en/.

[17] H. Marchand and E. Rutten. Signal and Sigali user’s manual.
http://www.irisa.fr/espresso/Polychrony, 2002.

[18] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Improving dynamic soft-
ware analysis by applying grammar inference principles. Journal of Software Maintenance and
Evolution: Research and Practice, 20(4):269–290, 2008.

RR n 7320



Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

ISSN 0249-6399


	Introduction
	Outline

	Preliminaries
	The Signal Language
	C programs in SSA Representation
	Example: the fact program

	The FairThreads Framework
	Cooperative Thread Scheduling in FairThreads 
	Example: Good Synchronisation
	Example: Bad Synchronisation

	Modelling FairThreads Scheduling Behaviour
	A FairThreads Example

	From Imperative Programs to a Synchronous Formalism
	Modelling FairThreads in Signal
	Thread Control Signals
	The Operating System
	The State of Threads and Events
	Deterministic Thread Selection


	Threaded Program Verification in Signal
	Conclusion and Future Work
	Signal Specification Listing

