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Abstract: This paper present the use of recursive Newton-Euler to model different robotics systems. The main 
advantages of this technique are the facility of implementation by numerical or symbolical programming 
and providing models with reduced number of operations. In this paper the inverse and direct dynamic 
models of different robotics systems will be presented. At first we start by rigid tree structure robots, then 
these algorithms will be generalized for closed loop robots, parallel robots, and robots with lumped 
elasticity. At the end the case of robots with moving base will be treated. 

1 INTRODUCTION 

The dynamic modelling of robots is an important 
topic for the design, simulation, and control of 
robots. Different techniques have been proposed and 
used by the robotics community. In this paper we 
show that the use of Newton-Euler recursive 
technique for different robotics systems is easy to 
develop and programme. The proposed algorithm 
can be extended to many types of structures; serial, 
tree structure, closed, parallel, with a fixed base or 
with moving platform. The same technique can be 
used for robots with lumped elasticity or flexible 
links.  
In section 2 we will recall the method used to 
describe the kinematics of the structure, and then in 
section 3 we present the inverse and the direct 
dynamic modeling of tree structure rigid robots 
which are considered as the base methods. The 
following sections present the generalization to the 
other systems. 

2 DESCRIPTION OF THE 
KINEMATICS OF ROBOTS 

The geometry of the structures will be described 
using the Modified Denavit and Hartenberg method 
as proposed in (Khalil and Kleinfinger, 1986). This 
method can take into account tree structures and 

closed loop robots. Its use facilitates the calculation 
of the base inertial parameters of robots (Gautier and 
Khalil, 1988, Khalil W., Bennis F., 1994, Khalil and 
Bennis, 1995).  

 
2.1 Geometric description of tree 

structure robots 

A tree structure robot is composed of n+1 links 
and n joints. Link 0 is the base and link n is a 
terminal link. The joints are either revolute or 
prismatic, rigid or elastic. The links are numbered 
consecutively from the base, link 0, to the terminal 
links. Joint j connects link j to link a(j), where a(j) 
denotes the link antecedent to link j. A frame Ri is 
attached to each link i such that (Figure 1):  

• zi is along the axis of joint i;  

• xi is taken along the common normal between 
zi and one of the succeeding joint axes, which 
are fixed on link i.    
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Figure 1: Geometric parameters for a link i.  



 

 
In general the homogeneous transformation 

matrix iTj, which defines the frame Rj relative to 
frame Ri is obtained as a function of six geometric 
parameters (j, bj, j, dj, j, rj). Thus iTj is obtained 
as:  

 
iTj = Rot(z, j) Tran(z, bj) Rot(x, j) Tran(x, dj) 

Rot(z, j) Tran(z, rj) 
 
After developing, this matrix can be partitioned 

as follows: 
  

i i
i j j

j

1x3 0

 
  
 

R P

0
T  (1) 

Where R defines the (3×3) rotation matrix and P 
defines the (3×1) vector defining the position of the 
origin of frame j with respect to frame i.  

If xi is along the common normal between zi and 
zj , the parameters jand bj will be equal to zero. 

The joint variable of joint j is denoted by: 
 

j j j j jq r      

where j = 0 if joint j is revolute, j = 1 if joint j 
is prismatic, and j = 1 – . We set j = 2 to define a 
frame Rj fixed with respect to frame a(j). In this 
case, qj and j are not defined. 

The serial structure is a special case of a tree 
structure where a(j)=j-1, j=0, and bj =0 for all 
j=1,..,n. 

 
 

2.2 Description of closed loop structure 

The system is composed of L joints and n + 1 
links, where link 0 is the fixed base and L > n. The 
number of independent closed loops is equal to:  

 
B =  L – n 
 
The joints are either active (motorized) or 

passive. The number of active joints is denoted N. 
The position and orientation of all the links can be 
determined as a function of the active joint variables.  

To determine the geometric parameters of a 
mechanism with closed chains, we proceed as 
follows: 

a) Construct an equivalent tree structure having 
n joints by virtually cutting each closed chain at one 
of its passive joints. Define the geometric 
parameters of the tree structure as given in section 
2.1.  

b) For each cut joint define two supplementary 
frames on one of the links connected by this joint. 

Assuming that a cut joint is numbered k (where 
k=n+1,…, L) and that the links connected by joint k 
are numbered i and j (where i and j <n)  the frames 
will be defined as follows (Figure 2): 

- frame Rk is defined fixed on link j such that 
a(k)=i, the axis zk is along the axis of joint k, and xk 

is along the common normal between zk and zj. The 
matrix iTk will be determined using the general 
parameters k, bk, k, dk, k, rk.  

- frame Rk+B is aligned with Rk that is to say it is 
fixed on link j, but a(k+B)= j. The geometric 
parameters defining Rk+B are constant, we note that 
rk+B and k+B are zero since xk+B is normal to  zj. 
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Figure 2: Frames of a cut joint k. 
 
 
The joint variables are denotes as: 
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• qtr vector containing the tree structure joint 
variables; 

. qa vector containing the N active joint 
variables; 

• qp vector containing the p=n–N passive joint 
variables of the equivalent tree structure;  

• qc vector containing the B variables of the cut 
joints.  

 
Only the N active variables qa are independent. 

Since Rk and Rk+B are aligned, the geometric 
constraint equations for each loop, which can be 
used to calculate the passive joint variables in terms 
of the active joint variables, can be written as: 

 



 

k+BTj ... iTk  =  I4    (3) 
 
The kinematic constraint equations are obtained 

by using the fact that the screw of frame k is equal to 
that of frame k+B: 

                        
0 0

k k+B

k k+Bb1 b2J q J q

 
�


 
                           (4)     (4) 

 

j    6 1  kinematic screw vector of frame j, 

given by: 

        
TT T

j j j
   V ω  (5) 

jV   linear velocity of the origin of frame Rj, 

jω   angular velocity of frame j, 
b1q joint velocities from the base to frame k, 

through branch 1,  

b2q joint velocities from the base to frame k 
through branch 2. 

3 DYNAMIC MODELING OF TREE 
STRUCTURE ROBOTS 

 
3.1 Introduction 

The most common in use methods to calculate 
the dynamic models are the Lagrange equations and 
the Newton Euler Equations (Craig 1986, Khalil and 
Dombre 2002, Angeles 2006).  

The Lagrange equation is given as: 
 

                     d
 

dt

    
        q q

T T
L L

                          (6) 

where  is the joint torques and forces, L is the 
Lagrangian of the robot defined as the difference 
between the kinetic energy E and the potential 
energy U of the system : L  =  E – U. After 
developing we obtain: 
 
 = ( )  + ( , ) A q q H q q                           (7) 

 
where A is the inertia matrix of the robot and H 

is the Coriolis, Centrifuge and gravity torques. 
Solving the previous equation to find in terms 

of ( , , ) q q q  is known as the inverse dynamic 
problem, and solving it to obtain q in terms 
of ( , , ) q q Γ is known as the direct dynamic model. 
The inverse dynamic model is obtained by 
substituting ( , , ) q q q  into (7), whereas the direct 
model needs to inverse the inertia matrix.  

 
        1

 q A Γ - H        (8) 
 

The calculation of the Lagrange equations for 
systems with big number of degrees of freedom 
using developed symbolic methods is time 
consuming, and the obtained model will need more 
time to execute with respect to that of recursive 
methods. The recursive Newton-Euler algorithms 
have been shown to be an excellent tool to model 
rigid robots (Khalil and Kleinfinger, 1987, Khalil 
and Creusot, 1987, Khosla, 1987). In (Hollerbach, 
1980) an efficient recursive Lagrange algorithm is 
presented but without achieving better performances 
than that of Newton-Euler. 
 The Newton-Euler equations giving the external 
forces and moments on a link j about the origin of 
frame j are written as: 

            
 
 

j j j
j j jj j j

j j j j j j
j j j

  
  
  

ω ω MS

ω J ω
        (9) 

where 
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jω     the angular velocity of link j; 
jV  the linear acceleration of the origin of                         

frame j; 
j    total external wrench on link j; 
jF    total external forces on link j; 

jM  total external moments on link j about Oj;
j   6 6  inertia matrix of link j: 

         
j

j 3 jj
j j j
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ˆ
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I MS
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Where Mj, MSj and Jj are the standard inertial 
parameters of link j. They are respectively, the mass, 
the first moments, and the inertia matrix about the 
origin.    
     
3.2 Calculation of the Inverse dynamics 

using recursive NE algorithm 

The algorithm consists of two recursive 
computations (Luh, Walker and Paul, 1980): 
forward recursion and backward recursion. The 
forward equations, from link 1 to link n, compute the 
link velocities and accelerations and consequently 
the dynamic wrench on each link. The backward 
equations, from link n to the base, provide the 
reaction wrenches on the links and consequently the 
joint torques. 

This method gives the joint torques in terms of 
the joint positions, velocities and accelerations 



 

without explicitly computing the matrices A and H. 
That is to say the algorithm will be denoted by: 

 

e e= NE( , , , , ) q q q f m      (12) 

Where fe and me are the external forces and 
moments of the links of the robot on the 
environment. 

The forward recursive equations are based on the 
following equations (Khalil and Dombre 2002): 
j j i j

j i i j jq a       (13) 

j j i j j
j i i j j jq a           (14) 
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i i i j i j jj

j
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i j j
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q
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γ
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j
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


 (15) 

 
 

where  
  jaj is the (6x1) column matrix given as : 

        jaj =[ 0  0  j  0  0   j]T       (16) 
j

i� and the screw transformation matrix is: 

 
j j i

j i i j
i j

3x3 i

ˆ 
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 

R R P

0 R
    (17) 

The forward algorithm is given for j=1,…, n, 
with i = a(j), as follows: 

ji  =  jRi ii  (18) 

jj  =  ji + – j 
.
qj jaj (19) 

j. j  =  jRi i
.

i + – j (
..
qj 

jaj + ji × 
.
qj jaj) (20) 

jV
.

j  =  jRi (iV
.

i +iUi iPj)+ j (
..
qj jaj + 2 ji × 

.
qj jaj) 

 (21) 

jFj  =  Mj jV
.

j + jUj jMSj     (22) 

jMj  =  jJj j
.  

j + jj × (jJj jj) + jMSj × jV
.

j     (23) 
with  

 jUj = j
.̂

j + j̂j j̂j     
and where aj is the unit vector along the zj axis 
which is the axis of joint j. 
The matrix ŵ defines the 3×3  vector product matrix 
associated to the  (3×1) vector W such that: 

          

0 -

ˆ 0 -

- 0

ˆ

 
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 
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 

w =
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y x

w w

w w

w w
    (24) 

These equations are initialized by 0 = 0, . 0 = 0, V
.

0 

= –g, 0U0 = 0, with g is the acceleration of gravity. 

Initialising the linear acceleration V
.

0 by –g will take 
automatically the effect of gravity forces on all the 
links of the structure. 
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Figure 3: Forces and moments acting on a link j 

 
The backward recursive equations are deduced from 
the resultant forces and moments on link j around 
the origin of link j (Figure 3). 
  

          j j k T k j
j j j k ej

k

  f f f               (25) 

Where a(k)=j,  
 
The backward equations can be calculated for 
j=n,…,1: 

jfj  =  jFj + jfej     (26) 
jmj  =  jMj + jmej   (27) 

      ifj  =  iRj jfj    (28) 

ifei  =  ifei + ifj    (29) 
imei = imei + iRj  jmj + iPj x ifj   (30) 

j =(j jfj+
–j jmj)Tjaj + Ia j 

..
qj+ Fsj sign(

.
qj)+ Fvj 

.
qj 

  (31) 
Where: 
fj and mj are the reaction forces and moments of link 
a(j) on link j respectively, Iaj is the inertia of the 
rotor and transmission gears of the motor of joint j,  
Fsj and Fvj are the coulomb and viscous friction 

parameters respectively, jfej and jmej are the external 
forces and moments of link j on the environment. 

This algorithm is easy to program numerically or 
symbolically. The computational cost is linear with 
the number of degrees of freedom of the robot. To 
reduce the number of operations of the calculation of 
this model the base inertial parameters can be used 
instead of the standard inertial parameters and the 



 

technique of customized symbolic method can be 
applied (Khosla 1986 , Khalil and Kleinfinger 1987, 
Khalil and Creusot 1997).  
 
3.3 Computation of the direct dynamic 

model 

The computation of the direct dynamic model is 
employed to carry out simulations for the purpose of 
testing the robot performances and studying the 
control laws. During simulation, the dynamic 
equations are solved for the joint accelerations given 
the input torques and the state of the robot (joint 
positions and velocities). Through integration of the 
joint accelerations, the robot trajectory is then 
determined.  

 
The direct dynamic model can be obtained from 

Lagrange equation (8) as follows: 
 ..
q  =  A-1 [ – H(q, q

.
)]  

 
Two methods based on Newton-Euler methods 

can be used to obtain the dynamic model: the first is 
based on calculating the A and H matrices using 
Newton-Euler inverse dynamic model in order to 
calculate the joint accelerations by (8); the second 
method is based on a recursive Newton-Euler 
algorithm that does not explicitly calculate the 
matrix A and has a computational cost that varies 
linearly with the number of degrees of freedom of 
the robot. For tree structure robots, the second 
method is more efficient, but the first method can be 
used for closed loop robots and other complicated 
systems. That is why we will present both methods. 

 
3.3.1 Using the inverse dynamic model 

to calculate the direct dynamic model 
 
In this method the matrices H(q,q

.
) and A(q) are 

calculated using the inverse model by giving special 
values for the joint accelerations, joint velocities, 
external forces, friction, gravity (Walker and Orin 
1982). 

By comparing equations (7) and (12) we deduce 
that H(q, q

.
) is equal to if..q = 0, and that the ith 

column of A is equal to if: 
..
q = ui, q

.
 = 0, g = 0, fej = 0, mej = 0   

where ui is the (nx1) unit vector whose ith element is 
equal to 1, and the other elements are zeros. Iterating 
the procedure for i = 1,…, n leads to the construction 
of the entire inertia matrix. 

To reduce the computational complexity of this 
algorithm, we can make use of the base inertial 
parameters and the customized symbolic techniques. 

Moreover, we can take advantage of the fact that the 
inertia matrix A is symmetric.  

 
3.3.2 Recursive NE computation of the 

direct dynamic model  
 
This method is based on the recursive Newton-

Euler equations and does not use explicitly the 
inertia matrix of the robot (Armstrong 1979, 
(Featherstone 1983, (Brandl, Johanni and 
Otter, 1986).  
 

Using (9) and (25) the equilibrium equations of 
link j can be written as: 

 

 j j j j k T k
j j j j j k  

k

β  f f  (32) 

 
where k denote the links articulated on link j 

such that a(k)=j, and 
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 The joint accelerations are obtained as a result 

of three recursive computations: 
 

i) first forward computations for j = 1, …, n: in this 
step, we compute the screw transformation matrices 
jTi, the link angular velocities jj as well as jj and 
jj vectors, which appear in the link accelerations 
and the link wrenches equations respectively when..q
= 0;  
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i i i j i j jj

j
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ii) backward recursive computation: in this step 
we calculate the elements H

 
j, 

jJ
*
j  , 

j
*
j , jKj,  jj which 

express 
..
qj and jfj in terms of i

.
Vi in the third recursive 

equations. These equations are demonstrated in the 
following sub-section. 

For j = n ... 1, compute: 
 

Hj  =  (ja
T
j  jJ

*
j   jaj

 + Iaj)   (36) 



 

jKj  =  jJ
*
j  – jJ

*
j   

jaj H
-1
j  ja

T
j  jJ

*
j  (37)  

jj  =  jKj 
jj + jJ

*
j   

jaj H
-1
j

 (j + 
ja

T
j

 j
*
j ) – j

*
j    (38) 

 
If  a(j) ≠ 0, calculate also: 
 
i

*
i    =  i

*
i  – jT

T
i  jj    (39) 

iJ
*
i    =  iJ

*
i   + jT

T
i  jKj 

jTi      (40) 

These equations are initialized by 
jJ

*
j = jJj and j

*
j   =  jj. 

 
iii) second forward recursive computations. Since 
the acceleration of the base is known (

.
V0 = –g, . 0 = 

0 for fixed base), the third recursive computation 
gives 

..
qj and jfj   (if needed) for j = 1… n. as follows:  

..
qj  =  H

-1
j

  [– ja
T
j

 jJ
*
j  (jTi 

i
.
Vi + jj) + j + 

ja
T
j  j

*
j ] 

   (41) 

jfj  =  






jfj

jmj
  =  jKj 

jTi 
i
.
Vi + jj      (42) 

j
.
Vj  =  jTi 

i
.
Vi + jaj

 ..qj + jj          (43) 
 
where  
j =  j – Fsj sign(

.
qj) – Fvj 

.
qj   (44) 

 
Calculation of the elements of the backward 

recursive equations 
 

To simplify the notations, we consider the case of a 
serial structure of n joints. Expressing the 
acceleration of link n in terms of the acceleration of 
link n-1, and since n+1fn+1 = 0, we obtain: 
 
nJn (nTn-1 

n-1
.
Vn-1 + 

..
qn 

nan + nn)  =  nfn + nn       (45) 
 

Since: 

ja
T
j  jfj  =  j – Iaj 

..
qj   

j = j – Fsj sign(
.
qj) – Fvj 

.
qj  

  
We obtain the joint acceleration of joint n: 

..
qn = H

-1
 n  

 (– na
T
n

 nJn (nTn-1 
n-1

.
Vn-1 + nn) + n + 

na
T
n

 nn)  

       (46)  
where Hn is a scalar given as: 
 

Hn  =  (nan
T nJn nan

 + Ian)      (47) 

 

Substituting for 
..
qn from (46) and (45), we obtain 

the dynamic wrench nfn as: 

nfn =  






nfn

nmn
  =  nKn 

nTn-1 n-1
.
Vn-1 + nn   (48) 

where: 
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nan H
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n  na

T
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nn  =  nKn 
nn + nJn 

nan H
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 (n + 
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T
n

 nn) – nn 

   (50) 
 
We now have 

..
qn and nfn in terms of n-1

.
Vn-1. 

Iterating the procedure for j = n – 1, we obtain: 
 

n-1Jn-1 
n-1

.
Vn-1= n-1fn-1

 + nT
T
n-1 nfn + n-1n-1 (51) 

 
which can be rewritten as: 

n-1J
*
n-1 (n-1Tn-2 

n-2
.
Vn-2 + 

..
qn-1 

n-1an-1 + n-1n-1)  =  

n-1fn-1 + n-1
*
n-1    (52) 

 
where: 

n-1J
*
n-1  =  n-1Jn-1 + nT

T
n-1 nKn 

nTn-1    (53) 

n-1
*
n-1  =  n-1n-1 – nT

T
n-1 nn       (54) 

Equation (52) has the same form as (45). Thus, 
we can express 

..
qn-1 and n-1fn-1 in terms of n-2

.
Vn-2. 

Iterating this procedure for j = n – 2, …, 1, we obtain ..
qj and jfj in terms of j-1

.
Vj-1 for j = n –  1, ..., 1 as 

given by equations (41) and (43) which represent the 
general case.  

4 INVERSE DYNAMIC MODELING 
OF CLOSED LOOP ROBOTS 

The computation of the Inverse dynamic model 
of closed loop robots can be obtained by first 
calculating the inverse dynamic model of the 
equivalent tree structure robot, in which the joint 
variables satisfy the constraints of the loop. Then the 
closed loop torques of the active joints c are 
obtained by projecting the tree structure torques tr 
on the motorized joints using the transpose of the 
Jacobian matrix of the tree structure variables (or 
velocities) in terms of the active joint variables (or 
velocities). 

 
c=  GTtr tr tr tr( , , ) q q q    (55) 
 
where:  

 


 
tr tr

a a

q q
G =

q q




 (56) 



 

It can be written also as: 

p
c a p


 

 a

q

q
  




 (57) 

Where: 
a and p are the torque of actuated and passive 

joints of the tree structure. 
The kinematics Jacobian matrix can be obtained 

from (4) representing the kinematics closed loop 
constraints.  

There is no recursive method to obtain the direct 
dynamic model of closed loop robots. It can be 
computed using the inverse dynamic model by a 
procedure similar to that given in section (3.3.1) in 
order to obtain the matrices Ac and Hc of the 
following relation: 

 c c tr a c tr tr= ( )  + ( , ) A q q H q q     (58) 

 
5. INVERSE DYNAMIC MODELING 
OF PARALLEL ROBOTS 
 

A parallel robot is a complex multi-body system 
having several closed loops. It is composed of a 
moving platform connected to a fixed base by 
parallel legs. The dynamic model can be obtained as 
described in the previous section, but in this section 
we present a method that takes into account the 
parallel structure. To simplify the notations we will 
present her the case of parallel robots with six 
degrees of freedom. Examples concerning reduced 
mobility robots are given in (Khalil and Ibrahim 
2007).  

The robot is composed of a fixed base and a 
mobile platform. They are connected using m 
parallel legs.  

The inverse dynamic model gives the forces and 
torques of motorized joints as a function of the 
desired trajectory of the mobile platform.  

 

Platform 

Base   
 

Figure 4: Parallel structure after separating the platform 

 
To obtain the dynamic models of parallel robots, 

we exploit their structural characteristics by 
decomposing the system into two subsystems: the 
platform and the legs. 

The dynamics of the platform is calculated as a 
function of the Cartesian variables (spatial Cartesian 
position, velocity and acceleration of the platform), 
whereas the dynamics of the legs are calculated as a 
function of the joint variables of the legs 
 i i iq ,q ,q  for i=1,…,m. The active joint torques 
are obtained by the sum of these dynamics and 
projecting them on the active joint axes. 

To project the dynamics of the platform on the 
active joint space we multiply it by the transpose of 
the robot Jacobian matrix, which gives the platform 
screw Vp in terms of the motorized joint velocities 

aq , and to project the leg dynamics on the active 
joint space we use the Jacobian between these two 
spaces. Thus the dynamic model of the parallel 
structure is given by the following equation: 

        
 
  


T

m
T i
P P i

i=1 a

q
Γ = J +

q




     (59) 

where 

P  is the total forces and moments on the 
platform,  

PJ  is the (6n) kinematics Jacobian matrix of 
the robot, which gives the platform velocity PV  
(translational and angular) as a function of the active 
joint velocities: 

P P a= J q    (60)  

iΓ  is the inverse dynamic model of leg i, it is a 
function of  i i iq ,q ,q  , which can be obtained in 
terms of the platform location, velocity and 
acceleration, using the inverse kinematic models of 
the legs. We note that iq  does not include the 
passive joint variables connecting the legs to the 
platform. 

In this section we suppose n=6, thus PJ is (6×6) 
matrix. 

The calculation of pJ  is obtained by inverting 

p
-1J , which is easy to obtain for most parallel 

structures.         

P  is calculated by the Newton-Euler equation 
(9). 

The calculation of / i aq q   is carried out by 
the following relation, which exploits the parallel 
structure of the robot: 

   


   
i i i P

a i P a

q q v

q v q




 
 

   (61) 



 

with: iv  is the Cartesian velocity transferred 
from leg i to the platform.  

We can rewrite (61) as: 

  


-1i
i vi r

a

q
= J J J

q




    (62)   

iJ  is the kinematic Jacobian matrix of leg i such 

that: 

i i iv = J q  (63)  

viJ  gives iv  as a function of P : 

i vi Pv = J   (64)  

For the Gough-Stewart platform (where the 
mobile platform is connected to the legs using 
spherical joints), we obtain: 

^      
i

ivi 3
P

v
J = I - P

 (65) 

Where Pi is the vector between the origin of the 
platform frame and the centre of the spherical joint 
linking the platform with leg i. 

 
Finally the inverse dynamic model of the robot is 

given by the following form: 

 
 
 


m

T T -T
p P vi i i

i=1

Γ = J + J J Γ  (66)  

We note that the term between the brackets in 
(66) represents the dynamic model of the robot 
expressed in the Cartesian space of the platform 
frame (Khalil and Guegain, 2002). 
 
 
6. INVERSE DYNAMIC MODELING 
OF ROBOTS WITH ELASTIC JOINTS 

 
In this section we tree structure robots with lumped 
elasticity or flexible joints. The system can be 
described using Modified Denavit and Hartenberg 
method presented in section 2. Each joint could be 
either elastic or rigid (Khalil and Gautier, 2000).  

6.1 Lagrange dynamic form 

The general form of the dynamic model of a 
system with flexible joints has the same form as (7). 
It can be rewritten as: 

 = A(q) 
..
q  + H(q, q

.
 ) (67) 

It can be partitioned as follows: 

11 12
T
12 22

    =
      

               

q HA A

q HA A




r r r

f f f

      (68)

Where q,
.
q ,

..
q  are the (n×1) vectors of positions, 

velocities, and accelerations of rigid and elastic 
joints; 

H(q,q
.
 ) is the (n×1) vector of Coriolis, 

centrifugal and gravity forces, 
A(q)  is the (n×n) inertia matrix of the system, 
ris the vector of rigid joint torques, 
ris the vector of elastic joint torques. 
 
If joint j is flexible:

j = - qj Kj (69)

where Kj is the stiffness of the elastic joint,  
  
qj =  qj – q0j    (70) 
 
q0j is the joint position corresponding to zero   

elasticity force. 
 
In the case of a system with elasticity, the direct 

dynamic model has the same outputs as in the case 
of rigid bodies; it gives the joint accelerations as a 
function of the joint torques and of the system state 
variables (q, q

.
 ). It can be calculated using (68) by 

calculation the inverse of A. 

In the case of a system with elasticity, the inverse 
dynamic model calculates the input torques and the 
elastic accelerations as a function of the joint 
positions, velocities and rigid joint accelerations. It 
is to be noted that the accelerations of the elastic 
variables cannot be specified independently.  Using 
(68) to calculate the inverse model, we have first to 
calculate the acceleration elastic accelerations from 
the second row: 

          T
12 22

 
     

 

q
A A H

q




r

f f
f

                     (71) 

 then we can calculate the rigid joint torques from 
the first row.  

6.2 Direct dynamics of systems with 
flexible joints using recursive NE 

The direct dynamic model of system with 
flexible joints can be calculated using the recursive 
direct dynamic model algorithm of rigid joints 
presented in section (3.3) after putting j = - qj Kj. 
for the elastic joints.  



 

Remark: We note that in case of rigid non 
motorized joint, the same algorithm can be used 
after putting j = 0. 

6.3 Inverse dynamics of systems with 
flexible joints using recursive NE 

The recursive inverse dynamic algorithm of rigid 
links cannot be used for system with flexible joints 
since the accelerations of the flexible joints are 
unknown. On the contrary it can be used to obtain 
the A and H matrices as explained in section (3.3.1), 
then we can proceed as explained in 6.1 for the 
calculation of q f and Γr . 

 
We propose here a recursive algorithm to solve 

this problem (Khalil and Gautier 2000). This 
algorithm consists of three recursive steps. 

 
i) The first forward iteration is exactly the same 

as that of the direct dynamic model (section 3.3). 
 
ii) The second backward recursive equations 

calculate the matrices giving the elastic accelerations ..
q j and jfj as a function of a(j)

.
V 

a(j). These matrices 
can be defined using a similar procedure as in 
section (3.3). They can be calculated for j =n, ...,1, 
as follows: 

 
- If joint j is elastic:  

Hj  =  ja
T
j  jJ

*
j   jaj

  (72) 

jKj  =  jJ
*
j  – jJ

*
j   

jaj H
-1
j  ja

T
j  jJ

*
j  (73) 

jj  =  jKj 
jj + jJ

*
j   

jaj H
-1
j

 (Kj qj + 
ja

T
j

 j
*
j ) – j

*
j    

   (74) 
- If joint j is rigid: 

 jKj  =  jJ
*
j   (75) 

jj  =  jKj jj + jJ
*
j   jaj 

..
q j – j

*
j  (76) 

if a(j) ≠ 0, calculate: 

i
*
i    =  i

*
i  – jT

T
i  jj  (77) 

iJ
*
i    =  iJ

*
i   + jT

T
i  jKj 

jTi (78) 

The previous equations are initialized by: 

 jJ
*
j  = jJj, and j

*
j = jj.  

 
The third recursive equations (for j = 1, ..., n) 

calculate 
..
qj for the elastic joints and the joint torques 

for the rigid joints using the following equation: 
 

jfj  =  






jfj

jmj
   =  jKj jTi 

i
.
Vi + jj (79) 

- if j is elastic: 

..
qj = H

-1
j [– ja

T
j

 jJ
*
j  (jTi 

i
.
Vi + jj) - Kj qj + 

ja
T
j  j

*
j ] 

 (80) 

      j .
V j  =  jTi 

i
.
Vi + jaj 

..
q j + jj (81) 

 
- if j is rigid 
 

j  =  (j jfj + – j jmj)T jaj + Iaj 
..
q j (82) 

 
 

7. DYNAMIC MODELING OF 
ROBOTS WITH MOVING BASE 

 
  The structure treated in this section includes a big 
number of systems such as: cars, mobile robots, 
mobile manipulators, walking robots, Humanoid 
robots, eel like robots (Khalil W., G. Gallot G., 
Boyer F., 2007), snakes like robots, flying robots, 
spatial vehicle, etc. The difference between all of 
these systems will be in the calculation of the 
interaction forces with the environment. In the 
previous sections the base is fixed thus the 
acceleration of the base is equal to zero, whereas in 
the case of a mobile base system the acceleration of 
the base must be determined in both direct and 
inverse dynamic models. The proposed recursive 
dynamic models are easy to implement and calculate 
using numerical calculation.  The inverse dynamic 
model, which is used in general in the control 
problems, can be used in simulation too when the 
objective is to study the evolution of the base giving 
joint positions, velocities and accelerations of the 
other joints. The direct dynamic model can be used 
in simulation when the joint torques are specified. 

We use the same notations of section 2 to 
describe the structure. The base fixed frame R0 is 
defined wrt the world fixed frame Rw by the 
transformation matrix w

0T . This matrix is supposed 
known at t = 0, it will be updated by integrating the 
base acceleration. The velocity and acceleration of 
the base are represented by the (6x1) vectors 0  and 

0 respectively.  
The Cartesian velocities and accelerations of the 
links are calculated using the recursive equations 
(13)-(17). 

7.1 General form of the dynamic 
models 

The dynamic model of a robot with moving base can 
be represented by the following relation: 



 

 

            
0

6x1 0
  

      

0
A H

q






 (83) 

 
Γ  n 1 vector of  joint torques,  
q   n 1 vector of joint positions, 
A is the (6 n) (6 n)   inertia matrix of the 

robot, it can be partitioned as follows:  
 

11 12
T
12 22

 
  
 

A A
A

A A
  (84) 

 

11A is the (6 6)  inertia matrix of the composed 
link 0, which is composed of the inertia of all the 
links referred to frame R0 (the base). 

22A is the (n n)   inertia matrix of the other 
links when the head is fixed, 

12A is the (6 n)  coupled inertia matrix of the 

joints and the base. It reflects the effect of the joint 
accelerations on the base motion, and the dual effect 
of base accelerations on the joint motions. 

H is the (n 6) 1   vector representing the 
Coriolis, centrifugal, gravity and external forces 
effect on the robot. Its elements are functions of the 
base and joint velocities and the external forces. This 
vector can be partitioned as follows: 

 

1

2

 
  
 

H
H

H
  (85) 

where: 

1H  the Coriolis, centrifugal, gravity and 
external forces on the base. 

2H  the Coriolis, centrifugal, gravity and 

external forces on the links 1,…,n. 
       
The inverse dynamic model gives the joint 

torques and the base acceleration in terms of the 
desired trajectory (position, velocity and 
acceleration) of the articulated system (links 1 to n) 
and the base position and velocity. Using equation 
(83) and (84), the inverse dynamic model is solved 
by using the first row of equation (83) to obtain the 
base acceleration: 

   10
0 11 1 12


  A H + A q   (86) 

Then the second row of (83), can be used to find the 
joint torques: 

T
12 0 22 2   A A q H    (87) 

       
The direct dynamic model gives the joint 

accelerations and the base acceleration in terms of 

the position and velocity of the base and the 
articulated system and the joint input torques. Thus 
using (83), the direct dynamic model is solved as 
follows: 

                       110

2

    
      

H
A

Hq






                       (88) 

The calculation of A and H can be done by 
Lagrange method. They can also be calculated using 
the inverse dynamic model of tree structure of 
section (3.2) and using the procedure of section 
(3.3.1). The base can be taken into account by either 
of the following methods: 

- The velocity and acceleration of the base will 
be the initial conditions 0

  and 0ω  for the forward 
recursive calculation. The backward recursive 
calculation must continue to j=0, where this new 
iteration will obtain the 6 equations of Newton-Euler 
equations of the base.   

- We can assign link 1 to be the base, and 
suppose that link 0 is a virtual link whose inertial 
parameters are equal to zero but has the velocity and 
acceleration of the base.  This can be done by 
putting 2=2. The six equations of the base will be 
those of 1 0;f  

 
Solving the inverse and direct dynamic problems 

using A and H may be very time consuming for 
systems with big number of degrees of freedom (as 
the eel like robot). Therefore, we propose here to use 
a recursive method, which is easy to programme, 
and its computational complexity is linear wrt the 
number of degrees of freedom.   

The recursive Newton-Euler algorithm is based 
on the kinematic equations presented in section 3. 

 

7.2  Recursive NE calculation of the 
inverse dynamic model of robots 
with mobile base  

The inverse dynamic algorithm in this case consists 
of three recursive equations (a forward, then a 
backward, then a forward). 

 
i) Forward recursive calculation: 
 
 In this step we calculate the screw 

transformation matrices, link velocities, and the 
elements of the accelerations and external wrenches 
on the links, which are independent of the 
acceleration of the robot base ( 0 0,V ω  ). Thus we 
calculate for j=1,…,n: j

i , j
j  and j

jγ using 
equations (13)-(17). We calculate also j

jβ  
representing the elements of the Newton-Euler 



 

equations, which are independent of the base 
acceleration in equations (14) and (15) such that: 

 
j j j

j j j jq ζ γ a  (89) 
 

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f    (90) 

 
ii) Backward recursive equations: 
 
In this step we obtain the base acceleration using 

the inertial parameters of the composite link 0, 
where the composite link j consists of the links j, 
j+1, …, n. 

We note that (32), giving the equilibrium 
equation of link j, can be rewritten using (90) as: 
 
j j j j k T k

j j j j j k  
k

β  f f   (91) 

 
Applying the Newton-Euler equations on the 

composite link j, we obtain:  

 j j j j s( j) T s(j) s(j) s( j)
j j j j j s(k) s(j) s( j)

s( j)

   β β     f
 

 (92) 

Where s(k) means all the links succeeding joint j, 
that is to say joining j to any terminal link. 

Substituting for s(j)
s(j)
  in terms of j

j
  using 

(14), we obtain: 
s( j)s(j) s( j) j r

s(j) j j r r

r

  ζ       (93) 

Where r denotes all links between j and s(j). 

From (92), we obtain: 

                    
j j

j j c j j c
j j  β f  (94) 

with: 

j c j c k T k c k
j j j k j

k

       (95) 

j c j c k T k c k T k c k
j j j k j k k

k

  β β β ζ    (96) 

 
j c

j is the inertial matrix of the composite link j. 
For j = 0, and supposing f0 0  is equal to zero, we 

obtain using (94): 

  10 0 c 0 c
0 0 0


 β   (97) 

To conclude, the recursive equations of this step 
consist of initialising n c n

n n  , n c n
n nβ β and then 

calculating (95)-(96) for j = n,…, 0. At the end 0
0 is 

calculated by (97). 
Comparing (97) with (68) we can deduce that 

11A is equal to 0 c
0 , whereas 0 c

0β  is equal to 
( 1 12H + A q ). 

 
iii) Forward recursive equations: 
 
After calculating 0

0 , the wrench j
jf  and the 

joint torques are obtained using equations (6) and 
(22) for j= 1,…, n  as: 

 

j j i j
j i i jζ      (98) 

j

j
jj j c j j c

j j jj
j

 
   
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β
f

m
 f  (99) 

The joint torque is calculated by projecting j
jf on the 

joint axis, and by taking into account the friction and 
the actuators inertia: 

 j T j
j j j sj j vj j aj jF sign q F q I q    f a     (100) 

It is to be noted that the inverse dynamic model 
algorithm can be used in the dynamic simulation of 
the mobile robot when the objective is to study the 
effect of the joint motions on the base. In this case 
the joint positions, velocities and accelerations 
trajectories are given. At each sampling time the 
acceleration of the base will be integrated to provide 
the angular and linear velocities for the next 
sampling time.  

 

7.3 Recursive direct Dynamic model  

The direct dynamic model consists of three recursive 
calculations in the same order as those of the inverse 
dynamic model (forward, backward and forward):   

 
i) Forward recursive equations: 
 
We calculate the link Cartesian velocities using 

(13) and the terms of Cartesian accelerations and 
equilibrium equations of the links that are 
independent of the accelerations of the base and of 
the joints. We calculate the following recursive 
equations for j = 1, ..., n: 

 



 

 

 j i i i j
i i i j i j jj

j
j j

i j j

2 ( q )

q
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
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


 (101) 

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f   (102) 

 
ii) Backward recursive equations: 
 
In this second step, we first initialise n * n

n n  , 
n * n

n nβ β and then we calculate for j = n,…,1 the 
following elements, which permit to calculate j

jf  
and jq  in terms of i

i
  and will be used in the third 

recursive equations  (these matrices can be obtained 
using a similar procedure as for the direct dynamic 
model of rigid links): 

 
j T j * j

j j j j jH Ia a a     (103) 
 
j j * j * j -1 j T j *

j j j j j j jH -   a a  (104) 
 
                  
i * i j T j j

i i i j i       (105) 
              

j j sj j vj jτ Γ F sign(q ) F q - -   (106) 
 
 

 j j j j * j -1 j T j * j *
j j j j j j j j j jH τ   α β β  a a          

         (107) 
 
i * i j T j

i i i j β β    (108)       
 
iii) Forward recursive equations: 
 
At first, the base acceleration is calculated by the 

following relation : 
 

            10 0 * 0 *
0 0 0


 β    (109) 

 
We note that 0 *

0β  is a function of τ, whereas 0 c
0β  

(used in the inverse model) is a function of q . 
 

jq and j
jf  (if desired) are calculated for j=1,…,n 

using the following equations: 
 

  -1 j T j * j j j T j *
j j j j j-1 j j j jq H - τ      

β  a a  (110)    

  
j j j i j

j j i i jα   f   (111) 
                                  
where: 
 

j j j j
j j-1 j j jq   γ    a  (112) 

                         
 

8. CONCLUSIONS 
 

     This paper presents the inverse and direct 
dynamic modeling of different robotics systems. The 
dynamic models are developed using the recursive 
Newton-Euler formalism. The inverse model 
provides the torque of the joint and the acceleration 
of the free degrees of freedom such as the elastic 
joints, or the acceleration of the base in case of 
mobile base. 
The direct model provides the joint acceleration of 
the joints including those of the free degrees of 
freedom.  
These algorithms constitute the generalization of the 
algorithms of articulated manipulators to the other 
cases.  
The proposed methods have been applied on more 
complicated systems such as: 

- flexible link robots (Boyer and Khalil, 1998), 
- Micro continuous system (Boyer, Porez and 
Khalil, 2006), 
- hybrid structure, where the robot is composed 
 of parallel modules, which are connected in serie, 
(Ibrahim, Khalil 2010). 
 

 REFERENCES 

 Angeles J. 2002. Fundamentals of Robotic 
Mechanical Systems. Second edition, 
Springer-Verlag, New York. 

Armstrong W.W., 1979. Recursive solution to the 
equation of motion of an N-links manipulator. 
In Proc. 5th World Congress on Theory of 
Machines and Mechanisms, p. 1343-1346. 

Boyer, F., Khalil,W, 1998. An efficient calculation 
of flexible manipulator inverse dynamic. In, 
Int. Journal of Robotics Research, vol. 17, 
No.3, pp.282-293  

Boyer, F., Porez M., Khalil, W. 2006. Macro-
continuous torque algorithm for a three-
dimensional eel-like robot. In IEEE Robotics 
transaction, vol.22, No.4, 2006, pp.763-775. 

Brandl H., Johanni R., Otter M., .1986. A very 
efficient algorithm for the simulation of robots 
and multibody systems without inversion of 
the mass matrix. In Proc. IFAC Symp. on 
Theory of Robots, Vienne, p. 365-370. 

Craig J.J., 1986. Introduction to robotics: mechanics and 
control. Addison Wesley Publishing Company, 
Reading. 



 

 
Featherstone R., 1983. The calculation of robot 

dynamics using articulated-body inertias. In 
the Int. J. of Robotics Research, Vol. 2(3), p. 
87-101.Gautier Gautier,M., Khalil W. 1990. 
Direct calculation of minimum set of inertial 
parameters of serial robots. In IEEE Trans. on 
Robotics and Automation, Vol. RA-6(3), 
p. 368-373. 

Ibrahim, O., Khalil, W, 2010. Inverse and direct 
dynamic models of Hybride robots. In 
Mechanism and machine theory, Volume 45, 
Issue 4, p. 627-640. 

Luh J.Y.S., Walker M.W., Paul R.C.P.,1980. On-
line computational scheme for mechanical 
manipulators. In Trans. of ASME, J. of 
Dynamic Systems, Measurement, and Control, 
Vol. 102(2) p. 69-76. 

Khalil W., Kleinfinger J.-F., 1986. A new geometric 
notation for open and closed-loop robots. In 
Proc. IEEE Int. Conf. on Robotics and 
Automation, San Francisco, p. 1174-1180. 

Khalil W., Kleinfinger J.-F., 1987. Minimum 
operations and minimum parameters of the 
dynamic model of tree structure robots. In 
IEEE J. of Robotics and Automation, Vol. 
RA-3(6), p. 517-526.  

Khalil W., Bennis F., 1994. Comments on Direct 
Calculation of Minimum Set of Inertial 
Parameters of Serial Robots. In IEEE Trans. 
on Rob.& Automation, Vol. RA-10(1), p. 78-
79. 

Khalil W., Creusot D., 1997. SYMORO+: a system 
for the symbolic modelling of robots. In 
Robotica, Vol. 15, p. 153-161. 

Khalil W., Gautier M., 2000. Modeling of 
mechanical systems with lumped elasticity", 
In Proc. IEEE Int. Conf. on Robotics and 
Automation, San Francisco, p. 3965-3970. 

Khalil, W., Dombre, E. 2002. Modeling 
identification and control of robots. Hermes, 
Penton-Sciences, London. 

Khalil W. and Guegan S.,2004. Inverse and Direct 
Dynamic Modeling of Gough-Stewart Robots. 
In IEEE Transactions on Robotics and 
Automation, 20(4), p. 754-762. 

Khalil W., G. Gallot G., Boyer F., 2007. Dynamic 
Modeling and Simulation of a 3-D Serial Eel-
Like Robot. In IEEE Transactions on Systems, 
Man and Cybernetics, Part C: Application 
and reviews, Vol. 37, N° 6. 

Khalil W., Ibrahim O., 2007. General solution for 
the Dynamic modeling of parallel robots. In 
Journal of Intelligent and Robotic Systems, 
Vol.49, pp.19-37. 

Khosla P.K., 1986. Real-time control and 
identification of direct drive manipulators. Ph. 
D. Thesis, Carnegie Mellon. 

Walker M.W., Orin D.E., 1982. Efficient dynamic 
computer simulation of robotics mechanism. 
In Trans. of ASME, J. of Dynamic Systems, 
Measurement, and Control, Vol. 104, p. 205-
211. 

 
 

 
 


