
HAL Id: hal-00488037
https://hal.science/hal-00488037

Submitted on 1 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DYNAMIC MODELING OF ROBOTS USING
RECURSIVE NEWTON-EULER TECHNIQUES

Wisama Khalil

To cite this version:
Wisama Khalil. DYNAMIC MODELING OF ROBOTS USING RECURSIVE NEWTON-EULER
TECHNIQUES. ICINCO2010, Jun 2010, Portugal. �hal-00488037�

https://hal.science/hal-00488037
https://hal.archives-ouvertes.fr

DYNAMIC MODELING OF ROBOTS USING RECURSIVE
NEWTON-EULER TECHNIQUES

Wisama KHALIL
Ecole Centrale de Nantes, IRCCyN UMR CNRS 6597, 1 Rue de la Noë, 44321 Nantes, France

Wisama.khalil@irccyn.ec-nantes.fr

Keywords: Dynamic modelling, Newton-Euler, recursive calculation, tree structure, parallel robots, flexible joints,
mobile robots.

Abstract: This paper present the use of recursive Newton-Euler to model different robotics systems. The main
advantages of this technique are the facility of implementation by numerical or symbolical programming
and providing models with reduced number of operations. In this paper the inverse and direct dynamic
models of different robotics systems will be presented. At first we start by rigid tree structure robots, then
these algorithms will be generalized for closed loop robots, parallel robots, and robots with lumped
elasticity. At the end the case of robots with moving base will be treated.

1 INTRODUCTION

The dynamic modelling of robots is an important
topic for the design, simulation, and control of
robots. Different techniques have been proposed and
used by the robotics community. In this paper we
show that the use of Newton-Euler recursive
technique for different robotics systems is easy to
develop and programme. The proposed algorithm
can be extended to many types of structures; serial,
tree structure, closed, parallel, with a fixed base or
with moving platform. The same technique can be
used for robots with lumped elasticity or flexible
links.
In section 2 we will recall the method used to
describe the kinematics of the structure, and then in
section 3 we present the inverse and the direct
dynamic modeling of tree structure rigid robots
which are considered as the base methods. The
following sections present the generalization to the
other systems.

2 DESCRIPTION OF THE
KINEMATICS OF ROBOTS

The geometry of the structures will be described
using the Modified Denavit and Hartenberg method
as proposed in (Khalil and Kleinfinger, 1986). This
method can take into account tree structures and

closed loop robots. Its use facilitates the calculation
of the base inertial parameters of robots (Gautier and
Khalil, 1988, Khalil W., Bennis F., 1994, Khalil and
Bennis, 1995).

2.1 Geometric description of tree

structure robots

A tree structure robot is composed of n+1 links
and n joints. Link 0 is the base and link n is a
terminal link. The joints are either revolute or
prismatic, rigid or elastic. The links are numbered
consecutively from the base, link 0, to the terminal
links. Joint j connects link j to link a(j), where a(j)
denotes the link antecedent to link j. A frame Ri is
attached to each link i such that (Figure 1):

• zi is along the axis of joint i;

• xi is taken along the common normal between
zi and one of the succeeding joint axes, which
are fixed on link i.

j

j bj rj

dj

uj

xi

zk

zi

xj

zj

j

k
Link j

Link k Link i

Figure 1: Geometric parameters for a link i.

In general the homogeneous transformation

matrix iTj, which defines the frame Rj relative to
frame Ri is obtained as a function of six geometric
parameters (j, bj, j, dj, j, rj). Thus iTj is obtained
as:

iTj = Rot(z, j) Tran(z, bj) Rot(x, j) Tran(x, dj)

Rot(z, j) Tran(z, rj)

After developing, this matrix can be partitioned

as follows:

i i
i j j

j

1x3 0

 
  
 

R P

0
T (1)

Where R defines the (3×3) rotation matrix and P
defines the (3×1) vector defining the position of the
origin of frame j with respect to frame i.

If xi is along the common normal between zi and
zj , the parameters jand bj will be equal to zero.

The joint variable of joint j is denoted by:

j j j j jq r    

where j = 0 if joint j is revolute, j = 1 if joint j
is prismatic, and j = 1 – . We set j = 2 to define a
frame Rj fixed with respect to frame a(j). In this
case, qj and j are not defined.

The serial structure is a special case of a tree
structure where a(j)=j-1, j=0, and bj =0 for all
j=1,..,n.

2.2 Description of closed loop structure

The system is composed of L joints and n + 1
links, where link 0 is the fixed base and L > n. The
number of independent closed loops is equal to:

B = L – n

The joints are either active (motorized) or

passive. The number of active joints is denoted N.
The position and orientation of all the links can be
determined as a function of the active joint variables.

To determine the geometric parameters of a
mechanism with closed chains, we proceed as
follows:

a) Construct an equivalent tree structure having
n joints by virtually cutting each closed chain at one
of its passive joints. Define the geometric
parameters of the tree structure as given in section
2.1.

b) For each cut joint define two supplementary
frames on one of the links connected by this joint.

Assuming that a cut joint is numbered k (where
k=n+1,…, L) and that the links connected by joint k
are numbered i and j (where i and j <n) the frames
will be defined as follows (Figure 2):

- frame Rk is defined fixed on link j such that
a(k)=i, the axis zk is along the axis of joint k, and xk

is along the common normal between zk and zj. The
matrix iTk will be determined using the general
parameters k, bk, k, dk, k, rk.

- frame Rk+B is aligned with Rk that is to say it is
fixed on link j, but a(k+B)= j. The geometric
parameters defining Rk+B are constant, we note that
rk+B and k+B are zero since xk+B is normal to zj.

zj

xk+B

zk
zk+B

zi

a(k+B)=j
a(k)=i

xi xk

 Link j Link i

Figure 2: Frames of a cut joint k.

The joint variables are denotes as:

atr
tr

pc
,

  
    
   

qq
q q

qq
 (2)

• qtr vector containing the tree structure joint
variables;

. qa vector containing the N active joint
variables;

• qp vector containing the p=n–N passive joint
variables of the equivalent tree structure;

• qc vector containing the B variables of the cut
joints.

Only the N active variables qa are independent.

Since Rk and Rk+B are aligned, the geometric
constraint equations for each loop, which can be
used to calculate the passive joint variables in terms
of the active joint variables, can be written as:

k+BTj ... iTk = I4 (3)

The kinematic constraint equations are obtained

by using the fact that the screw of frame k is equal to
that of frame k+B:

0 0

k k+B

k k+Bb1 b2J q J q

 
�


 
 (4) (4)

j  6 1 kinematic screw vector of frame j,

given by:

TT T

j j j
   V ω (5)

jV linear velocity of the origin of frame Rj,

jω angular velocity of frame j,
b1q joint velocities from the base to frame k,

through branch 1,

b2q joint velocities from the base to frame k
through branch 2.

3 DYNAMIC MODELING OF TREE
STRUCTURE ROBOTS

3.1 Introduction

The most common in use methods to calculate
the dynamic models are the Lagrange equations and
the Newton Euler Equations (Craig 1986, Khalil and
Dombre 2002, Angeles 2006).

The Lagrange equation is given as:

 d

dt

    
        q q

T T
L L

 (6)

where  is the joint torques and forces, L is the
Lagrangian of the robot defined as the difference
between the kinetic energy E and the potential
energy U of the system : L = E – U. After
developing we obtain:

 = () + (,) A q q H q q  (7)

where A is the inertia matrix of the robot and H

is the Coriolis, Centrifuge and gravity torques.
Solving the previous equation to find in terms

of (, ,) q q q  is known as the inverse dynamic
problem, and solving it to obtain q in terms
of (, ,) q q Γ is known as the direct dynamic model.
The inverse dynamic model is obtained by
substituting (, ,) q q q  into (7), whereas the direct
model needs to inverse the inertia matrix.

    1

 q A Γ - H (8)

The calculation of the Lagrange equations for
systems with big number of degrees of freedom
using developed symbolic methods is time
consuming, and the obtained model will need more
time to execute with respect to that of recursive
methods. The recursive Newton-Euler algorithms
have been shown to be an excellent tool to model
rigid robots (Khalil and Kleinfinger, 1987, Khalil
and Creusot, 1987, Khosla, 1987). In (Hollerbach,
1980) an efficient recursive Lagrange algorithm is
presented but without achieving better performances
than that of Newton-Euler.
 The Newton-Euler equations giving the external
forces and moments on a link j about the origin of
frame j are written as:

 
 

j j j
j j jj j j

j j j j j j
j j j

  
  
  

ω ω MS

ω J ω
   (9)

where

 j
j

 
  
  

F

M

j
j

j
j

 (10)

jω the angular velocity of link j;
jV the linear acceleration of the origin of

frame j;
j total external wrench on link j;
jF total external forces on link j;

jM total external moments on link j about Oj;
j  6 6 inertia matrix of link j:

j

j 3 jj
j j j

j j

ˆM

ˆ

 
 
  

I MS

MS J
 (11)

Where Mj, MSj and Jj are the standard inertial
parameters of link j. They are respectively, the mass,
the first moments, and the inertia matrix about the
origin.

3.2 Calculation of the Inverse dynamics

using recursive NE algorithm

The algorithm consists of two recursive
computations (Luh, Walker and Paul, 1980):
forward recursion and backward recursion. The
forward equations, from link 1 to link n, compute the
link velocities and accelerations and consequently
the dynamic wrench on each link. The backward
equations, from link n to the base, provide the
reaction wrenches on the links and consequently the
joint torques.

This method gives the joint torques in terms of
the joint positions, velocities and accelerations

without explicitly computing the matrices A and H.
That is to say the algorithm will be denoted by:

e e= NE(, , , ,) q q q f m  (12)

Where fe and me are the external forces and
moments of the links of the robot on the
environment.

The forward recursive equations are based on the
following equations (Khalil and Dombre 2002):
j j i j

j i i j jq a     (13)

j j i j j
j i i j j jq a        (14)

 j i i i j
i i i j i j jj

j
j j

i j j

2 (q)

q

       
  

R ω ω P ω a
γ

ω a





j
j

j




 (15)

where
 jaj is the (6x1) column matrix given as :

 jaj =[0 0  j 0 0  j]T (16)
j

i� and the screw transformation matrix is:

j j i

j i i j
i j

3x3 i

ˆ 
  
 

R R P

0 R
 (17)

The forward algorithm is given for j=1,…, n,
with i = a(j), as follows:

ji = jRi ii (18)

jj = ji + – j
.
qj jaj (19)

j. j = jRi i
.

i + – j (
..
qj

jaj + ji ×
.
qj jaj) (20)

jV
.

j = jRi (iV
.

i +iUi iPj)+ j (
..
qj jaj + 2 ji ×

.
qj jaj)

 (21)

jFj = Mj jV
.

j + jUj jMSj (22)

jMj = jJj j
.

j + jj × (jJj jj) + jMSj × jV
.

j (23)
with

 jUj = j
.̂

j + j̂j j̂j
and where aj is the unit vector along the zj axis
which is the axis of joint j.
The matrix ŵ defines the 3×3 vector product matrix
associated to the (3×1) vector W such that:

0 -

ˆ 0 -

- 0

ˆ

 
 
 
  

 

w =

w v w v

z y

z x

y x

w w

w w

w w
 (24)

These equations are initialized by 0 = 0, . 0 = 0, V
.

0

= –g, 0U0 = 0, with g is the acceleration of gravity.

Initialising the linear acceleration V
.

0 by –g will take
automatically the effect of gravity forces on all the
links of the structure.

–mk3

Lk3

Gj

Sj

–mk2

–fk2

–mk1

Ok1

Ok2

fj–fej

–fk1

–fk3

Lk2

Lk1

mj–mej

Oj

Ok3
Link i

Link j

Link
k3

Link
k2

Link
k1

Figure 3: Forces and moments acting on a link j

The backward recursive equations are deduced from
the resultant forces and moments on link j around
the origin of link j (Figure 3).

 j j k T k j
j j j k ej

k

  f f f  (25)

Where a(k)=j,

The backward equations can be calculated for
j=n,…,1:

jfj = jFj + jfej (26)
jmj = jMj + jmej (27)

 ifj = iRj jfj (28)

ifei = ifei + ifj (29)
imei = imei + iRj jmj + iPj x ifj (30)

j =(j jfj+
–j jmj)Tjaj + Ia j

..
qj+ Fsj sign(

.
qj)+ Fvj

.
qj

 (31)
Where:
fj and mj are the reaction forces and moments of link
a(j) on link j respectively, Iaj is the inertia of the
rotor and transmission gears of the motor of joint j,
Fsj and Fvj are the coulomb and viscous friction

parameters respectively, jfej and jmej are the external
forces and moments of link j on the environment.

This algorithm is easy to program numerically or
symbolically. The computational cost is linear with
the number of degrees of freedom of the robot. To
reduce the number of operations of the calculation of
this model the base inertial parameters can be used
instead of the standard inertial parameters and the

technique of customized symbolic method can be
applied (Khosla 1986 , Khalil and Kleinfinger 1987,
Khalil and Creusot 1997).

3.3 Computation of the direct dynamic

model

The computation of the direct dynamic model is
employed to carry out simulations for the purpose of
testing the robot performances and studying the
control laws. During simulation, the dynamic
equations are solved for the joint accelerations given
the input torques and the state of the robot (joint
positions and velocities). Through integration of the
joint accelerations, the robot trajectory is then
determined.

The direct dynamic model can be obtained from

Lagrange equation (8) as follows:
 ..
q = A-1 [ – H(q, q

.
)]

Two methods based on Newton-Euler methods

can be used to obtain the dynamic model: the first is
based on calculating the A and H matrices using
Newton-Euler inverse dynamic model in order to
calculate the joint accelerations by (8); the second
method is based on a recursive Newton-Euler
algorithm that does not explicitly calculate the
matrix A and has a computational cost that varies
linearly with the number of degrees of freedom of
the robot. For tree structure robots, the second
method is more efficient, but the first method can be
used for closed loop robots and other complicated
systems. That is why we will present both methods.

3.3.1 Using the inverse dynamic model

to calculate the direct dynamic model

In this method the matrices H(q,q

.
) and A(q) are

calculated using the inverse model by giving special
values for the joint accelerations, joint velocities,
external forces, friction, gravity (Walker and Orin
1982).

By comparing equations (7) and (12) we deduce
that H(q, q

.
) is equal to if..q = 0, and that the ith

column of A is equal to if:
..
q = ui, q

.
 = 0, g = 0, fej = 0, mej = 0

where ui is the (nx1) unit vector whose ith element is
equal to 1, and the other elements are zeros. Iterating
the procedure for i = 1,…, n leads to the construction
of the entire inertia matrix.

To reduce the computational complexity of this
algorithm, we can make use of the base inertial
parameters and the customized symbolic techniques.

Moreover, we can take advantage of the fact that the
inertia matrix A is symmetric.

3.3.2 Recursive NE computation of the

direct dynamic model

This method is based on the recursive Newton-

Euler equations and does not use explicitly the
inertia matrix of the robot (Armstrong 1979,
(Featherstone 1983, (Brandl, Johanni and
Otter, 1986).

Using (9) and (25) the equilibrium equations of
link j can be written as:

 j j j j k T k
j j j j j k  

k

β  f f (32)

where k denote the links articulated on link j

such that a(k)=j, and

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f (33)

 The joint accelerations are obtained as a result

of three recursive computations:

i) first forward computations for j = 1, …, n: in this
step, we compute the screw transformation matrices
jTi, the link angular velocities jj as well as jj and
jj vectors, which appear in the link accelerations
and the link wrenches equations respectively when..q
= 0;

 j i i i j
i i i j i j jj

j
j j

i j j

2 (q)

q

       
  

R ω ω P ω a
γ

ω a





j
j

j




(34)

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f (35)

ii) backward recursive computation: in this step
we calculate the elements H

j,

jJ
*
j ,

j
*
j , jKj, jj which

express
..
qj and jfj in terms of i

.
Vi in the third recursive

equations. These equations are demonstrated in the
following sub-section.

For j = n ... 1, compute:

Hj = (ja
T
j jJ

*
j jaj

 + Iaj) (36)

jKj = jJ
*
j – jJ

*
j

jaj H
-1
j ja

T
j jJ

*
j (37)

jj = jKj
jj + jJ

*
j

jaj H
-1
j

 (j +
ja

T
j

 j
*
j) – j

*
j (38)

If a(j) ≠ 0, calculate also:

i

*
i = i

*
i – jT

T
i jj (39)

iJ
*
i = iJ

*
i + jT

T
i jKj

jTi (40)

These equations are initialized by
jJ

*
j = jJj and j

*
j = jj.

iii) second forward recursive computations. Since
the acceleration of the base is known (

.
V0 = –g, . 0 =

0 for fixed base), the third recursive computation
gives

..
qj and jfj (if needed) for j = 1… n. as follows:

..
qj = H

-1
j

 [– ja
T
j

 jJ
*
j (jTi

i
.
Vi + jj) + j +

ja
T
j j

*
j]

 (41)

jfj =






jfj

jmj
 = jKj

jTi
i
.
Vi + jj (42)

j
.
Vj = jTi

i
.
Vi + jaj

 ..qj + jj (43)

where
j = j – Fsj sign(

.
qj) – Fvj

.
qj (44)

Calculation of the elements of the backward

recursive equations

To simplify the notations, we consider the case of a
serial structure of n joints. Expressing the
acceleration of link n in terms of the acceleration of
link n-1, and since n+1fn+1 = 0, we obtain:

nJn (nTn-1

n-1
.
Vn-1 +

..
qn

nan + nn) = nfn + nn (45)

Since:

ja
T
j jfj = j – Iaj

..
qj

j = j – Fsj sign(
.
qj) – Fvj

.
qj

We obtain the joint acceleration of joint n:

..
qn = H

-1
 n

 (– na
T
n

 nJn (nTn-1
n-1

.
Vn-1 + nn) + n +

na
T
n

 nn)

 (46)
where Hn is a scalar given as:

Hn = (nan
T nJn nan

 + Ian) (47)

Substituting for
..
qn from (46) and (45), we obtain

the dynamic wrench nfn as:

nfn =






nfn

nmn
 = nKn

nTn-1 n-1
.
Vn-1 + nn (48)

where:
nKn = nJn – nJn

nan H
-1
n na

T
n nJn (49)

nn = nKn
nn + nJn

nan H
-1
n

 (n +
na

T
n

 nn) – nn

 (50)

We now have

..
qn and nfn in terms of n-1

.
Vn-1.

Iterating the procedure for j = n – 1, we obtain:

n-1Jn-1
n-1

.
Vn-1= n-1fn-1

 + nT
T
n-1 nfn + n-1n-1 (51)

which can be rewritten as:

n-1J
*
n-1 (n-1Tn-2

n-2
.
Vn-2 +

..
qn-1

n-1an-1 + n-1n-1) =

n-1fn-1 + n-1
*
n-1 (52)

where:

n-1J
*
n-1 = n-1Jn-1 + nT

T
n-1 nKn

nTn-1 (53)

n-1
*
n-1 = n-1n-1 – nT

T
n-1 nn (54)

Equation (52) has the same form as (45). Thus,
we can express

..
qn-1 and n-1fn-1 in terms of n-2

.
Vn-2.

Iterating this procedure for j = n – 2, …, 1, we obtain ..
qj and jfj in terms of j-1

.
Vj-1 for j = n – 1, ..., 1 as

given by equations (41) and (43) which represent the
general case.

4 INVERSE DYNAMIC MODELING
OF CLOSED LOOP ROBOTS

The computation of the Inverse dynamic model
of closed loop robots can be obtained by first
calculating the inverse dynamic model of the
equivalent tree structure robot, in which the joint
variables satisfy the constraints of the loop. Then the
closed loop torques of the active joints c are
obtained by projecting the tree structure torques tr
on the motorized joints using the transpose of the
Jacobian matrix of the tree structure variables (or
velocities) in terms of the active joint variables (or
velocities).

c= GTtr tr tr tr(, ,) q q q   (55)

where:

 


 
tr tr

a a

q q
G =

q q




 (56)

It can be written also as:

p
c a p


 

 a

q

q
  




 (57)

Where:
a and p are the torque of actuated and passive

joints of the tree structure.
The kinematics Jacobian matrix can be obtained

from (4) representing the kinematics closed loop
constraints.

There is no recursive method to obtain the direct
dynamic model of closed loop robots. It can be
computed using the inverse dynamic model by a
procedure similar to that given in section (3.3.1) in
order to obtain the matrices Ac and Hc of the
following relation:

 c c tr a c tr tr= () + (,) A q q H q q  (58)

5. INVERSE DYNAMIC MODELING
OF PARALLEL ROBOTS

A parallel robot is a complex multi-body system
having several closed loops. It is composed of a
moving platform connected to a fixed base by
parallel legs. The dynamic model can be obtained as
described in the previous section, but in this section
we present a method that takes into account the
parallel structure. To simplify the notations we will
present her the case of parallel robots with six
degrees of freedom. Examples concerning reduced
mobility robots are given in (Khalil and Ibrahim
2007).

The robot is composed of a fixed base and a
mobile platform. They are connected using m
parallel legs.

The inverse dynamic model gives the forces and
torques of motorized joints as a function of the
desired trajectory of the mobile platform.

Platform

Base

Figure 4: Parallel structure after separating the platform

To obtain the dynamic models of parallel robots,

we exploit their structural characteristics by
decomposing the system into two subsystems: the
platform and the legs.

The dynamics of the platform is calculated as a
function of the Cartesian variables (spatial Cartesian
position, velocity and acceleration of the platform),
whereas the dynamics of the legs are calculated as a
function of the joint variables of the legs
 i i iq ,q ,q  for i=1,…,m. The active joint torques
are obtained by the sum of these dynamics and
projecting them on the active joint axes.

To project the dynamics of the platform on the
active joint space we multiply it by the transpose of
the robot Jacobian matrix, which gives the platform
screw Vp in terms of the motorized joint velocities

aq , and to project the leg dynamics on the active
joint space we use the Jacobian between these two
spaces. Thus the dynamic model of the parallel
structure is given by the following equation:

 
  


T

m
T i
P P i

i=1 a

q
Γ = J +

q




  (59)

where

P is the total forces and moments on the
platform,

PJ is the (6n) kinematics Jacobian matrix of
the robot, which gives the platform velocity PV
(translational and angular) as a function of the active
joint velocities:

P P a= J q (60)

iΓ is the inverse dynamic model of leg i, it is a
function of  i i iq ,q ,q  , which can be obtained in
terms of the platform location, velocity and
acceleration, using the inverse kinematic models of
the legs. We note that iq does not include the
passive joint variables connecting the legs to the
platform.

In this section we suppose n=6, thus PJ is (6×6)
matrix.

The calculation of pJ is obtained by inverting

p
-1J , which is easy to obtain for most parallel

structures.

P is calculated by the Newton-Euler equation
(9).

The calculation of / i aq q  is carried out by
the following relation, which exploits the parallel
structure of the robot:

   


   
i i i P

a i P a

q q v

q v q




 
 

 (61)

with: iv is the Cartesian velocity transferred
from leg i to the platform.

We can rewrite (61) as:

 


-1i
i vi r

a

q
= J J J

q




 (62)

iJ is the kinematic Jacobian matrix of leg i such

that:

i i iv = J q (63)

viJ gives iv as a function of P :

i vi Pv = J  (64)

For the Gough-Stewart platform (where the
mobile platform is connected to the legs using
spherical joints), we obtain:

^      
i

ivi 3
P

v
J = I - P

 (65)

Where Pi is the vector between the origin of the
platform frame and the centre of the spherical joint
linking the platform with leg i.

Finally the inverse dynamic model of the robot is

given by the following form:

 
 
 


m

T T -T
p P vi i i

i=1

Γ = J + J J Γ (66)

We note that the term between the brackets in
(66) represents the dynamic model of the robot
expressed in the Cartesian space of the platform
frame (Khalil and Guegain, 2002).

6. INVERSE DYNAMIC MODELING
OF ROBOTS WITH ELASTIC JOINTS

In this section we tree structure robots with lumped
elasticity or flexible joints. The system can be
described using Modified Denavit and Hartenberg
method presented in section 2. Each joint could be
either elastic or rigid (Khalil and Gautier, 2000).

6.1 Lagrange dynamic form

The general form of the dynamic model of a
system with flexible joints has the same form as (7).
It can be rewritten as:

 = A(q)
..
q + H(q, q

.
) (67)

It can be partitioned as follows:

11 12
T
12 22

 =
      

               

q HA A

q HA A




r r r

f f f

 (68)

Where q,
.
q ,

..
q are the (n×1) vectors of positions,

velocities, and accelerations of rigid and elastic
joints;

H(q,q
.
) is the (n×1) vector of Coriolis,

centrifugal and gravity forces,
A(q) is the (n×n) inertia matrix of the system,
ris the vector of rigid joint torques,
ris the vector of elastic joint torques.

If joint j is flexible:

j = - qj Kj (69)

where Kj is the stiffness of the elastic joint,

qj = qj – q0j (70)

q0j is the joint position corresponding to zero

elasticity force.

In the case of a system with elasticity, the direct

dynamic model has the same outputs as in the case
of rigid bodies; it gives the joint accelerations as a
function of the joint torques and of the system state
variables (q, q

.
). It can be calculated using (68) by

calculation the inverse of A.

In the case of a system with elasticity, the inverse
dynamic model calculates the input torques and the
elastic accelerations as a function of the joint
positions, velocities and rigid joint accelerations. It
is to be noted that the accelerations of the elastic
variables cannot be specified independently. Using
(68) to calculate the inverse model, we have first to
calculate the acceleration elastic accelerations from
the second row:

 T
12 22

 
     

 

q
A A H

q




r

f f
f

 (71)

 then we can calculate the rigid joint torques from
the first row.

6.2 Direct dynamics of systems with
flexible joints using recursive NE

The direct dynamic model of system with
flexible joints can be calculated using the recursive
direct dynamic model algorithm of rigid joints
presented in section (3.3) after putting j = - qj Kj.
for the elastic joints.

Remark: We note that in case of rigid non
motorized joint, the same algorithm can be used
after putting j = 0.

6.3 Inverse dynamics of systems with
flexible joints using recursive NE

The recursive inverse dynamic algorithm of rigid
links cannot be used for system with flexible joints
since the accelerations of the flexible joints are
unknown. On the contrary it can be used to obtain
the A and H matrices as explained in section (3.3.1),
then we can proceed as explained in 6.1 for the
calculation of q f and Γr .

We propose here a recursive algorithm to solve

this problem (Khalil and Gautier 2000). This
algorithm consists of three recursive steps.

i) The first forward iteration is exactly the same

as that of the direct dynamic model (section 3.3).

ii) The second backward recursive equations

calculate the matrices giving the elastic accelerations ..
q j and jfj as a function of a(j)

.
V

a(j). These matrices
can be defined using a similar procedure as in
section (3.3). They can be calculated for j =n, ...,1,
as follows:

- If joint j is elastic:

Hj = ja
T
j jJ

*
j jaj

 (72)

jKj = jJ
*
j – jJ

*
j

jaj H
-1
j ja

T
j jJ

*
j (73)

jj = jKj
jj + jJ

*
j

jaj H
-1
j

 (Kj qj +
ja

T
j

 j
*
j) – j

*
j

 (74)
- If joint j is rigid:

 jKj = jJ
*
j (75)

jj = jKj jj + jJ
*
j jaj

..
q j – j

*
j (76)

if a(j) ≠ 0, calculate:

i
*
i = i

*
i – jT

T
i jj (77)

iJ
*
i = iJ

*
i + jT

T
i jKj

jTi (78)

The previous equations are initialized by:

 jJ
*
j = jJj, and j

*
j = jj.

The third recursive equations (for j = 1, ..., n)

calculate
..
qj for the elastic joints and the joint torques

for the rigid joints using the following equation:

jfj =






jfj

jmj
 = jKj jTi

i
.
Vi + jj (79)

- if j is elastic:

..
qj = H

-1
j [– ja

T
j

 jJ
*
j (jTi

i
.
Vi + jj) - Kj qj +

ja
T
j j

*
j]

 (80)

 j .
V j = jTi

i
.
Vi + jaj

..
q j + jj (81)

- if j is rigid

j = (j jfj + – j jmj)T jaj + Iaj
..
q j (82)

7. DYNAMIC MODELING OF
ROBOTS WITH MOVING BASE

 The structure treated in this section includes a big
number of systems such as: cars, mobile robots,
mobile manipulators, walking robots, Humanoid
robots, eel like robots (Khalil W., G. Gallot G.,
Boyer F., 2007), snakes like robots, flying robots,
spatial vehicle, etc. The difference between all of
these systems will be in the calculation of the
interaction forces with the environment. In the
previous sections the base is fixed thus the
acceleration of the base is equal to zero, whereas in
the case of a mobile base system the acceleration of
the base must be determined in both direct and
inverse dynamic models. The proposed recursive
dynamic models are easy to implement and calculate
using numerical calculation. The inverse dynamic
model, which is used in general in the control
problems, can be used in simulation too when the
objective is to study the evolution of the base giving
joint positions, velocities and accelerations of the
other joints. The direct dynamic model can be used
in simulation when the joint torques are specified.

We use the same notations of section 2 to
describe the structure. The base fixed frame R0 is
defined wrt the world fixed frame Rw by the
transformation matrix w

0T . This matrix is supposed
known at t = 0, it will be updated by integrating the
base acceleration. The velocity and acceleration of
the base are represented by the (6x1) vectors 0 and

0 respectively.
The Cartesian velocities and accelerations of the
links are calculated using the recursive equations
(13)-(17).

7.1 General form of the dynamic
models

The dynamic model of a robot with moving base can
be represented by the following relation:

0

6x1 0
  

      

0
A H

q






 (83)

Γ  n 1 vector of joint torques,
q  n 1 vector of joint positions,
A is the (6 n) (6 n)   inertia matrix of the

robot, it can be partitioned as follows:

11 12
T
12 22

 
  
 

A A
A

A A
 (84)

11A is the (6 6) inertia matrix of the composed
link 0, which is composed of the inertia of all the
links referred to frame R0 (the base).

22A is the (n n) inertia matrix of the other
links when the head is fixed,

12A is the (6 n) coupled inertia matrix of the

joints and the base. It reflects the effect of the joint
accelerations on the base motion, and the dual effect
of base accelerations on the joint motions.

H is the (n 6) 1  vector representing the
Coriolis, centrifugal, gravity and external forces
effect on the robot. Its elements are functions of the
base and joint velocities and the external forces. This
vector can be partitioned as follows:

1

2

 
  
 

H
H

H
 (85)

where:

1H the Coriolis, centrifugal, gravity and
external forces on the base.

2H the Coriolis, centrifugal, gravity and

external forces on the links 1,…,n.

The inverse dynamic model gives the joint

torques and the base acceleration in terms of the
desired trajectory (position, velocity and
acceleration) of the articulated system (links 1 to n)
and the base position and velocity. Using equation
(83) and (84), the inverse dynamic model is solved
by using the first row of equation (83) to obtain the
base acceleration:

   10
0 11 1 12


  A H + A q  (86)

Then the second row of (83), can be used to find the
joint torques:

T
12 0 22 2   A A q H  (87)

The direct dynamic model gives the joint

accelerations and the base acceleration in terms of

the position and velocity of the base and the
articulated system and the joint input torques. Thus
using (83), the direct dynamic model is solved as
follows:

 110

2

    
      

H
A

Hq






 (88)

The calculation of A and H can be done by
Lagrange method. They can also be calculated using
the inverse dynamic model of tree structure of
section (3.2) and using the procedure of section
(3.3.1). The base can be taken into account by either
of the following methods:

- The velocity and acceleration of the base will
be the initial conditions 0

 and 0ω for the forward
recursive calculation. The backward recursive
calculation must continue to j=0, where this new
iteration will obtain the 6 equations of Newton-Euler
equations of the base.

- We can assign link 1 to be the base, and
suppose that link 0 is a virtual link whose inertial
parameters are equal to zero but has the velocity and
acceleration of the base. This can be done by
putting 2=2. The six equations of the base will be
those of 1 0;f

Solving the inverse and direct dynamic problems

using A and H may be very time consuming for
systems with big number of degrees of freedom (as
the eel like robot). Therefore, we propose here to use
a recursive method, which is easy to programme,
and its computational complexity is linear wrt the
number of degrees of freedom.

The recursive Newton-Euler algorithm is based
on the kinematic equations presented in section 3.

7.2 Recursive NE calculation of the
inverse dynamic model of robots
with mobile base

The inverse dynamic algorithm in this case consists
of three recursive equations (a forward, then a
backward, then a forward).

i) Forward recursive calculation:

 In this step we calculate the screw

transformation matrices, link velocities, and the
elements of the accelerations and external wrenches
on the links, which are independent of the
acceleration of the robot base (0 0,V ω ). Thus we
calculate for j=1,…,n: j

i , j
j and j

jγ using
equations (13)-(17). We calculate also j

jβ
representing the elements of the Newton-Euler

equations, which are independent of the base
acceleration in equations (14) and (15) such that:

j j j

j j j jq ζ γ a (89)

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f (90)

ii) Backward recursive equations:

In this step we obtain the base acceleration using

the inertial parameters of the composite link 0,
where the composite link j consists of the links j,
j+1, …, n.

We note that (32), giving the equilibrium
equation of link j, can be rewritten using (90) as:

j j j j k T k

j j j j j k  
k

β  f f (91)

Applying the Newton-Euler equations on the

composite link j, we obtain:

 j j j j s(j) T s(j) s(j) s(j)
j j j j j s(k) s(j) s(j)

s(j)

   β β     f

 (92)

Where s(k) means all the links succeeding joint j,
that is to say joining j to any terminal link.

Substituting for s(j)
s(j)
 in terms of j

j
 using

(14), we obtain:
s(j)s(j) s(j) j r

s(j) j j r r

r

  ζ     (93)

Where r denotes all links between j and s(j).

From (92), we obtain:

j j

j j c j j c
j j  β f (94)

with:

j c j c k T k c k
j j j k j

k

      (95)

j c j c k T k c k T k c k
j j j k j k k

k

  β β β ζ   (96)

j c

j is the inertial matrix of the composite link j.
For j = 0, and supposing f0 0 is equal to zero, we

obtain using (94):

  10 0 c 0 c
0 0 0


 β  (97)

To conclude, the recursive equations of this step
consist of initialising n c n

n n  , n c n
n nβ β and then

calculating (95)-(96) for j = n,…, 0. At the end 0
0 is

calculated by (97).
Comparing (97) with (68) we can deduce that

11A is equal to 0 c
0 , whereas 0 c

0β is equal to
(1 12H + A q).

iii) Forward recursive equations:

After calculating 0

0 , the wrench j
jf and the

joint torques are obtained using equations (6) and
(22) for j= 1,…, n as:

j j i j
j i i jζ     (98)

j

j
jj j c j j c

j j jj
j

 
   
  

β
f

m
 f (99)

The joint torque is calculated by projecting j
jf on the

joint axis, and by taking into account the friction and
the actuators inertia:

 j T j
j j j sj j vj j aj jF sign q F q I q    f a    (100)

It is to be noted that the inverse dynamic model
algorithm can be used in the dynamic simulation of
the mobile robot when the objective is to study the
effect of the joint motions on the base. In this case
the joint positions, velocities and accelerations
trajectories are given. At each sampling time the
acceleration of the base will be integrated to provide
the angular and linear velocities for the next
sampling time.

7.3 Recursive direct Dynamic model

The direct dynamic model consists of three recursive
calculations in the same order as those of the inverse
dynamic model (forward, backward and forward):

i) Forward recursive equations:

We calculate the link Cartesian velocities using

(13) and the terms of Cartesian accelerations and
equilibrium equations of the links that are
independent of the accelerations of the base and of
the joints. We calculate the following recursive
equations for j = 1, ..., n:

 j i i i j
i i i j i j jj

j
j j

i j j

2 (q)

q

       
  

R ω ω P ω a
γ

ω a





j
j

j




 (101)

 
 

j j j
j j jj j

j ej j j j
j j j

  
   
  

ω ω MS
β

ω J ω
f (102)

ii) Backward recursive equations:

In this second step, we first initialise n * n

n n  ,
n * n

n nβ β and then we calculate for j = n,…,1 the
following elements, which permit to calculate j

jf
and jq in terms of i

i
 and will be used in the third

recursive equations (these matrices can be obtained
using a similar procedure as for the direct dynamic
model of rigid links):

j T j * j

j j j j jH Ia a a (103)

j j * j * j -1 j T j *

j j j j j j jH -   a a (104)

i * i j T j j

i i i j i      (105)

j j sj j vj jτ Γ F sign(q) F q - -  (106)

 j j j j * j -1 j T j * j *
j j j j j j j j j jH τ   α β β  a a

 (107)

i * i j T j

i i i j β β   (108)

iii) Forward recursive equations:

At first, the base acceleration is calculated by the

following relation :

   10 0 * 0 *
0 0 0


 β  (109)

We note that 0 *

0β is a function of τ, whereas 0 c
0β

(used in the inverse model) is a function of q .

jq and j
jf (if desired) are calculated for j=1,…,n

using the following equations:

  -1 j T j * j j j T j *
j j j j j-1 j j j jq H - τ      

β  a a (110)

j j j i j

j j i i jα   f  (111)

where:

j j j j
j j-1 j j jq   γ    a (112)

8. CONCLUSIONS

 This paper presents the inverse and direct
dynamic modeling of different robotics systems. The
dynamic models are developed using the recursive
Newton-Euler formalism. The inverse model
provides the torque of the joint and the acceleration
of the free degrees of freedom such as the elastic
joints, or the acceleration of the base in case of
mobile base.
The direct model provides the joint acceleration of
the joints including those of the free degrees of
freedom.
These algorithms constitute the generalization of the
algorithms of articulated manipulators to the other
cases.
The proposed methods have been applied on more
complicated systems such as:

- flexible link robots (Boyer and Khalil, 1998),
- Micro continuous system (Boyer, Porez and
Khalil, 2006),
- hybrid structure, where the robot is composed
 of parallel modules, which are connected in serie,
(Ibrahim, Khalil 2010).

 REFERENCES

 Angeles J. 2002. Fundamentals of Robotic
Mechanical Systems. Second edition,
Springer-Verlag, New York.

Armstrong W.W., 1979. Recursive solution to the
equation of motion of an N-links manipulator.
In Proc. 5th World Congress on Theory of
Machines and Mechanisms, p. 1343-1346.

Boyer, F., Khalil,W, 1998. An efficient calculation
of flexible manipulator inverse dynamic. In,
Int. Journal of Robotics Research, vol. 17,
No.3, pp.282-293

Boyer, F., Porez M., Khalil, W. 2006. Macro-
continuous torque algorithm for a three-
dimensional eel-like robot. In IEEE Robotics
transaction, vol.22, No.4, 2006, pp.763-775.

Brandl H., Johanni R., Otter M., .1986. A very
efficient algorithm for the simulation of robots
and multibody systems without inversion of
the mass matrix. In Proc. IFAC Symp. on
Theory of Robots, Vienne, p. 365-370.

Craig J.J., 1986. Introduction to robotics: mechanics and
control. Addison Wesley Publishing Company,
Reading.

Featherstone R., 1983. The calculation of robot

dynamics using articulated-body inertias. In
the Int. J. of Robotics Research, Vol. 2(3), p.
87-101.Gautier Gautier,M., Khalil W. 1990.
Direct calculation of minimum set of inertial
parameters of serial robots. In IEEE Trans. on
Robotics and Automation, Vol. RA-6(3),
p. 368-373.

Ibrahim, O., Khalil, W, 2010. Inverse and direct
dynamic models of Hybride robots. In
Mechanism and machine theory, Volume 45,
Issue 4, p. 627-640.

Luh J.Y.S., Walker M.W., Paul R.C.P.,1980. On-
line computational scheme for mechanical
manipulators. In Trans. of ASME, J. of
Dynamic Systems, Measurement, and Control,
Vol. 102(2) p. 69-76.

Khalil W., Kleinfinger J.-F., 1986. A new geometric
notation for open and closed-loop robots. In
Proc. IEEE Int. Conf. on Robotics and
Automation, San Francisco, p. 1174-1180.

Khalil W., Kleinfinger J.-F., 1987. Minimum
operations and minimum parameters of the
dynamic model of tree structure robots. In
IEEE J. of Robotics and Automation, Vol.
RA-3(6), p. 517-526.

Khalil W., Bennis F., 1994. Comments on Direct
Calculation of Minimum Set of Inertial
Parameters of Serial Robots. In IEEE Trans.
on Rob.& Automation, Vol. RA-10(1), p. 78-
79.

Khalil W., Creusot D., 1997. SYMORO+: a system
for the symbolic modelling of robots. In
Robotica, Vol. 15, p. 153-161.

Khalil W., Gautier M., 2000. Modeling of
mechanical systems with lumped elasticity",
In Proc. IEEE Int. Conf. on Robotics and
Automation, San Francisco, p. 3965-3970.

Khalil, W., Dombre, E. 2002. Modeling
identification and control of robots. Hermes,
Penton-Sciences, London.

Khalil W. and Guegan S.,2004. Inverse and Direct
Dynamic Modeling of Gough-Stewart Robots.
In IEEE Transactions on Robotics and
Automation, 20(4), p. 754-762.

Khalil W., G. Gallot G., Boyer F., 2007. Dynamic
Modeling and Simulation of a 3-D Serial Eel-
Like Robot. In IEEE Transactions on Systems,
Man and Cybernetics, Part C: Application
and reviews, Vol. 37, N° 6.

Khalil W., Ibrahim O., 2007. General solution for
the Dynamic modeling of parallel robots. In
Journal of Intelligent and Robotic Systems,
Vol.49, pp.19-37.

Khosla P.K., 1986. Real-time control and
identification of direct drive manipulators. Ph.
D. Thesis, Carnegie Mellon.

Walker M.W., Orin D.E., 1982. Efficient dynamic
computer simulation of robotics mechanism.
In Trans. of ASME, J. of Dynamic Systems,
Measurement, and Control, Vol. 104, p. 205-
211.

