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Should penalized least squares regression be

interpreted as Maximum A Posteriori

estimation?
Rémi Gribonval,Senior Member

Abstract

Penalized least squares regression is often used for signaldenoising and inverse problems, and is

commonly interpreted in a Bayesian framework as a Maximum A Posteriori (MAP) estimator, the penalty

function being the negative logarithm of the prior. For example, the widely used quadratic program (with

an ℓ1 penalty) associated to the LASSO / Basis Pursuit Denoising is very often considered as the MAP

under a Laplacian prior. The objective of this paper is to highlight the fact that, while this isonepossible

Bayesian interpretation, there can be other equally acceptable Bayesian interpretations. Therefore, solving

a penalized least squares regression problem with penaltyϕ(x) should not necessarily be interpreted as

assuming a priorC · exp(−ϕ(x)) and using the MAP estimator. In particular, we show that foranyprior

pX(x), the conditional mean can be interpreted as a MAP with some prior C · exp(−ϕ(x)). Vice-versa,

for certain penaltiesϕ(x), the solution of the penalized least squares problem is indeed theconditional

mean, with a certain priorpX(x). In general we havepX(x) 6= C · exp(−ϕ(x)).

EDICS: SAS-STAT

I. INTRODUCTION

Consider the problem of estimating an unknown signalx ∈ R
n from a noisy observationy = x + b,

also known asdenoising. Given an arbitrary noisy observationy the goal is to estimate the noiseless
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signalx: in practice, designing a denoising scheme amounts to choosing a functionψ : Rn → R
n which

provides estimates of the form̂x = ψ(y). However, unless we specify further what we mean by ”noise”

and ”signal”, denoising is a completely ill-posed problem since any pairx, b such thaty = x+ b can be

replaced byx′ = x+ z, b′ = b− z. Practical denoising schemes hence have to rely on various types of

prior information onx andb to design an appropriate denoising functionψ.

A. Bayesian estimation

A standard statistical approach to the denoising problem consists in assuming thatx andb are drawn

independently at random from knownprior probability distributionsPX andPB . Under thismodel, given

a cost functionC(x̂, x) that measures the quality of an estimatorx̂ in comparison to the true quantity to

estimatex, the Bayes estimator is defined as an estimatorψ with minimum expected cost:

argmin
ψ

E {C(ψ(X +B),X)} .

For a quadratic cost functionC(x̂, x) := ‖x̂− x‖22 the Bayes estimator is the conditional mean [5]

ψ⋆(y) := E(X|Y = y). (I.1)

Even though this estimator is ”optimal” in the above defined sense, its computation involves a high-

dimensional integral and cannot generally be done explicitly. In practice, Monte-Carlo simulations can

be used to approximate the integral.

Often more amenable to efficient numerical optimization is the popular Maximum A Posteriori (MAP)

criterion, which exploits Bayes rule

ψMAP (y) := argmax
x

p(x|y) = argmax
x

p(y|x)p(x)

= argmin
x

{− log pB(y − x)− log pX(x)} .

For white Gaussian noiseb, sincepB(b) ∝ exp(−‖b‖22/2), the MAP under the priorpX can be expressed

as

argmin
x

1

2
‖y − x‖22 + [− log pX(x)]. (I.2)

B. Regularization

Optimization problems of the type (I.2) have also been oftenconsidered in signal processing without

explicit reference to probabilities or priors, under the generic form

argmin
x

1

2
‖y − x‖22 + ϕ(x). (I.3)
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The deterministic objective is to achieve a tradeoff between the data-fidelity term‖y−x‖22 and the penalty

termϕ(x), which promotes solutions with certain properties. In particular, when the functionϕ is non-

smooth at the origin, such asϕ(x) = |x|p, 0 < p ≤ 1, the optimum of the criterion (I.3) is known to have

few nonzero entries. Regularization with such penalty functions is at the basis ofshrinkagetechniques [3]

for signal denoising. More recently, these approaches havebecome a very popular mean of promoting

sparsesolutions to under-determined or ill-conditioned linear inverse problemsy = Ax+ b, and are now

a key tool for compressed sensing [4].

C. Plurality of Bayesian interpretations of regularization

Given the identity of the optimization problems (I.2) and (I.3) when1 pX(x) ∝ exp(−ϕ(x)), the

regularization problem (I.3) is often interpreted as ”solving the MAP under the priorC · exp(−ϕ(x))

(and white Gaussian noise)”. In particular, whenϕ(x) = ‖x‖1, a possible interpretation of (I.3) is MAP

denoising under a Laplacian prior onx and white Gaussian noise.

The main objective of this paper is to highlight the fact thatwhile the MAP with priorC ·exp(−ϕ(x))

is one Bayesian interpretation of the estimator (I.3),there can be other Bayesian interpretations. We

focus on white Gaussian denoising, and we show that forany prior pX(x), the conditional mean can

be interpreted as a MAP with some priorC · exp(−ϕ(x)). Vice-versa, for certain functionsϕ, the

estimator (I.3) can equally be interpreted as theconditional mean, with a priorpX(x). In general we do

not havepX(x) ∝ exp(−ϕ(x)).

II. M AIN RESULTS

From now on we focus on Gaussian denoising:B ∈ R
n is a centered normal Gaussian variable with

law N (0, In) and probability density function (pdf)pB(b) ∝ exp(−‖b‖22/2). We letX ∈ R
n be a random

variable independent ofB, with law PX and pdf2 pX(x) andY = X +B be the noisy observation.

In this setting the conditional mean is (see Appendix A)

ψ⋆(y) = y +
1

pY (y)

[

∂

∂yi
pY (y)

]n

i=1

= y +∇ log pY (y) (II.1)

wherepY := pX ⋆ pB is the pdf3 of the noisy observationy.

1The notationf(x) ∝ g(x) meansf(x) = C · g(x) for all x, whereC 6= 0 is some constant independent ofx.

2For simplicity we consider random variables which admit a pdf.

3The pdfpY is sometimes refered to as theevidenceof the observation.
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Next we study whetherψ⋆ can also be written as the optimum of an optimization problemof the MAP

type (I.3), with an appropriate choice ofϕ. Namely, we investigate whenψ⋆ can be identified with the

proximity operator[2] of a functionϕ, where we recall the definition

proxϕ(y) := arg min
z∈Rn

{

1

2
‖y − z‖22 + ϕ(z)

}

. (II.2)

For smoothϕ we have the implicit characterization [2]

proxϕ(y) := y −∇ϕ[proxϕ(y)], ∀y ∈ R
n. (II.3)

Comparing with (II.3), we see that ifψ⋆ = proxϕ then

∇ϕ[ψ⋆(y)] = −∇ log pY (y), ∀y ∈ R
n. (II.4)

Sinceψ⋆ is one-to-onefrom R
n to Imψ⋆ (see Corollary A.2 in Appendix B), the relation (II.4) charac-

terizes the functionsϕ such thatψ⋆ = proxϕ, leading to our theorem.

Theorem II.1. ConsiderY = X +B whereB ∼ N (0, In) andX ∼ PX are independent.

1) The conditional meanψ⋆(·) is one-to-one andC∞ from R
n onto Imψ⋆. Its reciprocalψ−1

⋆ (·) :

Imψ⋆ → R
n is alsoC∞.

2) We haveψ⋆ = proxϕ⋆
whereϕ⋆ : Rn → R ∪ {+∞} is defined by:

ϕ⋆(x) := −1
2‖∇ log pY (ψ

−1
⋆ (x))‖22 − log pY [ψ

−1
⋆ (x)],

for x ∈ ImψCM ;

ϕ⋆(x) := +∞,

for x /∈ Imψ⋆.

(II.5)

3) If ϕ̃ satisfiesψ⋆ = proxϕ̃ then there is a constantc ∈ R such thatϕ̃(x) = ϕ⋆(x) + c for all

x ∈ Imψ⋆.

4) For every y ∈ R
n, the valueψ⋆(y) = proxϕ⋆

(y) is the unique local minimumof the function

1
2‖y − x‖2 + ϕ⋆(x).

The conditional mean with priorpX and white Gaussian noise is therefore also the MAP with prior

C · exp(−ϕ⋆(x)) and white Gaussian noise.

RemarkII.2. Even though the functionx 7→ 1
2‖y−x‖

2+ϕ⋆(x) admits a unique local minimum for anyy,

the functionϕ⋆ defined in (II.5) can be nonconvex, as shown with the following single variable example

(n = 1). A function ψ : R → R can be writtenψ = proxϕ with ϕ a proper lower semi-continuous

function fromR to R if, and only if, the functionψ is non-expansive and increasing [2]. Here, in the
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casen = 1, ψ⋆ is increasing (cf Lemma A.1 in Appendix B), but for certain priors pX it is expansive

(see Remark A.3 in Appendix B): its derivative exceeds one atsome point. Since the associatedϕ⋆ is

C∞, it is proper and continuous, hence it cannot be convex.

RemarkII.3. Caution is in order when interpretingψ⋆ as ”the MAP estimator with priorexp(−ϕ⋆(x))”.

This only makes sense if the functionx 7→ exp(−ϕ⋆(x)) is integrable, although in the opposite case

some authors refer to the MAP with a ”non-informative prior”.

III. D ISCUSSION

For Gaussian priorsX ∼ N (0,Σ), the conditional mean is the Wiener filter, which is also the MAP

and the minimum mean square linear estimator [5], soϕ⋆(x) = − log pX(x).

However, the MAP and the conditional mean are not generically equivalent, so there are choices of

pX (non Gaussian) for which wedo nothave the identityϕ⋆(x) = − log pX(x). Indeed, observe that for

any priorpX(x), the penalty functionϕ⋆(x) defined in Theorem II.1 has the following properties:

• the functionϕ⋆ : Imψ⋆ → R is C∞;

• for any y, the functionx 7→ 1
2‖y − x‖22 + ϕ⋆(x) admits a unique local minimum.

Therefore, the identityϕ⋆(x) = − log pX(x) cannot be satisfied if− log pX(x) fails to satisfy one of

these properties.

For example, generalized Gaussian priorspX(x) ∝ exp(−α‖x‖pp) with 0 < p ≤ 1 are not smoothat

x = 0, hence not inC∞: for such priors we cannot even have the identityϕ⋆(x) = a− b log pX(x) for

any a, b ∈ R.

One may also wonder whether a reciprocal to Theorem II.1 is possible. Given a penalty functionϕ(x),

one can always defineψ(y) = proxϕ(y), and defineq(y) = ψ(y)− y. However, the main difficulty is to

understand when one can writeq(y) = ∇(pX ⋆ pB)(y) for some pdfpX . This is not always possible, for

example ifϕ(x) is not sufficiently smooth.

IV. CONCLUSION AND PERSPECTIVES

We proved that the conditional mean estimator for Gaussian denoising can always be written as a

MAP (and that the MAP estimator with certain penalty functions can be interpreted as a conditional

mean). These results, in conjunction with Nikolova’s highlighting of model distortions brought by MAP

estimation [6], indicate that one should be cautious when interpreting penalized least squares regression

scheme in terms of priors:
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• If the data follows a priorC · exp(−ϕ(x)) and if we choose the MAP as a criterion for estimating

it, then the resulting denoising scheme takes the form of penalized least squares regression with

penaltyϕ(x). However, this MAP estimator may have poor denoising performance for this type of

data [6].

• In practice, the choice of penalized least squares regression with penaltyϕ(x) is seldomly associated

to the belief that the data follows the priorC · exp(−ϕ(x)). Instead, it rather stems from theneed

for numerical efficiency and theempirical observationthat it achieves good denoising performance

for the considered class of data.

Given an arbitrary penaltyϕ(x), it remains an open problem to understand for which priorspX(x) we

obtain ”good” denoising performance of penalized least squares regression (for example: performance

comparable to the conditional mean).

One can imagine concrete applications of the results presented here for certain priors: in general

the conditional meanψ⋆(y) is a priori expressed as an intractable high-dimensional integral; however,

if the penalty functionϕ⋆(x) admits a simple expression amenable to efficient numerical optimization

(e.g., convex optimization), then the conditional mean canbe computed efficiently. Developping such

approaches requires a more in depth understanding of the properties of penalty functionsϕ⋆(x) obtained

through Theorem II.1. Of particular interest would be the construction of explicit examples whereϕ⋆(x)

is ”simple” while pY involves an intractable integral.

Another interesting perspective is to obtain alternate statistical interpretations of a larger class of

penalized least squares regression estimators (e.g., withnon-smoothϕ(x) such as those leading to sparse

estimates). As remarked above, the lack of smoothness makesit impossible to interpret such estimators

in terms of a conditional mean, however one may seek interpretations that leave the strict Bayesian

framework: for example, one may wish to obtain an interpretation as the optimum of a hybrid Bayesian

cost function

min
ψ

{EC(ψ(X +B),X) +K(ψ)}

where the termK(·) forces the functionψ to be in some function class. Eventually, one may also wish

to extend theses results to ill-posed linear inverse problems of the typey = Ax + b, and to deal with

non-Gaussian noise.
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APPENDIX

A. Proof of the identity(II.1)

If ψ minimizes the expected square loss, then by the orthogonality relation [5], for any function

δ : y 7→ δ(y) we must haveE〈ψ(Y )−X, δ(Y )〉 = 0. Hence we obtain the condition

∀δ, E〈ψ(Y )− Y, δ(Y )〉 = −E〈B, δ(Y )〉.

SinceY = X +B has the pdfpY = pX ⋆ pB, we thus require that for anyδ
∫

pY (y)〈ψ(y) − y, δ(y)〉dy = −E〈B, δ(Y )〉.

Using argument similare to those involved in Stein’s risk estimator [7], [1], the right hand side above

can be rewritten as follows:

−E〈B, δ(X +B)〉 = −EX

∫

pB(b)〈b, δ(X + b)〉db

= +EX

∫

〈∇pB(b), δ(X + b)〉db

=

∫∫

pX(x)

n
∑

i=1

∂
∂bi
pB(b) · δi(x+ b)dxdb

(a)
=

n
∑

i=1

∫∫

pX(x)
∂

∂bi
pB(y − x) · δi(y)dxdy

=

n
∑

i=1

∫

(pX ⋆
∂

∂bi
pB)(y) · δi(y)dy

=

∫ n
∑

i=1

∂

∂bi
(pX ⋆ pB)(y) · δi(y)dy

=

∫

〈∇pY (y), δ(y)〉dy.

In (a) we used the change of variabley = x+ b. We finally obtain the condition: for ally, pY (y)[ψ(y)−

y] = ∇pY (y). It is easy to check thatpY (y) cannot vanish, hence this eventually readsψ(y) − y =

1
pY (y)∇pY (y) = ∇ log pY (y).
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B. Other technical lemmata

We begin by proving thatψ⋆ is always one-to-one.

Lemma A.1. Denoteψ⋆(y) =
(

ψi⋆(y)
)n

i=1
whereψi⋆(·) : R

n → R is scalar valued. Then× n Jacobian

matrix J [ψ⋆](y) :=
[

∂
∂yj
ψi⋆(y)

]

ij
is symmetric positive definite:

〈v, J [ψ⋆](y) · v〉 > 0, ∀y ∈ R
n, v 6= 0.

and satisfies the identity

J [ψ⋆](y) =

[

δij +
∂2

∂yi∂yj
log pY (y)

]

ij

= I+∇2 log pY (y).

Proof: For simplicity, we do the proof in the single variable case (n = 1). The extension to higher

dimension follows the same steps and poses no special difficulty. We indicate the main differences when

needed. Sinceψ⋆(y) := y + p′Y (y)/pY (y) we haveψ′(y) =
(

p2Y (y) + p′′Y (y)pY (y)− [p′Y (y)]
2
)

/p2Y (y).

Sincen = 1, what we need to prove isψ′(y) > 0 for all y, or equivalently

p2Y (y) + p′′Y (y)pY (y)− [p′Y (y)]
2 > 0, ∀y.

SincepY = pX ⋆ pB, p′Y = pX ⋆ p′B , p′′Y = pX ⋆ p′′B andpB(b) ∝ ·e−b
2/2, we have

p′B(b) ∝ e−b
2/2 · (−b),

p′′B(b) ∝ e−b
2/2 · (b2 − 1)

thereforep2Y (y) + p′′Y (y)pY (y)− [p′Y (y)]
2 is proportional to

∫∫

pX(y − b)pX(y − b′) · e−(b2+b′2)/2

·
(

1 + b2−1
2 + b′2−1

2 − bb′
)

dbdb′

=

∫∫

pX(y − b)pX(y − b′)

·e−(b2+b′2)/2 · (b−b′)2

2 dbdb′ ≥ 0 (A.1)

where we used the non-negativity of the integrand4. With the change of variablex = y − b, x′ = y − b′,

we conclude thatψ′(y) ≥ 0 with equality only if the function(x, x′) 7→ pX(x)pX(x
′) is identically zero

on R
2\{(x, x), x ∈ R}. This impliespX(x) = 0 for all x, which is impossible sincepX is a proper pdf.

4For n > 1 the scalar factor(b− b′)2 in (A.1) becomes〈b− b′, v〉2.
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Corollary A.2. The functiony 7→ ψ⋆(y) is one-to-one fromRn to Imψ⋆: for any pair y, y′ ∈ R
n, if

ψ⋆(y) = ψ⋆(y
′) theny = y′. Moreover, it isC∞ and its reciprocal isC∞.

Proof: We let the reader check thatpY cannot vanish and isC∞, henceψ⋆ is C∞. To prove

that ψ⋆ is one-to-one, we proceed by contradiction, assuming thatψ⋆(y) = ψ⋆(y
′) while y′ 6= y. We

define v := (y′ − y)/‖y′ − y‖2 and the functionf : t 7→ f(t) := 〈v, ψ⋆(y + tv)〉 ∈ R. We have

f(0) = f(‖y′ − y‖2), andf is smooth, hence its derivative must vanish for some0 < t < ‖y′ − y‖2.

However by Lemma A.1 the derivative isf ′(t) = 〈v, J [ψ⋆](y+ tv) · v〉 > 0 which yields a contradiction.

RemarkA.3. The computations done in the proof of Lemma A.1 indicate thatfor certain choices of the

prior pX we can ensure thatψ⋆ is not a non-expansive function. We will show it in the single variable

case, and similar examples can be built in higher dimensions. By definition, a functionf : R → R is

non-expansive if|f(y′)− f(y)| ≤ |y′ − y| for all y, y′. If f is differentiable and non-expansive we must

have|f ′(y)| ≤ 1 for all y. We prove below that ifpX is symmetric (∀x, pX(−x) = pX(x)) and if from

someε > 0 we havepX(x) = 0 for |x| ≤ 1 + ε, thenψ′

⋆(0) > (1 + ε)2.

Proof: It can be checked using the computations done in the proof of Lemma A.1 that

ψ′

⋆(0) =

∫∫

pX(−b)pX(−b
′) · e−(b2+b′2)/2 · (b−b′)2

2 dbdb′
∫∫

pX(−b)pX(−b′) · e−(b2+b′2)/2dbdb′
> 0.

SincepX is symmetric, easy manipulations show

ψ′

⋆(0) =

∫∫

pX(b)pX(b
′) · e−(b2+b′2)/2 · b

2+b′2

2 dbdb′
∫∫

pX(b)pX(b′) · e−(b2+b′2)/2dbdb′

=

∫∫

pX(b)pX(b
′) · e−(b2+b′2)/2 · b2dbdb′

∫∫

pX(b)pX(b′) · e−(b2+b′2)/2dbdb′

SincepX(x) = 0 for |x| ≤ 1 + ε we obtainψ′

⋆(0) ≥ (1 + ε)2.

C. Proof of Theorem II.1

The fact thatψ⋆ is one-to-one andC∞ with C∞ reciprocal function was proved in Corollary A.2.

We now wish to check that the proximity operator ofϕ⋆ defined by (II.5) is indeedψ⋆. The definition

of ϕ⋆(x) for x /∈ Imψ⋆ ensures that proxϕ⋆
takes its values in Imψ⋆. We let the reader check that a

consequence of Lemma A.1 is that the set Imψ⋆ is open. The key point will be to check that there is

a unique local minimum ofx 7→ 1
2‖y − x‖22 + ϕ⋆(x), which is exactly atψ⋆(y). This will imply in
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particular that the global minimum proxϕ⋆
(y) is equal toψ⋆(y). Denotingx any local mimimum, andu

such thatψ⋆(u) = x, u must be a local minimum of

1

2
‖y − ψ⋆(u)‖

2
2 + ϕ⋆[ψ⋆(u)] =

1

2
‖ψ⋆(u)− y‖22

−
1

2
‖∇q(u)‖22 − q(u)

(where for the sake of brevity we denotedq(y) = ∇ log pY (y)) hence it must satisfy the stationary point

equation

J [ψ⋆](u) ·
[

ψ⋆(u)− y
]

−∇2q(u) · ∇q(u)−∇q(u) = 0.

Using the relationJ [ψ⋆](u) = 1 +∇2q(u) > 0 (Lemma A.1) this becomes

J [ψ⋆](u) ·
[

ψ⋆(u)− y −∇q(u)
]

= 0

henceψ⋆(u) = y+∇q(u). Sinceψ⋆(u) = u+∇q(u) we conclude thatu = y, and thereforex = ψ⋆(u) =

ψ⋆(y).

To conclude, assume the functionϕ̃ : Rn → R∪{+∞} satisfiesψ⋆ = proxϕ̃. By (II.4) we must have for

all y: ∇ϕ̃[ψ⋆(y)] = −∇ log pY (y) = ∇ϕ⋆[ψ⋆(y)]. In other words, for anyx ∈ Imψ⋆, ∇(ϕ̃−ϕ⋆)(x) = 0.

Sinceψ⋆ is a one-to-one mapping ofRn onto Imψ⋆, the set Imψ⋆ is connected hence there must be a

constantC ∈ R such that for allx ∈ Imψ⋆, ϕ̃(x) = ϕ⋆(x) + C.
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