
HAL Id: hal-00476116
https://hal.science/hal-00476116v1

Preprint submitted on 23 Apr 2010 (v1), last revised 12 Oct 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimism in Reinforcement Learning Based on
Kullback-Leibler Divergence

Sarah Filippi, Olivier Cappé, Aurélien Garivier

To cite this version:
Sarah Filippi, Olivier Cappé, Aurélien Garivier. Optimism in Reinforcement Learning Based on
Kullback-Leibler Divergence. 2010. �hal-00476116v1�

https://hal.science/hal-00476116v1
https://hal.archives-ouvertes.fr
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46 rue Barrault, 75013 Paris, France
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Abstract. We consider model-based reinforcement learning in finite
Markov Decision Processes (MDPs), focussing on so-called optimistic
strategies. Optimism is usually implemented by carrying out extended
value iterations, under a constraint of consistency with the estimated
model transition probabilities. In this paper, we strongly argue in favor
of using the Kullback-Leibler (KL) divergence for this purpose. By study-
ing the linear maximization problem under KL constraints, we provide
an efficient algorithm for solving KL-optimistic extended value iteration.
When implemented within the structure of UCRL2, the near-optimal
method introduced by [2], this algorithm also achieves bounded regrets
in the undiscounted case. We however provide some geometric arguments
as well as a concrete illustration on a simulated example to explain the
observed improved practical behavior, particularly when the MDP has
reduced connectivity. To analyze this new algorithm, termed KL-UCRL,
we also rely on recent deviation bounds for the KL divergence which
compare favorably with the L1 deviation bounds used in previous works.

Key words: Reinforcement learning; Markov decision processes; Model-
based approaches; Optimistim; Kullback-Leibler divergence; Regret bounds

1 Introduction

In reinforcement learning, an agent interacts with an unknown environment aim-
ing to maximize its long-term payoff [15]. This interaction is commonly modelled
by a Markov Decision Process (MDP) and it is assumed that the agent does not
know the parameters of this process but has to learn how to act directly from
experience. The agent thus faces a fundamental trade-off between gathering ex-
perimental data about the consequences of the actions (exploration) and acting
consistently with past experience to maximize rewards (exploitation).

We consider in this article a MDP with finite state and action spaces for
which we propose a model-based reinforcement learning algorithm, i.e., an algo-
rithm that is based on a running estimate of the model parameters (transitions
probabilities and expected rewards)[6,8,11,16]. A well-known approach to bal-
ance exploration and exploitation in model-based algorithms is the so-called
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optimism in the face of uncertainty principle, first proposed in the multi-armed
bandit context by [12]: instead of acting optimally according to the estimated
model, the agent follows the optimal policy for a model, named optimistic model,
which is close enough to the latter to make the observations sufficiently likely,
but which leads to a higher long-term reward. The performance of such an algo-
rithm can be analysed in term of regret which consists in comparing the rewards
collected by the algorithm with the rewards obtained always following an opti-
mal policy. The study of the asymptotic regret due to [12] in the multi-armed
context has been extended to MDPs by [7], proving that an optimistic algo-
rithm can obtain logarithmic regret. The subsequent works of [3,2,4] introduced
algorithms that guarantee non-asymptotic logarithmic regret, in a large class of
MDPs –see further discussion of relevant assumptions below. In these works, the
optimistic model is computed using the L1 (or total variation) norm as a measure
of proximity between the estimated and optimistic transition probabilities.

In addition to the efficiency guarantees, the authors of [2] underline that the
optimistic modifications of the estimates used in their algorithm (called UCRL2)
has a simple interpretation. Indeed, the computing of the optimistic MDP from
the estimated transition probabilities consists, for each state, in adding a bonus
to the more promising transition (i.e. the transition that leads to a state with
highest value), and in removing this probability to the less promising ones. These
operations can be done very efficiently and the computational complexity of the
resulting procedure is remarkably low. Besides, such interpretability properties
are important in applications, as the explorational aspect of the policy is explicit
and as the agent’s decisions are founded in interpretable hopes.

Such behaviour has however some undesirable side-effects. First, due to the
non-smoothness of the L1-neighboorhoods, the optimistic model is not continu-
ous with respect to the estimated parameters – small changes in the estimates
may result in very different optimistic models. More importantly, the optimistic
model may give a zero probability to a transition that has actually been ob-
served, which makes it hardly compatible with the optimism principle. Besides,
the optimistic model always includes non-zero transitions from all states to the
most promizing one, even if much evidence has been accumulated against the
existence of such a transition, and even if the most promizing state is expected
to be hardly better than others. This appears to be unsatisfactory in practice,
in particular when the ground-truth MDP has reduced connectivity, (i.e. when
each individual state may only lead to a limited set of successor states).

Based on these observations, we describe a novel algorithm, termed KL-
UCRL, that overcomes with those shortcomings while capitalizing on the struc-
ture of UCRL2 to ensure a logarithmic regret bound. To do so, we propose to
re-introduce the use of the Kullback-Leibler (KL) pseudo-distance rather than
L1 metric, as in [7]. We will show that the resulting algorithm has the following
properties:

– the KL-optimistic model, which is continuous with respect to the expected
reward function, always gives strictly positive probability mass to observed
transitions;



Optimism in RL based on KL 3

– for every unobserved transition from a state x to a state y, a trade-off between
the relative attractivity of y and the statistical evidence accumulated in x is
computed to decided whether it should have positive probability or not in
the optimistic model;

– it is based on novel concentration inequalities for the KL-divergence which
compares favorably with the L1-norm bounds used in the aforementioned
works, as the KL-divergence is the pseudo-metric on the simplex induced by
the theory of large deviation;

– the linear maximization problem under KL constraints can be done very effi-
ciently, using an algorithm based on one-dimensional line searches described
below;

– the analysis of [2,4] can be easily adapted: similar non-asymptotic regret
bounds under weak hypotheses can be derived, knowledge about the MDP’s
underlying state structure is not required;

– simulations show a significative improvement in practice.

The paper is organized as follows. The model and a brief survey of needed
results on MDPs are presented in Section 2. Section 3 is devoted to the descrip-
tion of the KL-UCRL algorithm together with an explicit method to compute
the maximization over a KL-ball. Section 4 contains the regret bounds of the
KL-UCRL algorithm, with corresponding proofs in the Appendix. Section 5 pro-
vides some results from simulations on a classic benchmark example (the river
swim environment of [14]). In Section 6, the advantages of using a KL- rather
that L1-confidence balls are illustrated and discussed.

2 Markov Decision Process

Consider a Markov decision process (MDP) M = (X ,A, P, r) with finite state
space X , and action space A. Let Xt ∈ X and At ∈ A denote respectively
the state of the system and the action chosen by the agent at time t. Once
the action is executed, the sytem transits from state Xt to state Xt+1 with
probability P (Xt+1;Xt, At). At the same time, the agent receives a random
reward Rt ∈ [0, 1] with mean r(Xt, At). The aim of the agent is to choose the
sequence of actions so as to maximize the cumulated reward. To select an action,
the agent follows a stationary policy π : X → A.

In this paper, we consider weakly communicating MDPs, i.e., MDPs satisfying
the weak accesssibility conditions [5]: the set of states can be partitioned into two
subsets Xt and Xc such that all states in Xt are transient under every stationary
policy and, for any states x, x′ ∈ Xc, there exists a policy πx,x′ that takes one
from x to x′. For those MDPs, it is known that the average reward following a
stationary policy π, denoted by ρπ(M) and defined as

ρπ(M) = lim
n→∞

1

n
E

[

n
∑

t=0

Rt

∣

∣

∣

∣

∣

π,M

]

,
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is state independent [13]. Let π∗(M) : X → A and ρ∗(M) denote respectively
the optimal policy and the optimal average reward:

ρ∗(M) = sup
π

ρπ(M) = ρπ
∗(M)(M) .

The notation ρ∗(M) and π∗(M) are meant to highlight the fact that both the
optimal average reward and the optimal policy depends on the model M. The
optimal average reward satisfies the so-called optimality equation

∀x ∈ X , h∗(M, x) + ρ∗(M) = max
a∈A

(

r(x, a) +
∑

x′∈X

P (x′;x, a)h∗(M, x′)

)

.

where the |X |-dimensional vector h∗(M) is called a bias vector. Note that an
infinity of bias vector satisfies this equation: if h∗ is a bias vector then, for any
constant c, h∗ + c e is also a bias vector where e is the all 1’s vector. For a
fixed MDP M, the optimal policy π∗(M) can be specified solving the optimality
equation and defining, for all x ∈ X ,

π∗(M, x) ∈ argmax
a∈A

(

r(x, a) +
∑

x′∈X

P (x′;x, a)h∗(M, x)

)

.

In practice, the optimal average reward and the optimal policy may be computed
using the value iteration algorithm [13].

3 The KL-UCRL algorithm

In this paper, we focus on the reinforcement learning problem in which the
agent does not know the model M beforehand, i.e. the transition probabilities
and the distribution of the rewards are unknown. More specifically, we consider a
model-based reinforcement learning method which consists in learning the model
throughout the experiment and acting according to it. Denote by P̂t(x

′;x, a)
the estimate at time t of the transition probability from state x to state x′

conditionnally to the action a and by r̂t(x, a) the mean reward received in state
x when action a has been choosen. We have :

P̂t(x
′;x, a) =

Nt(x, a, x
′)

max(Nt(x, a), 1)
and r̂t(x, a) =

∑t−1
k=1 Rk1{Xk=x,Ak=a}

max(Nt(x, a), 1)
,

(1)

where Nt(x, a, x
′) =

∑t−1
k=0 1{Xk=x,Ak=a,Xk+1=x′} is the number of visits, up to

time t, to the state x followed by a visit to x′ if the action a has been choosed, and
similarly,Nt(x, a) =

∑t−1
k=0 1{Xk=x,Ak=a}. The optimal policy associated with the

estimated model M̂t = (X ,A, P̂t, r̂t) may be misleading due to estimation errors:
pure exploitation policies are commonly known to fail with positive probability.
To avoid this problem, optimistic model-based approaches consist in computing
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a set Mt of potential MDPs including M̂t and choosing the MDP in this set
leading to the largest average reward. The set Mt is defined as follows:

Mt = {M = (X ,A, P, r) , ∀x ∈ X , ∀a ∈ A, |rt(x, a)− r(x, a)| ≤ CR

and d(P̂t(.;x, a), P (.;x, a)) ≤ CP } ,

where CP and CR are fixed constant and d measures the difference between the
transition probabilities.

In contrast to UCRL2, which uses the L1-distance, we propose to rely on the
Kullback-Leibler divergence as the seminal article [7]. Contrary to the approach
of [7], no prior knowledge on the state structure of the MDP is needed. Recall
that the Kullback-Leibler divergence is defined for all n-dimensional probability
vectors p and q by KL(p, q) =

∑n
i=1 pi log

pi

qi
(with the convention that 0 log 0 =

0). In Section 6, the advantages of using a KL-divergence instead of the L1-norm
are illustrated and argumented.

3.1 The KL-UCRL algorithm

The KL-UCRL, described below, is a variant of the efficient model-based al-
gorithm UCRL2, introduced by [2] and extended to more general MDPs by [4].
The structure of KL-UCRL, which is common to UCRL2, reflects the “optimism
under uncertainty” principle and is given below for self-containment. The key
step of the algorithm is the seek of the optimistic model on line 12. It is detailed
below and relies on Procedure 2. The KL-UCRL algorithm proceeds in episodes.

Algorithm 1 KL-UCRL

1: Initialization: let j = 0 and ∀a ∈ A,∀x ∈ X , nj(x, a) = 0, a random policy π0.
2: for all t ≥ 1 do

3: Observe Xt.
4: if nj(Xt, πj(Xt)) < max(Nt(Xt, πj(Xt)), 1) then
5: Continue the same policy:

6: Choose action At = πj(Xt) and receive reward Rt.
7: Update the count: nj(Xt, At) = nj(Xt, At) + 1.
8: else

9: Begin a new episode: j = j + 1
10: Reinitialize: ∀a ∈ A,∀x ∈ X , nj(x, a) = 0
11: Estimate the model M̂t = (X ,A, P̂t, r̂t) according to (1).
12: Find the optimistic model Mj ∈ Mt and the related policy πj .
13: Choose action At = πj(Xt) and receive reward Rt.
14: Update the count: nj(Xt, At) = nj(Xt, At) + 1.
15: end if

16: end for

Let tj be the starting time of episode j; the length of the j-th episode depends on
the number of visits Ntj (x, a) to the state-action pair (x, a) before tj compared
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to the number of visits nj(x, a) to the same pair during the j-th episode. More
precisely, an episode lasts as soon as nj(x, a) < Ntj (x, a) for a state-action pair
(x, a). The policy πj , followed during the j-th episode, is a near optimal policy
related to the optimistic MDP Mj = (X ,A, Pj , rj) ∈ Mtj :

∀x ∈ X , πj(x) ∈ argmax
a∈A

(

rj(x, a) +
∑

x′∈X

Pj(x
′;x, a)h∗(Mj , x

′)

)

,

where h∗ is a bias vector satisfying the extended optimality equations :

∀x ∈ X , h∗(x) + ρ∗ = max
P,r

max
a∈A

(

r(x, a) +
∑

x′∈X

P (x′;x, a)h∗(x′)

)

(2)

such that ∀x ∈ X , ∀a ∈ A,KL(P̂tj (.;x, a), P (.;x, a)) ≤ CP (x, a, tj)

∀x ∈ X , ∀a ∈ A, |rtj (x, a), r(x, a))| ≤ CR(x, a, tj) .

Denote by Pj and rj respectively the transition probability and the mean reward
that maximizes those equations. Remark that the diameter CP (resp. CR) of the
neighborhood around the estimated transition probability Ptj (.;x, a) (resp. the
mean reward r̂tj (x, a)) depends on the state action pair (x, a) and on tj . The
extended value iteration algorithm may be used to approximately solve the fixed
point equation (2) [13,2].

3.2 Maximization of a linear function on a KL-ball

At each step of the extended value iteration algorithm, the maximization prob-
lem (2) has to be solved. Remark that, for every action a, the maximization in
r(x, a) is obviously solved taking r(x, a) = r̂tj (x, a) + CR(x, a, tj), so that the
main difficulty lies in maximizing the dot product between the probability vector
q = P (.;x, a) and the bias vector also called value vector V = h∗ over a KL-ball
around the fixed probability vector p = P̂tj (.;x, a):

max
q∈S|X|

V ′q s.t. KL(p, q) ≤ ǫ , (3)

where the constant 0 < ǫ < 1 controls the size of the confidence ball1 and S
n

denotes the set of n-dimensional probability vectors. This maximization of a
linear function under convex constraints is solved explicitely in Appendix A; the
resulting algorithm is shown in 2. It relies on the function f (depending on the
parameter V ) defined for all ν ≥ maxi∈Z̄ Vi, where Z̄ = {i, pi > 0}, by

f(ν) =
∑

i∈Z̄

pi log(ν − Vi) + log





∑

i∈Z̄

pi
ν − Vi



 . (4)

1 The prime is used to denote transposition.
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If the estimated transition to a state with a potentially highest value Vi∗

is equal to 0, there is a dilemma between two possibilities: first, one may im-
prove the dot product by giving a little probability to that transition; second,
by conceding that this transition is unlikely one may rather choose to add prob-
ability to other transitions. The dilemma’s solution involves both Vi∗ , the other
components of V and the exploration bonus: namely, f(Vi∗) is compared to the
diameter of the neighborhood ǫ, and as a result a decision is taken to abandon
this transition or not.

Algorithm 2 Function MaxKL

Require: A value function V , a probability vector p, a constant ǫ
Ensure: A probability vector q that maximizes (3)
1: Let Z = {i, pi = 0} and Z̄ = {i, pi > 0}. Let I∗ = Z ∩ argmaxi Vi

2: if f(Vi) < ǫ for i ∈ I∗ then

3: Let ν = Vj and r = 1− exp(f(ν)− ǫ).
4: For all i ∈ I∗, assign values of qi such that

∑
i∈I∗

qi = r.
5: For all i ∈ Z/I∗, let qi = 0.
6: else

7: For all i ∈ Z, let qi = 0. Let r = 0.
8: Find ν solution of the equation f(ν) = ǫ using Newton’s method.
9: end if

10: For all i ∈ Z̄, let qi =
q̃i

r+
∑

i∈Z̄ q̃i
where q̃i =

pi
ν−Vi

.

In practice, f being a convex positive decreasing function (see Appendix B),
Newton’s method can be applied to find ν such that f(ν) = ǫ (step 10 of the
algorithm), so that numerically solving (3) can be done very efficiently. Indeed,
only a few steps of the Newton’s algorithm are needed to solve the maximization.
Appendix B contains a discussion on the initialization of Newton’s algorithm
using asymptotic arguments.

4 Regret bounds

To analyse the performance of the KL-UCRL algorithm, we compare the rewards
collected following the algorithm with the rewards obtained always following an
optimal policy. The so called regret of an algorithm after T steps is defined as :

RegretT =

T
∑

t=1

ρ∗(M)−Rt .

We propose to adapt the regret bound analysis for the UCRL2 algorithm
to the use of KL-neighborhoods and obtain similar theorems. Let D(M) =
maxx,x′ minπ E(τ

M,π(x, x′)) , where τM,π(x, x′) is the first random time step
in which state x′ is reached when policy π is followed on MDP M with initial
state x. This constant will appear in the regret bounds. For all communicating
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MDPs M, D(M) is finite. Theorem 1 establishes an upper bound on the regret
following the KL-UCRL algorithm with

CP (x, a, t, δ, T ) =
|X |
(

B + log(B + 1/ log(T )) + log(B+1/ log(T ))
B + 1/ log(T )

)

max(Ntk(x, a), 1)

where B = log
(

2e|X |2|A| log(T )
δ

)

and

CR(x, a, t, δ, T ) =

√

√

√

√

log
(

4|X ||A| log(T )
δ

)

1.99max(Nt(x, a), 1)
.

Theorem 1. With probability 1− δ, it holds that for a large enough T > 1, the
regret of KL-UCRL is bounded by

RegretT ≤ CD|X |
√

|A|T log(log(T )/δ) .

for a contant C independent of the model.

It is also possible to prove a logarithmic upper bound of the expected regret.
This bound, presented in Theorem 2, depends on the model through another
constant ∆(M) defined as follows

∆(M) = ρ∗(M)− max
π,ρπ(M)<ρ∗(M)

ρπ(M) .

Theorem 2. For a large enough horizon T > 1, the expected regret of KL-UCRL
is bounded by

E(RegretT ) ≤ CD2 |X |2|A| log(T )
∆(M)

.

for a contant C independent of the model.

The proof of Theorem 1 is analogous to the one in [2] or in [4]. Due to the
lack of space, we do not describe it in details but focus on the steps of the proof
that differ from Theorem 2 in [1]. First, the following proposition enables to
ensure that, with high probability, the true model belongs to the set of models
Mt at each time step.

Proposition 1. For T large enough and δ > 0, P (∀t ≤ T , M ∈ Mt) ≥ 1−2δ .

Proof (of Proposition 1). The proof relies on the two following concentration
inequalities due to Garivier and Leonardi [10] and Garivier and Moulines [9]: for
all x ∈ X , a ∈ A, and any ǫP > 0, and ǫR > 0, we have

P

(

∀t ≤ T, KL(P̂t(.;x, a), P (.;x, a)) >
ǫP

Nt(x, a)

)

≤ 2e(ǫP log(T ) + |X |)e−
ǫP
|X|

(5)
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P

(

∀t ≤ T, |r̂t(x, a)− r(x, a)| ≤ ǫR
√

Nt(x, a)

)

≤ 4 log(T )e−1.99ǫR .

Then, taking ǫP = Nt(x, a)CP (x, a, t, δ, T ) and ǫR =
√

Nt(x, a)CR(x, a, t, δ, T )
and summing over all state-action pairs, we have the result of the Proposition.

To upper-bound the regret, the geometry of the neigborhood around the esti-
mated transition probabilities only plays a role to bound the term

m(T )
∑

k=1

∑

x,x′∈X

nk(x, πk(x))(Pk(x
′;x, πk(x)) − Pk(x

′;x, πk(x)))hk(x
′)

where Pk and πk denote respectively the transition probability of the optimistic
model and the optimal policy in the k-th episode and m(T ) is the number of
episodes until time T . Using the Cauchy-Schwartz and Pinsker’s inequalities, it
is easy to show that it is upper-bounded by

D

m(T )
∑

k=1

∑

x,x′∈X

nk(x, πk(x))‖Pk(x
′;x, πk(x))− Pk(x

′;x, πk(x))‖1

≤ 2D

m(T )
∑

k=1

∑

x

nk(x, πk(x))

√

2 KL(P̂tk(.;x, πk(x));P (.;x, πk(x)))

≤ 2D
√
2

m(T )
∑

k=1

∑

x

nk(x, πk(x))
√

CP (x, πk(x), tk, δ, T ) .

For T large enough, this term dominating the remaining terms in the upper-
bound of the regret, there exists a constant C such that

RegretT ≤ CD log(|X |) log(log(T )/δ)
m(T )
∑

k=1

∑

x

nk(x, πk(x))
√

Ntk(x, πk(x))
.

And Theorem 1 follows using the fact that
∑m(T )

k=1

∑

x
nk(x,πk(x))√
Ntk

(x,πk(x))
≤
√

|X ||A|T
(see Appendix B.1 of [2]). The proof of the Theorem 2 follows from Theorem 1
using the same arguments as in the proof of Theorem 4 in [2].

5 Simulations

To illustrate the behaviour of the algorithm compared to the UCRL2 algorithm
of [2], we consider the benchmark RiverSwim environment proposed by [14]. It
consists of six states. The agent, starting from one of the states near the left
side of the row, can either swim left or right. Swimming to the right, against the
current of the river, will either leaves the agent in the same state (with a high
probability equal to 0.6), transitions the agent to the right (with probability
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0.35) or transitions it to the left (see Figure 1). Swimming to the left, with the
current, always succeeds. The agent receives a small reward of five units when
it reaches the leftmost state and a much larger reward, of ten thousand units,
for swimming upstream and reaching the rightmost state. This MDP requires an
efficient exploration since starting near the left side, the agent has to reach the
right side of the row to learn that it is the states related to the highest reward.

3 4 5 621

0.6
0.35

0.6 0.6 0.6
0.35 0.35 0.35

0.050.050.05 0.05
0.6

0.4

0.6

0.4

1111

1

1

R=10000

R=5

Fig. 1. RiverSwim Transition Model: the continuous line (resp. dotted) arrows
represent the transitions if action 1 (resp. 2) has been chosen.

We compare the performance of the KL-UCRL algorithm to the UCRL2
algorithm applying them on 20 Monte-Carlo replications. For both algorithms,
the constants CP and CR are settled to ensure that the upper bounds of the
regret of Theorem 1 and Theorem 2 in [1] hold with probability 0.95. We observe
in Figure 2 that the KL-UCRL algorithm accomplishes a smaller average regret
than the UCRL algorithm. Indeed, in this environment, it is crucial for the agent
to quickly learn that there is no possible transition between one of the first four
states and the state 6 with the highest reward.

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5
x 10

7

t

R
eg

re
t

 

 

KLUCRL
UCRL

Fig. 2. Comparison of the regret of the UCRL2 and KL-UCRL algorithms on
the RiverSwim Environment.
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6 Discussion

In this section, we expose the advantages of using a confidence ball based on the
Kullback-Leibler divergence around the estimated transition probabilities rather
than an L1-ball as proposed in [2,16] in the computation of the optimistic policy
(see equation (2)). In this paper, we propose to maximize the linear function V ′q
over a KL-ball (see (3)) whereas [2,16] use a L1-ball:

max
q∈S|X|

V ′q s.t. ‖p− q‖1 ≤ ǫ′ . (6)

The function V ′q being linear in q ∈ S
|X|, the probability that maximizes

equations (3) and (6) lies respectively in the border of the smooth convex
shape {q ∈ S

|X|,KL(p, q) ≤ ǫ} and in one of the verteces of the polytope
{q ∈ S

|X|, ‖p− q‖1 ≤ ǫ′}. A first noteworthy difference between those neighbor-
hoods is that, due to the smoothness of the KL-neighborhood, the maximizer
over the KL-ball is continuous with respect to the vector V which is not true
for the maximization over a L1-ball. The L1 and KL-balls around 3-dimensional
probability vectors are displayed in Figure 3. The set of 3-dimensional probabil-
ity vectors is represented by a triangle whose verteces are the vectors (1, 0, 0)′,
(0, 1, 0)′ and (0, 0, 1)′, the probability vector p by a white star and the q vector
that maximizes respectively equation (6) and (3) by a white point; the arrow
describes the gradient of the value vector V . We observe that the points maxi-
mizing equation (6) can vary significantly for small changes of the value function
which does not happen when maximizing over a KL-ball. This difference is spe-
cially significant when, as the case in the optimistic algorithms, the vector V is
not a priori known but computed from estimated transition probabilities.

Consider an estimated transition probability vector p and denote by q the
probability vector which maximizes (6). Let im = argminj Vj and iM = argmaxj Vj .
As underlined by [2], qim = max(pim − ǫ′/2, 0) and qiM = min(piM + ǫ′/2, 1).
This has two consequences:

1. if p is such that 0 < pim < ǫ′/2, then the vector qim = 0; so the optimistic
model may give a zero probability to a transition that has actually been
observed, which makes it hardly compatible with the optimism principle:
indeed, we could hope that an optimistic MDP does not prevent transitions
that really exists even if they lead to states with small values;

2. if p such that piM = 0, then q(iM ) is never equal to 0; therefore, an optimistic
algorithm that uses a maximization over a L1-ball to compute the optimistic
policy may overestimate the value of some states x assuming that it may
transit with a positive probability to the state x′ with the largest value even
if this transition is impossible under the true MDP.

In contrast, the KL-optimistic solution always puts strictly positive probability
masses on observed transitions and eventually puts a zero probability mass on
an unobserved transition, even if the corresponding target state has a potentially
large reward. This can be observed in the Procedure 2 to compute the solution
of the maximization described in (3):
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Fig. 3. The L1-neighborhood {q ∈ S
3, ‖p− q‖1 ≤ 0.2} (left) and KL-

neighborhood {q ∈ S
3,KL(p, q) ≤ 0.02} (right) around the probability vector

p = (0.15, 0.2, 0.65)′ (white star). The white point is the maximizer of equa-
tions (3) and (6) with V = (0, 0.05, 1)′ (up) and V = (0,−0.05, 1)′ (down).
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1. for all i such that p(i) 6= 0, q(i) 6= 0.

2. for all i such that p(i) = 0, q(i) = 0 except if p(iM ) = 0 and f(ViM ) < ǫ in
which case q(iM ) = 1− exp(f(ViM )− ǫ). Remark that, as soon as ǫ is small
enough, this exception can not be anymore satisfied.

We illustrate those two important differences in Figure 4 representing the L1 and
KL neighborhoods, together with the maximizer of (6) and (3) if respectively
p(im) is very small but not equal to 0 or p(iM ) is equal to 0. Figure 5 also

Fig. 4. The L1 (left) and KL-neighborhoods (right) around the probability vec-
tor p = (0, 0.4, 0.6)′ (up) and p = (0.05, 0.35, 0.6)′ (down). The white point
is the maximizer of the equations (3) and (6) with V = (−1,−2,−5)′ (up) and
V = (−1, 0.05, 0)′ (down). We took, ǫ = 0.05 (up), ǫ = 0.02(down) and ǫ′ =

√
2ǫ.

illustrates this behaviour representing the evolution of the probability vector q
that maximizes both (6) and (3) for an example with p = (0.3, 0.7, 0)′, V =
(1, 2, 3)′ and ǫ decreasing from 1/2 to 1/200.
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Fig. 5. Evolution of the probability vector q that maximizes both (3) (left) and
(6) (right) with p = (0.3, 0.7, 0)′, V = (1, 2, 3)′ and ǫ′ decreasing from 1/2 to
1/200

A Maximization of a linear function on a KL-ball

In this section, we expose how to solve the maximization defined in (3). The
Lagrangian function for this maximization is

L(q, λ, ν, µ1, . . . , µN) =

N
∑

i=1

qiVi−λ

(

N
∑

i=1

pi log
pi
qi

− ǫ

)

−ν

(

N
∑

i=1

qi − 1

)

+

N
∑

i=1

µiqi .

Therefore, if q is a maximum, there exists λ ∈ R, ν, µi ∈ [0,∞[, i = 1 . . .N , such
that all the following conditions are satisfied:



























































Vi + λ
pi
qi

− ν + µi = 0 ∀i : pi > 0 (7)

Vi − ν + µi = 0 ∀i : pi = 0 (8)

λ

(

N
∑

i=1

pi log
pi
qi

− ǫ

)

= 0 (9)

ν

(

N
∑

i=1

qi − 1

)

= 0 (10)

µiqi = 0 (11)

Let Z = {i, pi = 0}. We can easily show that λ 6= 0 and ν 6= 0; otherwise some
of the conditions (7) to (11) are not satisfied. For i ∈ Z̄, equation (7) implies
that qi = λ pi

ν−µi−Vi
. Since λ 6= 0, qi > 0 and then, according to (11), µi = 0.

Therefore,

∀i ∈ Z̄ , qi = λ
pi

ν − Vi
. (12)
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Let r =
∑

i∈Z qi. Summing on i ∈ Z̄ and using equations (12) and (10), we have

λ
∑

i∈Z̄

pi
ν − Vi

=
∑

i∈Z̄

qi = 1− r . (13)

Using (12) and (13), we can write
∑

i∈Z̄ pi log
pi

qi
= f(ν)− log(1− r) where f is

defined in (4). Then, q satisfies confition (9) if and only if

f(ν) = ǫ+ log(1− r) . (14)

Study now the case where i ∈ Z. Let I∗ = Z ∩ argmaxi Vi. Note that, for all
i ∈ Z/{I∗}, qi = 0. Indeed, otherwise, µi should be nul and then ν = Vi according
to (8) which involves a possible negative denominator in (12). According to (11),
for all i ∈ I∗, either qi = 0 or µi = 0. The second case implies that ν = Vi and
r > 0 which requires that f(ν) < ǫ so that (14) can be checked with r > 0.
Therefore,

– if f(Vi) < ǫ for i ∈ I∗, then ν = Vi and the constant r can be computed
solving equation f(ν) = ǫ − log(1 − r); the values of qi for i ∈ I∗ may be
chosen in any way such that

∑

i∈I∗ qi = r;
– if for all i ∈ I∗ f(Vi) ≥ ǫ, then r = 0, qi = 0 for all i ∈ Z and ν is the

solution of the equation f(ν) = ǫ.

Once ν and r have been determined, the other components of q can be computed,
according to (12): we have that for i ∈ Z̄, qi =

q̃i
r+

∑
i∈Z̄ q̃i

where q̃i =
pi

ν−Vi
.

B Behaviour of the f function

In this section, we study the function f defined in 4 which plays an important role
in the procedure to maximize a linear function over a KL-ball (see Section 3.2)..

Proposition 2. f is a convex positive decreasing function from ] maxi∈Z̄ Vi;∞[
to ]0;∞[.

Proof (of Theorem 2). Applying Jensen’s inequality to the function x 7→ log(x),
we have that the function f is positive. The first derivative of f with respect to
ν is equal to

f ′(ν) =

(

∑

i
pi

ν−Vi

)2

−∑i
pi

(ν−Vi)2
∑

i
pi

ν−Vi

.

Applying the Jensen’s equality, we easily show that f is strictly decreasing. In
addition, the second derivative of f with respect to ν satisfies

f ′′(ν) = −
∑

i

pi
(ν − Vi)2

+
2
∑

i
pi

(ν−Vi)3

∑

i
pi

ν−Vi
−
(

∑

i
pi

(ν−Vi)2

)2

(

∑

i
pi

ν−Vi

)2 .
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Let Z be the positive random value such that P

(

Z = 1
ν−Vi

)

= pi. The second

derivative of f can then be written as follows:

f ′′(ν) =
2E(Z3)E(Z)− E(Z2)E(Z)2 − E(Z2)2

E(Z)2
.

Using Cauchy-Schwartz inequality, we have E(Z2)2 = E(Z3/2Z1/2)2 ≤ E(Z3)E(Z).
In addition E(Z2)2 = E(Z2)E(Z2) ≥ E(Z2)E(Z)2 . These two inequalities show
that f ′′(ν) ≥ 0. We conclude that f is a convex function.

As mentioned in Section 3.2, teh Newton’s method can be applied to solve
the equation f(ν) = ǫ for a fixed value of ǫ. When ǫ is close to 0, the solution
of this eqaution is quite large and an appropriate initialization of Newton’s
algorithm enables to accelerate his convergence to the solution. According to the

following proposition, for ν large enough, f(
√

σp,V

2ǫ ) ∼ ǫ where σp,V =
∑

i piV
2
i −

(
∑

i piVi)
2. So, we propose to intialize the algorithm taking ν0 =

√

σp,V

2ǫ .

Proposition 3. For ν near ∞, we have f(ν) ∼ σp,V

2ν2 where σp,V =
∑

i piV
2
i −

(
∑

i piVi)
2.

Proof (Proof of Theorem 3). Remark that the function f defined in (4) can be
written as follows:

f(ν) =
∑

i

pi log



(ν − Vi)
∑

j

pj
ν − Vj



 . (15)

For ν near ∞, using a second-order Taylor’s-series approximation, we have, for

all j,
pj

ν−Vj
=

pj

ν

(

1 +
Vj

ν +
V 2
j

ν2 + o( 1
ν2 )
)

. Then, including this result in equation

(15), for ν near ∞, we have

f(ν) =
∑

i

pi log

(

1− Vi − pV

ν
+

pV 2 − VipV

ν2
+ o(

1

ν2
)

)

,

where we used the notation pV
def
=
∑

i piVi and pV 2 def
=
∑

i piV
2
i . Using the

Taylor serie of the logarithm function, we have, for ν near ∞,

f(ν) =
pV 2 − (pV )2

ν2
− 1

2ν2
(pV 2 − (pV )2) + o(

1

ν2
) =

1

2ν2
Varp(V ) + o(

1

ν2
) .
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