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Abstract: A coloring c of a graphG = (V,E) is a b-coloring if in every color class there is a vertex coloredi
whose neighborhood intersects every other color classes. The b-chromatic numberof G, denotedχb(G), is the
greatest integerk such thatG admits ab-coloring withk colors. A graphG is tight if it has exactlym(G) vertices
of degreem(G)−1, wherem(G) is the largest integermsuch thatG has at leastmvertices of degree at leastm−1.
Determining theb-chromatic number of a tight graphG is NP-hard even for a connected bipartite graph [9]. In
this paper we show that it is also NP-hard for a tight chordal graph. We also show that theb-chromatic number
of a split graph can be computed is polynomial. Then we define theb-closure and the partialb-closure of a tight
graph, and use these concepts to give a characterization of tight graphs whoseb-chromatic number is equal to
m(G). This characterization is used to develop polynomial time algorithms for deciding whetherχb(G) = m(G),
for tight graphs that are complement of bipartite graphs,P4-sparse and block graphs. We generalize the concept
of pivoted tree introduced by Irving and Manlove [6] and showits relation with theb-chromatic number of tight
graphs. Finally, we give an alternative formulation of the Erdös-Faber-Lovász conjecture in terms ofb-colorings
of tight graphs.

Key-words: graph coloring,b-coloring, precoloring extension, tight graphs

† Projet Mascotte, I3S (CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France.
fhavet@sophia.inria.fr. Partly supported by ANR Blanc AGAPE.

‡ Dept. of Computer Science, Federal University of Ceará, Fortaleza, CE, Brazil.linhares@lia.ufc.br
§ Projet Mascotte, I3S (CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France.

Leonardo.Sampaio Rocha@sophia.inria.fr. Partly supported by ANR Blanc AGAPE. Partly supported by CAPES - The Capes Foun-
dation, Ministry of Education of Brazil. Cx. postal 250, Brası́lia DF 70.040-020, Brazil.

∗ Research supported by the INRIA Equipe Associée EWIN.



b-coloration des grapheśetriqués

Résuḿe : Unek-colorationc d’un grapheG est uneb-colorationsi dans toute classe de couleur, il y a un sommet
dont le voisinage intersecte toutes les autres classes de couleurs. Thenombre b-chromatiqued’un graphe est le
plus grand entierk tel queG admette uneb-coloration aveck couleurs. Un graphe estétriqué s’il a exactement
m(G) sommet de degrém(G)−1, avecm(G) le plus grand entierm tel queG ait au moinsmsommets de degré au
moinsm−1. Calculer le nombreb-chromatique d’un graphe étriqué est NP-dur même pour les graphes connexes
bipartis [9]. Dans ce rapport, nous montrons que c’est également NP-difficile pour les graphes étriqués cordaux.
Nous montrons également que le nombreb-chromatique d’un graphe split peut être calculé en tempspolynomial.
Ensuite nous définissons lab-clôture et lab-clôture partielle d’un graphe étriqué. Nous utilisonsces deux concepts
pour concevoir des algorithmes en temps polynomial pour décider siχb(G) = m(G) pour les graphes étriqués qui
sont bipartis,P4-sparse ou des block-graphes. Nous généralisons également le concept d’arbre pivoté de Irving and
Manlove [6] et montrons sa relation avec le nombreb-chromatique des graphes étriqués. Enfin, nous donnons une
formulation alternative de la conjecture d’Erdös-Faber-Lovász en termes deb-coloration des graphes étriqués.

Mots-clés : coloration de graphe,b-coloration, extension de précoloration, graphes étriqués
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1 Introduction

A k-coloringof a graphG = (V,E) is a functionc : V → {1, 2, ..., k}, such thatc(u) 6= c(v) for all uv∈ E(G).
Thecolor class ci is the subset of vertices ofG that are assigned to colori. Thechromatic numberof G, denoted
χ(G), is the least integerk such thatG admits ak-coloring. Given ak-coloringc, a vertexv is ab-vertexof color
i, if c(v) = i andv has at least one neighbor in every color classc j , j 6= i. A coloring ofG is ab-coloring if every
color class has ab-vertex. Theb-chromatic numberof a graphG, denotedχb(G), is the largest integerk such that
G admits ab-coloring withk colors. These concepts were first defined in [6]. In that paper, Irving and Manlove
proved that the problem of determining theb-chromatic number of a graph is NP-Hard. In fact, it was shownin [9]
that deciding whether a graph admits ab-coloring with a given number of colors is an NP-complete problem, even
for connected bipartite graphs. The following upper bound for theb-chromatic number of a graph, presented in
[6], has been proved to be very useful. IfG admits ab-coloring withmcolors, thenG must have at leastmvertices
with degree at leastm−1 (since each color class has oneb-vertex). Them-degreeof a graphG, denoted bym(G),
is the largest integerm such thatG hasm vertices of degree at leastm−1. It is easy to see thatχb(G) ≤ m(G)

for every graphG. A vertex ofG with degree at leastm(G) is called adensevertex. The preceding upper bound
leads us to the definition of a class of graphs which are tight with respect to the number and degree of their dense
vertices:

Definition 1 (tight graph). A graphG is tight if it has exactlym(G) dense vertices, each of which has degree
m(G)−1.

In this paper, we mainly investigate the following decisionproblem:

TIGHT b-CHROMATIC PROBLEM

Instance: A tight graphG.
Question: Doesχb(G) equalsm(G)?

A direct consequence of the NP-completeness result shown in[9] is the following:

Theorem 2. TheTIGHT b-CHROMATIC PROBLEM is NP-complete for connected bipartite graphs.

For any positivek, Pk denotes a path withk vertices. A graphG is P4-sparseif every set of five vertices
of G induces at most oneP4. Bonomo et al. [2] proved that theb-chromatic number ofP4-sparse graphs can be
determined in polynomial time. They asked if this result could be extended todistance-hereditary graphs, that are
graphs in which every induced path is a shortest path. We answer in the negative to this question by showing the
following stronger result (Theorem 3).TheTIGHT b-CHROMATIC PROBLEM is NP-complete for chordal distance-
hereditary graphs.We recall that a graph ischordal if it does not contain any induced cycle of size greater than
3.

The proof of our NP-completeness result is a reduction from 3-EDGE-COLORABILITY . We reduce an instance
of this problem to a graph which is slightly more than asplit graph, i.e. a graph whose vertex set may be partitioned
into a clique and an independent set. Hence a natural question is to ask about the complexity of finding the
b-chromatic number of a given split graph. We show in Theorem 4that it can be solved in polynomial time.

In Section 3, we introduce theb-closureG∗ of a graphG. We show that for a tight graphG, χb(G) = m(G)

if and only if χ(G∗) = m(G). Hence if one can determine the chromatic number of the closure in polynomial
time, one can also solve the TIGHT b-CHROMATIC PROBLEM in polynomial time. We show that it is the case for
(tight) complement of bipartite graphs. Indeed, we prove that the closures of such graphs are also complements of
bipartite graphs and the chromatic number of the complementof a bipartite graph can be determined in polynomial
time. This was unknown since the characterization of complements of bipartite graphs withχb(G) = k given by
[7] does not lead to a polynomial algorithm for determining theirb-chromatic number.

RR n° 7241



4 Fréd́eric Havet1 , Cláudia Linhares Sales2 , Leonardo Sampaio3

Moreover, we introduce the definition of pivoted tight graphand use this definition to give a sufficient condi-
tion for a tight graph to satisfyχb(G)< m(G).

The method of computing theb-closure of a graph and then the chromatic number of it does not yield
polynomial-time algorithms to solve the TIGHT b-CHROMATIC PROBLEM for all classes of tight graphs. However,
for some of them, we show in Section 4, that the TIGHT b-CHROMATIC PROBLEM may be solved in polynomial
time using a slight modification of the closure, thepartial closure. It is the case for block graphs andP4-sparse
graphs. It is already known that deciding ifχb(G) = m(G) is polynomial time solvable forP4-sparse graphs [2].
However, our linear-time algorithm for tightP4-sparse graphs is faster than theO(|V|3) algorithm of [2]. It is also
interesting to see how our general method can be used to solvethese problems.

Finally, we give an alternative formulation of the Erdös-Faber-Lovász conjecture [1] in terms ofb-colorings
of tight graphs.

2 Chordal graphs

Theorem 3. TheTIGHT b-CHROMATIC PROBLEM is NP-complete for chordal distance-hereditary graphs.

Proof. The problem belongs to NP since ab-coloring with m(G) colors is a certificate. To show that it is also
NP-complete, we present a reduction from 3-EDGE-COLORABILITY of 3-regular graphs, which is known to be
NP-complete [4]. LetG be a 3-regular graph withn vertices. SetV(G) = {v1,v2, ...,vn} andE(G) = {e1, . . . ,em}.
Let I be the vertex-edge incidence graph ofG, that is the bipartite graph with vertex setV(I) = V(G)∪E(G) in
which an edge ofG is adjacent to its two end-vertices. We construct fromI a new graphH as follows. First, we
add an edge between every pair of vertices inV(G) and then, we add three disjoint copies ofK1,n+2. One can
easily see thatdH(v) = n−1+3= n+2, for v∈V(G), and thatdH(u) = 2, for u∈ E(G). Moreover, each copy of
K1,n+2 has exactly one vertex with degree equal ton+2. Consequently,m(H) = n+3 andH is tight. InH, V(G)

is a clique andE(G) is an independent set, soH[A∪B] is a split graph, and so it is chordal. As the disjoint copies
of K1,n+2 are themselves chordal graphs, we get that the entire graphH is chordal. One can easily check thatH is
also distance-hereditary. We now prove thatG admits a 3-edge-coloring if and only ifχb(H) = m(H) = n+3.

Let c be a 3-edge-coloring ofE(G) that uses colors{1,2,3}. We shall construct ab-coloringc′ of H with
n+2 colors. Letc′(u) = c(u), for u∈ E(G), andc′(vi) = i +3, for 1≤ i ≤ n. Note that in this partial coloring,
the vertices inV(G) areb-vertices of their respective colors. To obtain the remaining b-vertices, one just have to
appropriately color the copies ofK1,n+2, which can be easily done. Then,c′ is ab-coloring ofH with m(H) = n+3
colors.

Now, letc′ be ab-coloring ofH that usesn+3 colors. SinceV(G) is a clique, we may assume thatc′(vi) =

i +3, for 1≤ i ≤ n. Since there are onlyn+3 vertices of degreen+2 in H, each vertex inV(G) is anb-vertex.
But then, since every vertex inV(G) has degree exactlyn+2 in H, all its neighbors must have distinct colors. As
a consequence, since no vertex inV(G) is colored with one of the colors in{1,2,3}, for every vertex inV(G), its
3 neighbours inE(G) are colored with distinct colors in{1,2,3}. This implies thatG admits a 3-edge-coloring of
G, and completes the proof.

The three copies ofK1,n+2 play an important role in this reduction, since one can show the following

Theorem 4. If G is a split graph thenχb(G) = m(G). Hence, the b-chromatic number of a split graph can be
determined in polynomial time.

Proof. Let G be a split graph and(K,S) a partition ofV(G) with K a clique andS an independent set such that
|K| is maximum. Every vertex inK has degree at least|K|−1 and every vertexs in Shas degree at most|K|−1
otherwise(K∪{s},S\ {s}) would contradict the maximality of|K|. Hencem(G) = |K|.

Coloring the vertices inK with |K| distinct colors and then extend it greedily to the vertices of S (This is
possible since every vertex inShas degree smaller than|K|.) gives ab-colouring ofGwith m(G) = |K| colours.

INRIA



b-coloring of tight graphs 5

3 b-closure

Definition 5 (b-closure). Let G be a tight graph. Theb-closureof G, denoted byG∗, is the graph with vertex set
V(G∗) =V(G) and edge setE(G∗) = E(G) ∪ {uv | u andv are non-adjacent dense vertices} ∪ {uv | u andv are
vertices with a common dense neighbour}.

The next theorem proves the relation, for a tight graphG, between the parametersχb(G) andχ(G∗):

Lemma 6. Let G be a tight graph. Thenχb(G) = m(G) if and only ifχ(G∗) = m(G).

Proof. Setm= m(G). Suppose thatχb(G) = m, and letc be ab-coloring ofG with m colors. It is easy to see that
them dense vertices form a clique inG∗ and soχ(G∗) ≥ m. Let us show thatc is a proper coloring forG∗. Let
uv /∈ G be such thatuv∈ E(G∗). If both u andv are dense, as there are exactlym dense vertices inG, they must
have distinct colors inc. Now, suppose thatu or v is not a dense vertex. By the definition ofG∗, u andv have a
common dense neighbor, sayd, in G. Since all dense vertices ofG have degreem−1 andc is ab-coloring,u and
v must have been assigned distinct colors inc. Hence,χ(G∗) = m.

Conversely, letc′ be a proper coloring ofG∗ with m colors. In this case, sinceE(G) ⊆ E(G∗), c′ is also a
proper coloring ofG. It only remains to show that every color ofc′ has ab-vertex. As the dense vertices ofG form
a clique inG∗, they have distinct colors inc′. Moreover, for a dense vertexd of G, we have thatNG∗(d) is a clique.
As a consequence,d is ab-vertex. Therefore,χb(G) = m.

Sinceω(G∗)> m implies thatχ(G∗)> m, it follows:

Corollary 7. Let G be a tight graph. Ifχb(G) = m(G), thenω(G∗) = χ(G∗) = m(G).

3.1 Complement of bipartite graphs

By Lemma 6, it is interesting to consider theb-closure of a tight graphG if the chromatic number of its closure
can be determined in polynomial time. Indeed if so, one can decide in polynomial time ifχb(G) = m(G). We now
show that it is the case ifG is the complement of bipartite graph.

Lemma 8. The b-closure of the complement of a bipartite graph is a complement of a bipartite graph.

Proof. Let G be a tight complement of a bipartite graph. LetV(G) = X∪Y whereX andY are two disjoint cliques
in G. AsV(G∗) =V(G), and sinceE(G)⊆ E(G∗), the setsX andY are cliques inG∗. So they also form a partition
of V(G∗) into two cliques.

Computing the chromatic number of the complementG of a bipartite graphG is equivalent to compute the
maximum size of a matching in this bipartite graph. Hence it can be done inO(

√

|V(G)| · |E(G|) by the algo-
rithm of Hopcroft and Karp [5] and inO(|V(G)|2.376) using an approach based on the fast matrix multiplication
algorithm [11].

Corollary 9. Let G be a tight complement of bipartite graph. It can be decided in O(max{
√

|V(G)| · |E(G)|, |V(G)|2.376})

if χb(G) = m(G).

3.2 Pivoted graphs

In the study of theb-chromatic number of trees, Irving and Manlove [6] introduced the notion of apivoted tree,
and showed that a treeT satisfiesχb(T) < m(T) if and only if it is pivoted. We generalize this notion and show
how our generalization is related to theb-chromatic number of tight graphs.

RR n° 7241



6 Fréd́eric Havet4 , Cláudia Linhares Sales5 , Leonardo Sampaio6

Definition 10 (Pivoted Graph). Let G be a tight graph. We say thatG is pivotedif there is a setN of non-dense
vertices, with|N|= k, and a set of dense verticesD, with |D|= m(G)− k+1, satisfying:

1. For every pairu,v∈ N, u is adjacent tov, or there is a dense vertexw that is adjacent to bothu andv.

2. For every pairu∈ N, d ∈ D, eitheru is adjacent tod or u andd are both adjacent to a dense vertexw (not
necessarily inD).

Theorem 11. Let G be a tight graph. Then G is a pivoted graph if and only ifω(G∗)> m(G).

Proof. First, assume thatG is a pivoted graph. Then Definitions 5 and 10 immediately imply thatN∪D is a clique
of sizem+1 in G∗.

Reciprocally, assume thatω(G∗)> m. Let S⊆V(G∗) be a clique of sizem+1 in G∗. Let N ={v∈ S| v is not
dense inG} andD ={v∈ S| v is dense inG}. Let u,v∈ S. If u,v∈ D, there is nothing to show, since Definition
10 imposes no restrictions between dense vertices inG. If u ∈ N,v ∈ D∪N, we have that eitheruv∈ E(G), or
ud,vd∈ E(G), for a dense vertexd ∈V(G). So, it is easy to see that the setsN andD satisfy the requirements of
Definition 10.

Lemma 6 and Theorem 11 have the following corollary.

Corollary 12. Let G be a tight graph. If G is a pivoted graph, thenχb(G)< m(G).

Proof. As G is pivoted, Theorem 11 implies thatω(G∗)> m(G), and thereforeχ(G∗)> m(G). Then, by Lemma
6, χb(G)< m(G).

There are graphs satisfyingχ(G∗) > m(G) but notω(G∗) > m(G). Figure 1 shows a chordal non-pivoted
graphG with exactlym(G) = 7 dense vertices, each of degree 6, such thatχb(G)< m(G).

In contrast to what happens with pivoted graphs, where a clique of size greater thanm is formed in theirb-
closures, the graph of Figure 1 has clique number 7, but itsb-closure produces an odd hole (by the five non-dense
vertices in the bigger component) which causesχ(G∗)> 7.

4 Partial b-closure

Definition 13 (partial b-closure). Let G be a tight graph. Thepartial b-closureof G, denotedG∗
p, is the graph

with vertex setV(G∗) = V(G) and edge setE(G∗) = E(G) ∪ {uv | u andv are vertices with a common dense
neighbour}.

Lemma 14. Let G∗
p be the partial b-closure of a graph G, and let D be the set of m(G) dense vertices of G. Then

χb(G) = m(G) if and only if G∗
p admits a m(G)-coloring where all the vertices in D have distinct colors.

Proof. The proof is similar to the one of Lemma 6. In this case, since we do not add edges between all the pairs of
dense vertices inG∗

p, we need the requirement that them(G)-colouring ofG∗
p is such that all dense vertices have

distinct colours.

By Lemma 14, one can decide in polynomial time ifχb(G) =mwherever it can be decided in polynomial time
if the constrained coloring of its partial closureG∗

p exists. In particular, it is the case if the precoloring extension
problem can be decided in polynomial time forG. We show that this is the case for block graphs andP4-sparse
graphs.

INRIA



b-coloring of tight graphs 7

Figure 1: A non-pivoted chordal graph, satisfyingχb(G)<m(G), and itsb-closureG∗, satisfyingχ(G∗)>ω(G∗)=

m(G)

(the new edges between the dense vertices are dashed).
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8 Fréd́eric Havet7 , Cláudia Linhares Sales8 , Leonardo Sampaio9

Figure 2: A block graph.

4.1 Block graphs

A graphG= (V,E) is a block graphif every of its blocks (maximal 2-connected subgraphs) is a complete graph.
For an example, see Figure 2.

Lemma 15. The partial b-closure of a block graph is chordal.

Proof. By contradiction, assume that the partialb-closureG∗
p of a block graphG is not chordal. Then it has an

induced cycleC = (v1,v2, ...,vk) of lengthk ≥ 4. For every edgevivi+1 of C (indices must be taken modulok)
eithervivi+1 ∈ E(G) or there is a dense vertexwi ∈ V(G) such thatviwi ,wivi+1 ∈ E(G). In the latter case, the
vertexwi is adjacent to nov j for j /∈ {i, i +1} in G, otherwise bothv jvi andv jvi+1 would be edges ofG∗

p andC
would not be induced. Furthermore, this implies that all theexistingwi ’s are distinct. LetC′ be the cycle obtained
fromC by replacing each edgevivi+1 by viwivi+1 whenevervivi+1 /∈ E(G). Observe thatC′ is a cycle ofG.

But, sinceG is a block graph, the vertices of any cycle (in particular,C′) form a clique inG and thus also in
G∗

p. Hence the vertices ofC form a clique inG∗
p, a contradiction.

Marx [10] showed that the precoloring extension problem when all theC colours are used at most once is
solvable in timeO(C · |V(G)|3) for a chordal graphG. Hence,

Corollary 16. the TIGHT b-CHROMATIC PROBLEM can be decided in time O(m(G)|V(G)|3) for tight block
graphs.

Remark 17. A tree is a block graph, so using the partial closure method the TIGHT b-CHROMATIC PROBLEM for
tight trees can be solved in timeO(m(G)|V(G)|3). However, Irving and Manlove [6] gave a linear time algorithm
to compute theb-chromatic number of any tree. Hence the TIGHT b-CHROMATIC PROBLEM can be solved in
linear time for trees.

4.2 P4-sparse graphs

Lemma 18. The partial b-closure of a P4-sparse graph is P4-sparse.

Proof. Let G be aP4-sparse graph. Suppose, by way of contradiction, thatG∗
p is notP4-sparse. Then there is at

least one inducedP4 in G∗
p that is not inG. Let P = (v1,v2,v3,v4) be such aP4 in G∗

p. We will show that there
are 5 vertices that induces twoP4’s in G, thus getting a contradiction. By symmetry, it is enough to consider the
following five cases.

INRIA



b-coloring of tight graphs 9

Case 1 :v1v2 ∈ E(G), v2v3 ∈ E(G) andv3v4 /∈ E(G).
Then,v3 andv4 are both adjacent to a dense vertexw∈V(G) (by the definition of the partialb-closure).
Note thatv1w /∈ E(G) (resp. v2w /∈ E(G)) otherwisev1v4 ∈ E(G∗

p) (resp. v2v4 ∈ E(G∗
p)) andP would

not be an inducedP4 in G∗
p. Hence,{v1,v2,v3,w,v4} induces aP5 which contains two inducedP4.

Case 2 :v1v2 ∈ E(G), v2v3 /∈ E(G) andv3v4 ∈ E(G).
In this case,v2 andv3 are both adjacent to a dense vertexw ∈ V(G) (again, by the definition of theb-
closure). Note thatv1w,v4w /∈ E(G), for otherwise, this would imply thatv1v3 ∈ E(G∗

p) (v2v4 ∈ E(G∗
p)),

by the definition of the partialb-closure. But then,{v1,v2,w,v3,v4} is an inducedP5 in G.

Case 3 :v1v2 /∈ E(G), v2v3 ∈ E(G) andv3v4 /∈ E(G).
As v1v2 /∈ E(G), the verticesv1 and v2 are both adjacent to a dense vertexw1 ∈ V(G). Moreover,
w1v3 /∈ E(G) (resp.w1v4 /∈ E(G)), since for otherwisev1v3 ∈ E(G∗

p) (resp.v1v4 ∈ E(G∗
p)) andP would

not be an inducedP4 in G∗
p. By a similar argument,v3 and v4 are both adjacent to a dense vertex

w2 ∈V(G), which is not adjacent tov1 andw2. Note thatw1 andw2 are distinct sincew1v4 /∈ E(G). If
w1w2 /∈ E(G), then{v1,w1,v2,v3,w2} is an inducedP5 in G. If w1w2 ∈ E(G), then{v1,w1,v2,w2,v4}

induces twoP4’s in G.

Case 4 :v1v2 /∈ E(G), v2v3 /∈ E(G) andv3v4 ∈ E(G).
Using arguments similar to the ones in the previous cases, weobtain that there are distinct dense vertices
w1,w2 ∈V(G) satisfyingv1w1,v2w1,v2w2,v3w2 ∈ E(G), andv1w2,v4w2,v3w1,v4w1 /∈ E(G). If w1w2 ∈

E(G) then{v1,w1,w2,v3,v4} induces aP5 in G. If w1w2 /∈ E(G), then the set{v1,w1,v2,w2,v3} induces
aP5 in G.

Case 5 :v1v2 /∈ E(G), v2v3 /∈ E(G) andv3v4 /∈ E(G).
Again, by similar arguments to the ones used in the previous cases, there are distinct dense vertices
w1,w2,w3 ∈V(G) such thatv1w1,v2w1,v2w2,v3w2,v3w3,v4w3 ∈E(G), andv3w1,v4w1,v1w2,v4w2,v1w3,v2w3 /∈

E(G). If w1w3 ∈ E(G), the set{v1,w1,w3,v3,v4} induces twoP4’s in G. Henceforth we may assume
thatw1w3 /∈ E(G). If w1w2,w2w3 ∈ E(G), then the set{v1,w1,w2,w3,v4} induces aP5 in G. Hence by
symmetry, we may assume thatw2w3 ∈ E(G). If w1w2 ∈ E(G), then the set{v1,w1,v2,w2,v3} induces
two P4’s in G. If w1w2 /∈ E(G) the set{v1,w1,v2,w2,w3} induces twoP4’s in G.

Babel et al. [8] showed that the precoloring extension problem is linear-time solvable for (q, q−4)-graphs,
which are graphs where no set of at mostq vertices induces more thanq−4 differentP4’s. Hence,

Corollary 19. TheTIGHT b-CHROMATIC PROBLEM can be decided in linear time for tight P4-sparse graphs.

Consequently, for tightP4-sparse graphs, this algorithm is faster than theO(|V|3) algorithm given in [2], that
solves the more general case where the input graph is not necessarily tight.

5 A relation with the Erd ös-Faber-Lov́asz conjecture

As we saw in the previous sections, given a tight graphG, deciding if χb(G) = m(G) is equivalent to deciding
if χ(G∗) = m(G). It is easy to see that the graphG∗ can be seen as the union ofm(G)+ 1 cliques each of size
m(G), where these cliques may intersect at some vertices. On the other hand, the well know Erdös-Faber-Lovász
conjecture [1] states that:

Conjecture 20(Erdös-Faber-Lovász). Any graph G obtained by the union of K1
m,K

2
m, ...,K

m
m, where|K i

m∩K j
m| ≤ 1,

i 6= j, has chromatic number m.
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Now, consider the conjecture:

Conjecture 21. Let G be a tight graph such that:

1. For every edge uv∈ E(G), one of its endpoints is dense, and the other is non-dense, and

2. If d′ and d′′ are dense vertices in G, then|N(d′)∩N(d′′)| ≤ 1.

Then,χb(G) = m(G).

We can prove that:

Theorem 22. The Erd̈os-Faber-Lov́asz conjecture is true if and only if Conjecture 21 is true.

Proof. Let G be a graph as in the Conjecture 21, and consider itsb-closureG∗. It can be easily seen thatG∗ is the
union ofm(G)+1 cliques each of sizem(G). Notice that the restrictions imposed for the graph in Conjecture 21
imply that each pair of these cliques intersect in at most onevertex. Consider the graphH obtained fromG∗ by
taking each maximal clique and adding a new vertex that it is adjacent to every other vertex in the clique. Then,
H is the union ofm(G)+ 1 cliques, each of sizem(G)+ 1. Then, if the Erdös-Faber-Lovász conjecture is true,
χ(H) = m(G)+1. Since the vertices we added in the construction ofH form a maximal independent set, we have
thatχ(G∗) = χ(H)−1= m(G), and consequently, by Lemma 6,χb(G) = m(G).

Now, letGbe a graph as described in the Erdös-Faber-Lovász conjecture. ThenG is the union ofK1
m,K

2
m, ...,K

m
m,

where|K i
m∩K j

m| ≤ 1, i 6= j. Since two cliques intersect in at most one vertex, and thereare onlym cliques, every
clique, sayKi , has at least one vertex that is only contained inKi . For each 1≤ i ≤ m, let di be such a vertex.
Consider the graphH obtained fromG by taking, for each 1≤ i ≤ m, the cliqueKi and removing every edge on
the clique such thatdi is not an endpoint of this edge. It can be easily seen that the resulting graph is a tight graph
with the properties required by Conjecture 21. So, if this conjecture is true, we have thatχb(H) = m(H). Observe
thatG is isomorphic toH∗. Then, by Lemma 6,χ(G) = χb(H) = m(G).

Once we proved this relationship between these problems, wecan deduce results on one problem from results
on the other. As an example, we can prove the following.

Theorem 23. Let G be a tight graph, and let G[D∪N(D)] be the graph induced by its dense vertices and their
neighbours. If G[D∪N(D)] is such that:

1. for every edge uv∈ E(G[D∪N(D)]), exactly one of its endpoints is dense, and

2. if d′ and d′′ are dense vertices in G, then|N(d′)∩N(d′′)| ≤ 1, and

3. every non-dense vertex is either adjacent to only one dense vertex or to at least
√

m(G) dense vertices,

then,χb(G) = m(G).

Proof. Since the vertices that are not inG[D∪N(D)] have degree lower thanm− 1, it can be easily seen that
χb(G[D∪N(D)]) = χb(G). The result follows from the fact thatG[D∪N(D)]∗, the b-closure ofG[D∪N(D)],
is a graph as described in the Erdös-Faber-Lovász conjecture, with the additional property that every vertex in
G[D∪N(D)]∗ is either in exactly one clique or in at least

√

m(G) cliques of sizem. It was already proved that the
conjecture of Erdös-Faber-Lovász is true in this case [12].

We conclude by observing that the problem of determining if atight graphG satisfiesχb(G) = m(G) is
equivalent to the problem of determining if a graph composedof the union ofm cliques of sizem is m-colorable,
where we have no restriction on the number of vertices that these cliques may share.
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