
HAL Id: hal-00465661
https://hal.science/hal-00465661v1

Submitted on 5 Apr 2010 (v1), last revised 11 Dec 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fair and Reliable Self-Stabilizing Communication
Colette Johnen, Ivan Lavallee, Christian Lavault

To cite this version:
Colette Johnen, Ivan Lavallee, Christian Lavault. Fair and Reliable Self-Stabilizing Communication.
Parallel Processing Letters, 2000, 10 (2), pp.51–59. �hal-00465661v1�

https://hal.science/hal-00465661v1
https://hal.archives-ouvertes.fr

Fair and Reliable Self-Stabilizing CommunicationColette JOHNEN a Ivan LAVALLÉE b Christian LAVAULT c �a LRI-CNRS Université Paris-Sudb LRIA-Paradis, Université Paris 8c LIPN, CNRS UPRES-A 7030, Université Paris-NordAbstractWe assume a link-register communication model under read/write atomicity, where every processcan read from but cannot write into its neighbours' registers. The paper presents two self-stabilizingprotocols for basic fair and reliable link communication primitives. The �rst primitive guarantees thatany process writes a new value in its register(s) only after all its neighbours have read the previousvalue, whatever the initial scheduling of processes' actions. The second primitive implements a �weakrendezvous� communication mechanism by using an alternating bit protocol: whenever a processconsecutively writes n values (possibly the same ones) in a register, each neighbour is guaranteed toread each value from the register at least once.Both protocols are self-stabilizing and run in asynchronous arbitrary networks. The goal of thepaper is in handling each primitive by a separate procedure, which can be used as a �black box� inmore involved self-stabilizing protocols.Keywords: Self-stabilization, communication primitive, read/write atomicity, rendezvous, liveness1 IntroductionA self-stabilizing system which is started froman arbitrary initial con�guration, regains its consistency anddemonstrates legal behaviour by itself, without any outside intervention. Consequently, a self-stabilizingsystem needs not be initiated to any con�guration, and can recover from transient faults. More precisely,it can recover from memory corruptions and copes with processors or channels crashes and recoverings(i.e., dynamic networks).1.1 The Communication primitivesIn the paper (see also [19]), we present fair and reliable self-stabilizing communication primitives in thelink-register model. Communication between two neighbours (A and B) is carried out by the use of twosets of communication registers called registers: rAB and rBA. Process A can write in the registers ofrAB and each process A and B can read from the registers of rAB. The registers support read and writeatomic operations.The communication primitives allow any process which writes a value in its own register (say Write)to make sure that every neighbour eventually reads that latter value before writing another value in theWrite register, whatever the initial scheduling of processes' actions. The self-stabilizing protocols forthese basic communication primitives run on dynamic asynchronous arbitrary networks.The �rst primitive guarantees that any process A writes a new value in its register(s) WriteAB onlyafter its neighbour B has read the previous value. Notice that when A writes n times the same value�Corresponding author: LIPN, CNRS UPRES-A 7030, Université Paris-Nord, 99, Av. J.-B. Clément 93430 Villetaneuse,France. Email: lavault@lipn.univ-paris13.fr 1

consecutively in the register WriteAB , the primitive ensures that B eventually copies this value at leastonce. This primitive simulates self-stabilizing reliable message-passing communications in the link-registerasynchronous model. It guarantees that a message, that is the value of the register Write, is eventuallyreceived: the value is eventually known from the neighbours' process.The rendezvous mechanism (as de�ned in [16]) synchronizes communications, i.e., the write andread operations are performed in and from the same register. When Process A writes a value in itsregister WriteAB , it cannot perform any other action until process B has completed a read operationfrom the register WriteAB . The second communications primitive is a self-stabilizing �weak rendezvous�.After performing a write operation in its register WriteAB , the process A cannot perform but somespeci�c actions, as long as process B has not completed a read operation fromWriteAB . Therefore, if Aconsecutively writes n values (possibly the same ones) in the register WriteAB , the primitive guaranteesthat B eventually copies each value at least once. Incidentally, this protocol also maintains a weakscheduling between processes in arbitrary networks: if A writes n times the same value in WriteAB , thevalue will be read at least n times.Each such very basic primitive may prove useful as a communication �black box� in designing moreinvolved distributed self-stabilizing protocols.1.2 Related Works en ResultsA deterministic self-stabilizing �balance-unbalance� mechanismon two processes systems under read/writeatomicity is presented in [12] and in [13]. The two processes are not executing the same code. The oneexecutes the balance code: when both processes have the same color, it changes color. The other exe-cutes the unbalance code: when both processes have not the same color, it changes color. In [12], thismechanism is used to guarantee that each process has a mutual exclusion access to a critical section,and in [13], it is used to ensure synchronization of the processes. In both cases, this mechanism providesstrong synchronization: between two �actions� of a process, the other process cannot perform but only one�action�. In [12, 13], the two processes protocol is used to design a mutual exclusion algorithm (globalsynchronization) on tree networks. As claimed in [12, 13], the balance-unbalance mechanism cannotbe extended to any network topology, since there exist no deterministic self-stabilizing synchronizationprotocols in uniform arbitrary networks. On the other hand, a self-stabilizing synchronization on unidi-rectional rings is provided in [10] through the deterministic token circulation mechanism: between twoactions of a process its neighbours cannot perform but only one action.Any self-stabilizing reset protocol [5, 2, 8] can be combined with the protocol in [6] to design a self-stabilizing synchronizer. General self-stabilizing synchronizers are presented e.g. in [9, 7, 20]. Globalself-stabilizing synchronizers for tree networks are also proposed in [13, 3, 11]. A self-stabilizing localsynchronizer, that synchronizes each node in a tree network with its neighbours is presented in [18].In [4], Anagnostou and Hadzilacos present a self-stabilizing data link protocol under the read/writeatomicitymodel. Their protocol uses the balance-unbalance mechanism in order to synchronize operationsperformed on a register (between two write operations in the register there is only one read operationfrom that register). No proof of the protocol is given in [4]. For instance, the authors do not explain howthe data link protocol can guarantee starvation-freeness.By contrast, our primitives use no balance-unbalance mechanism (but the alternating-bit mechanismin the second primitive). Thus, they can be used in any network topology.In the recent literature, several communication problems in the message-passing model have beenaddressed. A self-stabilizing communication protocol for two-way handshake is presented in [15], and aself-stabilizing version of the alternating-bit protocol is given in [1].Section 2 describes our model with the basic assumptions. In Section 3, we present the generalprinciple of our solution for a two processes system. The generalization to n processes in arbitrary2

networks yields the Read Checking self-stabilizing protocol, which is presented in Section 4. Section 5 isdevoted to the proof of liveness and correctness of the Read Checking protocol. Section 6 presents theweak rendezvous protocol. Finally, the paper ends with few concluding remarks.2 Model and RequirementsAlthough distinct from the one described in [12], our model relies on close requirements and assumptions,especially in terms of communication (e.g., link registers, read/write atomicity, etc.). A distributed systemconsists of n processes denoted A, B, etc. Each process resides on a node of the system's communicationgraph (or network). Two processes which reside on two adjacent nodes of the network are calledneighbours. We model distributed self-stabilizing systems as a set of (possibly in�nite) state machinescalled processes. Each process can only communicate with the subset of processes consisting of itsneighbours. We assume a link-register communication model under read/write atomicity [12]. Each linkbetween any two neighbours A and B is composed of two pairs of registers1, denoted (WriteAB ; ReadAB)and (WriteBA; ReadBA), and belonging to A and B, respectively. Process A can read from the tworegisters of B, WriteBA and ReadBA, but cannot write into them. Similarly, process A cannot write butin its own registers, WriteAB and ReadAB, to communicate with B.A con�guration of the system is the vector of states of all processes. The state of a process is thevalue of its internal variables and the contents of its registers.2.1 Schedulers, Demons and ComputationAn atomic step is the �largest� step which is guaranteed to be executed uninterruptedly. A process usesread/write atomicity if each atomic step contains either a single read operation or a single write operationbut not both. The system behaviour is modelled by the interleaving model in which processes are activatedby a scheduler. The scheduler is regarded as a fair adversary: in a self-stabilizing system, all possible fairexecutions are required to converge to a correct behaviour. A fair scheduler shall eventually activate anyprocess which may continuously perform an action. A common scheduler activates either processes oneby one (central demon) or subsets of processes (distributed demon). Under read/write atomicity, bothcentral and distributed schedulers/demons are �equivalent�, in the sense that any execution performedunder a distributed scheduler may be simulated by a central one. A process which can perform an atomicstep into a con�guration c, is said to be enabled at c. During a computation step, one or more processesexecute an atomic step. A computation of a protocol P is a sequence of con�gurations c1; c2; : : : suchthat, for i = 1; 2; : : :, the con�guration ci+1 is reached from ci by one computation step. A computationis said to be maximal either if the sequence is in�nite, or if it is �nite and no process is enabled in the�nal con�guration. A problem is a predicate de�ned on computations.2.2 Self-StabilizationThe protocol P is self-stabilizing for the problem � if and only if there exists a predicate L de�ned oncon�gurations such that:� all computations reach a con�guration that satis�es L (convergence);� all computations, from L, satisfy problem � (correctness).Notice that the maximal computations of a self-stabilizing protocol may be �nite; in that case thealgorithm is said to be silent [14]. Most self-stabilizing algorithms which build spanning tree or elect aleader are silent [17]. Self-stabilizing protocols o�ers full and automatic protection against all transient1In our model, the registers are physical (hardware) devices. Reading from or writing in one register is an atomic actionaccording to the design of the microprocessor. 3

process failures, no matter how much the data have been corrupted: e.g., all registers values may be fullycorrupted.So, whatever the registers values, our protocols secure the transfer of information between any twopair of neighbours after a �certain delay time�.3 Principle of the SolutionLet a two processes system, consisting in two neighbouring processes A and B equipped with their twopairs of registers (see Section 2). The principle of the solution for A relies on the following basic idea.Under read/write atomicity, A systematically keeps reading the value from WriteBA and copies out thisvalue in ReadAB (i.e., A reads the message sent by B and copies out the message in ReadAB to informB that its message is received). Besides, A systematically keeps reading the value from ReadBA andcompares it to the value of WriteAB . When both values are equal, A �nds out that B somehow readthat value (i.e., the information has been transmitted), So it can stop reading and can write again inWriteAB .while true doA writes in WriteABrepeatA reads from WriteBA ;A writes out the value of WriteBA into ReadAB ;A reads from ReadBAuntil ReadBA = WriteABendwhile Fig. 1. The basic 2-processes protocol for A.After A has written a new value in WriteAB , A becomes �weakly locked� until B receives the message(ReadBA = WriteAB). When A is inside the repeat loop, it can only perform some actions, for instance,A cannot write in its register WriteAB .In a self-stabilizing setting, A may then proceed with the execution of its own code, since the protocolmakes it sure that B did read the value from WriteAB (at least, it results from the protocol that Aknows for sure that the values in ReadBA and WriteAB are identical). The corresponding code sequencefor B is of course fully symmetrical to the basic protocol for A: the roles of A and B (i.e. the registers'names) have simply to be inverted within the above protocol in Fig. 1. Thus, a two-way communicationis established between A and B.4 The Protocol in Arbitrary NetworksThe generalization of the above protocol to a system of n > 2 processes constituting an arbitrary networkis now easy. We still assume each pair of neighbouring processes in the network to be equipped with itstwo pairs of registers on their common link. In order to simplify the use of variables, we call �message�the �information� exchanged between neighbours during the execution of the protocol.A protocol which stabilizes on a single link may not generalize to a protocol which stabilizes on alllinks of a (�nite) network, e.g. by having each process execute the �link-protocol� in a round robin manneron each individual link adjacent to it. Taking the n-processes system pair by pair may cause a deadlock:for all i 2 f0; : : : ; n� 1g, Ai may be waiting for Ai+1 to read from WriteAiAi+1 , with An = A0.4

4.1 NotationWrite register for A: ReadABi is the register in which A writes the value of the last message readby A and sent by Bi.Read register for A: WriteBiA is the register in which Bi writes the message to be transmitted toA, and ReadBiA is the register in which Bi writes the value of the last message read by Bi and sent byA. Write and read register for A: WriteABi is the register in which A writes the value of the messagewhich is to be sent to its ith neighbour Bi.Function geti for A: geti takes no argument and returns the next message to be sent to the ithneighbour of A (geti is a helper function added to A).4.2 The Read Checking ProtocolOn the same assumptions for the model (read/write atomicity) and for the scheduler's actions (rules ofactivations of processes and fairness) as given in Section 2, the speci�cation of the self-stabilizing ReadChecking protocol in arbitrary networks for a process A, with neighbours Bi's (1 � i � NA), is as follows.constant NA : the number of neighbours of A ;var si : message to be sent to the ith neighbour of A ;ri : message sent from the ith neighbour of A ;vali : value of the last message sent from A and read by the ith neighbour of A ;while true dofor i = 1 to NA dowrite(WriteABi ; geti) ;endforrepeatfor i = 1 to NA dori read(WriteBiA) ;write(ReadABi; ri) ;vali read(ReadBiA) ;si read(WriteABi) ;endforuntil (8i 2 [1; NA] vali = si)endwhile Fig. 2. The Read Checking protocol for A.5 Proof of the Read Checking Protocol5.1 Proof of LivenessLemma 5.1 Let be any con�guration of an arbitrary network of processes on which the read checkingprotocol is performed. All processes are enabled in con�guration .5

Proof. Let A be a process, its program counter is such that� A is not in the repeat loop, and hence A can write into one of its Write registers;� A is in the repeat loop, and hence A can either read from one of its neighbours' register, or writeinto one of its Read registers. Thus, in all con�guration, A can perform an atomic step (if chosen by thescheduler). �Lemma 5.2 Every execution of the protocol on any arbitrary network is in�nite.Proof. From Lemma 5.1, whatever the current con�guration, all processes can execute an action.Hence, every con�guration is deadlock-free and no execution can reach a deadlock con�guration. There-fore, every execution is in�nite. �Lemma 5.3 Whatever the execution, every process performs an in�nite number of actions.Proof. From Lemma 5.2, every execution is in�nite. From Lemma 5.1, in each con�guration that isreached every process can perform an action. The scheduling of processes' actions is fair: if a process canalways execute an action, then the process �nally performs an action. Thus, by fairness, every process isperforming an in�nite number of actions, whatever the execution. �De�nition 5.1 Let A and B be two neighbouring processes. A is said to allow B to write i� ReadBA =WriteAB . Let A be a process and let NA denote the number of neighbours of A (NA is the degree of A inthe network).De�nition 5.2 Let A and B be two neighbouring processes. The update of the register ReadAB is thesequence of the two following actions performed by B: ri read(WriteAB) ; write(ReadBA; ri).A wrong writing is a write action in the register ReadBA which is not performed within the context ofan update.The correct writing into the register ReadBA is a write action executed within the context of an update.Lemma 5.4 Let A be a process with its program counter in the repeat loop and let B be a neighbourof A. Whatever the current con�guration and the execution, the processes system executing the protocoleither eventually reaches a con�guration in which B allows A to write, or A exits the repeat loop.Proof. Suppose B never allows A to write and A never exits the repeat loop. Then A never changesthe value in its register WriteAB . Under these conditions, updating its register ReadBA is a writingpermission given to A by B (since between the reading of the value from the register WriteAB and thewriting of that value in ReadBA, the register WriteAB does not change value).Whatever the current con�guration and the execution, if the program counter of B is not within therepeat loop, it takes B less than NB actions to enter the repeat loop. Once B enters the loop, after4NB actions, it updates all its Read registers, and thus allows A to write.Whatever the current con�guration and the execution, if the program counter of B is within therepeat loop, it takes B at least 4NB actions either to exit the loop, or to update its register ReadAB .Whatever the execution, B performs an in�nite number of actions (by Lemma 5.4) and eventually,either B allows A to write, or A exits the repeat loop. �Lemma 5.5 After executing its �rst action, no process can perform a wrong writing.Proof. Process A can perform at most one wrong writing, and it may only happen when initially itsprogram counter is set up after reading from the Write register and before writing in the Read register.Once this write action is executed, each write action of A in a Read register is performed within thecontext of an update. �6

Lemma 5.6 Let A and B be two neighbouring processes. After B executes its �rst action, if B allows Ato write, then only the writing of A in its register WriteAB may be able to cancel that permission.Proof. Nothing but writing into the register ReadBA or into the register WriteAB can cancel thewriting permission. After B executes its �rst action, from Lemma 5.5 there is no wrong writing anymore.Hence, any writing into the register ReadBA is executed within the context of a register's update. Thisupdate is such that the permission remains given to A, unless A writes into its register ReadBA duringthe updating process or after the last update. �Theorem 5.1 Let A be a process. Whatever the execution, the system of processes which performs theprotocol reaches a con�guration in which A is not within the repeat loop anymore.Proof. Suppose A remains within the repeat loop forever; then A never writes into its Writeregisters. Every 4NA actions, A is checking out the loop exiting condition. Whatever the execution,process A performs an in�nite number of actions. Hence, A checks out the repeat loop exiting conditionan in�nite number of times. In particular, A tests the exit condition an in�nite number of times after allits neighbours have already executed an action.If at some test all neighbours of A allow its writing, then, at the next test, all its neighbours keep ongiving A permission to write (by Lemma 5.6). In the meanwhile, A has updated its variables ri and si,and when the test happens, the loop exiting condition is satis�ed: A exits the loop.Process A stays within the loop in�nitely long in the case when, at each test, at least one neighbourdoes not allow its writing. Once a neighbour has allowed A to write, this neighbour cannot withdrawpermission fromA. Therefore, there exists at least one neighbour ofA which never allowsA to write. Nowfrom Lemma 5.4, this is impossible, and the theorem follows. Therefore, the protocol is deadlock-free. �Corollary 5.1 Let A be a process. Whatever the execution, A writes an in�nite number of times intoall its Write registers.Proof. If A is out of the loop, then it takes A less than NA actions to enter the loop. When it iswithin the repeat loop, then by Theorem 5.1, A cannot stay in�nitely long. NA actions after exiting theloop, A writes into all its Write registers and reenters the repeat loop. �5.2 Correctness Proof of the Read Checking ProtocolTheorem 5.2 Let A and B be two neighbouring processes. After B executes its �rst action and after anywriting in the register WriteAB , A can write in the register WriteAB only if B allows it, i.e. ReadBA =WriteAB (see De�nition 5.1).Proof. Process B is the ith neighbour of A. Between each of its two writings, A enters the repeatloop and exits the loop. Once A is within the loop, the register WriteAB does not change value. Therepeat loop's code is such that when the loop is exited, the value of the local variable si of A and thevalue of the register WriteAB are equal. In the loop, the local variable ri of A takes the value of theregister ReadAB. The value of the register ReadBA may change after this assignment and before the loopis exited. Thus, when the loop is exited two distinct cases have to be considered:� No update of the register ReadBA happens between the reading from that register and the loopexit. Then, si = WriteAB = vali = ReadBA, and B allows the writing of A.� Writings into the register ReadBA happen between the reading from that register and the loopexit. However, the latter writings are performed within the context of updating. Hence, each time thevalue has changed, we have that ReadBA = WriteAB and, by Lemma 5.6, the equality holds while A doesnot rewrite into the register WriteAB . �After the writing of a value in the register WriteAB , the �rst primitive guarantees that A will onlywrite in the register WriteAB if B allows it. In the case when the value is new, B must perform theaction read(WriteAB) to allow the writing. 7

Summing up of the Results1. The protocol is live: every process is updating all its Write registers an in�nite number of times.2. The protocol is correct: no process can write distinct values twice in a row in its Write registerwithout any previous reading from that register.6 Weak Rendezvous ProtocolIn this section, we present a self-stabilizing weak rendezvous communications primitive.Recall that The rendezvous mechanism (as de�ned in [16]) synchronizes communication in the link-register asynchronous model of distributed system: each write or read operation is performed in andfrom the same register. When Process A writes a value in its register WriteAB , it cannot perform anyother action until process B has completed a read operation from the register WriteAB .The weak rendezvous mechanism only requires that between two write operations performed by aprocess A in WriteAB , process B performs at least one read operation from WriteAB . Therefore, if Awrites a value n consecutive times (even the same ones in each row) in the register WriteAB , the primitiveguarantees that B copies each of the n values at least one time, once the system is stabilized.The weak rendezvous mechanism is based upon the alternating bit technique. After writing in itsregister WriteAB , process A changes the value of the bit-register ControlAB. A can write again in theregister WriteAB only after B has copied the new value of ControlAB into the register CheckControlBA.And B copies the value only after reading in the register WriteAB .The liveness proof of the weak rendezvous protocol is similar to the proof of the read checking protocol.The following Theorem 6.1 proves the correctness of the weak rendezvous protocol.Theorem 6.1 Let A and B be two neighbouring processes. After B executes its �rst action and afterthe xth (� 2) writing in the register WriteAB , B reads the value from WriteAB before the next writing inWriteAB .Proof. As shown in Theorem 5.2, we can establish that before the xth writing in the registerWriteAB , ControlAB = CheckControlBA. After the writing in the register WriteAB , A changes thevalue in ControlAB and enters the repeat loop (ControlAB 6= CheckControlBA). A stays within theloop as long as B does not copy the value of ControlAB into the register CheckControlBA. Finally, Bcopies the value only after reading in the register WriteAB . �The weak rendezvous protocol maintains a weak scheduling of the communication between processesin the following sense. We call a weak scheduling of the communication between process A and all its NAneighbours the property that A can write twice into its registers WriteABi , only whenever all the Bi'sdid read from the register WriteABi in the meantime (1 � i � NA).constant NA : the number of neighbours of A ;var ri : message sent from the ith neighbour of A ;bi : alternate bit sent from the ith neighbour of A ;ci : alternate bit sent from A to the ith neighbour of A ;li : value of the last alternate bit sent from A and read by the ith neighbour of A;8

while true dofor i = 1 to NA dowrite(WriteABi ; geti) ;ci read(ControlABi) ;write(ControlABi; (ci + 1) mod 2) ;endforrepeatfor i = 1 to NA dori read(WriteBiA) ;bi read(ControlBiA) ;write(CheckControlABi; bi) ;ci read(ControlABi) ;li read(CheckControlBiA) ;endforuntil (8i 2 [1; NA] ci = li)endwhile Fig. 3. The weak rendezvous protocol for A.7 Concluding RemarksThe paper presents two very basic general protocols for the design of fair and reliable self-stabilizingcommunication primitives. Both protocols work in arbitrary networks and also ensure minimal schedul-ing properties, whatever the initial con�guration of the system of processes and the activations by thescheduler.Each primitive can be used as a �black box� by a separate protocol, handling the procedures in moreinvolved self-stabilizing algorithms. Thus, the protocols may be modi�ed according to the designer'swill and needs: e.g., in speci�c topologies of networks a weak scheduling of communications may imposefewer neighbours to read from the registers. For example, with only one neighbour, a point to pointself-stabilizing pseudo-rendezvous mechanism may be completed. Along the same lines, the protocolsalso simulate reliable self-stabilizing message-passing in asynchronous distributed systems.Although the paper does not concern itself with complexity measures, it is worth mentioning thatwhen time is measured by some appropriately de�ned round complexity, the stabilization time of theread checking protocol is O(1).References[1] Y. Afek, G.M. Brown, Self-Stabilization of the Alternating-Bit Protocol, in the Proc. of theSymposium on Reliable Distributed Systems, (1989) 80-83.[2] Y. Afek, S. Kutten, M. Yung, Memory-e�cient self-stabilization on general networks, in the Procof the 4th International Workshop on Distributed Algorithms and Graphs (WDAG'90), LNCS 486,(Springer-Verlag 1990) 15-28.[3] L.O. Alima, J. Beauquier, A.K. Datta, S. Tixeuil, Self-stabilization with global rooted synchronizers,in the Proc. of the 18th International Conference on Distributed Computing Systems, (1998) 102-109.[4] E. Anagnostou, V. Hadzilacos, Tolerating Transcientand Permanent Failures, in Proc. of the 7th Int.Workshop on Distributed Algorithms (WDAG'93), LNCS 725, (Springer-Verlag 1993) 174-188.9

[5] A. Arora, M.G. Gouda, Distributed reset, IEEE Transactions on Computers, vol. 43 (1994) 1026-1038.[6] B. Awerbuch, Complexity of network synchronization, J. of the Association for Computing Machin-ery, vol. 32, No. 4 (1985) 804-823.[7] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese, Time optimal self-stabilizingsynchronization, in the Proc. of the 25th Annual ACM Symposium on Theory of Computing, (1993)652-661.[8] B. Awerbuch, B. Patt-Shamir, G. Varghese, Self-Stabilization by Local Checking and Correction, inthe Proc. of the 31st Annual IEEE Symposium on Foundation of Computer Science, (1991) 268-277.[9] B. Awerbuch, G. Varghese, Distributed program checking: a paradigm for building self-stabilizingdistributed protocols, in the Proc. of the 31st Annual IEEE Symposium on Foundations of ComputerScience, (1991) 258-267.[10] J. Beauquier, M. Gradinariu, C. Johnen, Memory space requirements for self-stabilizing leader elec-tion protocols, in Proc. of the 18th Annual ACM Symposium on Principles of Distributed Computing,(1999) 199-208.[11] A. Bui, A.K. Datta, F. Petit, V. Villain, Space optimal and fast self-stabilizing pif in tree networks,Technical Report RR. 98-06, LaRIA, Université de Picadie (1998).[12] S. Dolev, A. Israeli, S. Moran, Self-Stabilization of Dynamic Systems Assuming only Read/WriteAtomicity, Distributed Computing, 7 (1993) 3-16.[13] S. Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election, IEEE Transactionson Parallel and Distributed Systems, 8:4 (1997) 424-440.[14] S. Dolev, M.G. Gouda, M. Schneider, Memory requirements for silent stabilization, in Proc. of the15th Annual ACM Symposium on Principles of Distributed Computing, (1996) 27-34.[15] M.G. Gouda, N. Multari, Stabilizing Communication Protocols, IEEE Transactions on Computers,40 (1991) 448-458.[16] C.A.R. Hoare, Communicating Sequential Processes, Communication of the ACM, vol. 21, No 8(1978) 666-677.[17] S.T. Huang, N.S. Chen, A self-stabilizing algorithm for constructing breadth-�rst trees, InformationProcessing Letters, 41, 1992, 109-117.[18] C. Johnen, L.O. Alima, A.K. Datta, S. Tixeuil, Self-stabilizing neighborhood synchronizer in treenetworks, in Proc. of the 19th IEEE International Conference on Distributed Computing Systems,1999.[19] I. Lavallée, C. Lavault, C. Johnen, Exorcisme ou communication �able et équitable autostabilisée,RR. 001, LRIA, Université Paris 8 (Jan. 1998).[20] G Varghese, Self-stabilization by counter �ushing, in Proc. of the 13th Annual ACM Symposium onPrinciples of Distributed Computing, (1994) 244-253.10

