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A ”joint+marginal” algorithm for polynomial optimization

Jean B. Lasserre and Tung Phan Thanh

Abstract— We present a new algorithm for solving a poly-
nomial program P based on the recent ”joint + marginal”
approach of the first author for parametric polynomial opti-
mization. The idea is to first consider the variablex1 as a
parameterand solve the associated(n−1)-variable (x2, . . . , xn)
problem P(x1) where the parameterx1 is fixed and takes values
in some interval Y1 ⊂ R, with some probability ϕ1 uniformly
distributed on Y1. Then one considers the hierarchy of what
we call ”joint+marginal” semidefinite relaxations, whose duals
provide a sequence of univariate polynomial approximations
x1 7→ pk(x1) that converges to the optimal value function
x1 7→ J(x1) of problem P(x1), ask increases. Then withk fixed
à priori, one computes̃x∗

1 ∈ Y1 which minimizes the univariate
polynomial pk(x1) on the interval Y1, a convex optimization
problem that can be solved via a single semidefinite program.
The quality of the approximation depends on how largek can
be chosen (in general for significant size problemsk = 1 is the
only choice). One iterates the procedure with now an(n− 2)-
variable problem P(x2) with parameter x2 in some new interval
Y2 ⊂ R, etc. so as to finally obtain a vector̃x ∈ R

n. Preliminary
numerical results are provided.

I. I NTRODUCTION

Consider the general polynomial program

P : f∗ := min
x

{f(x) : x ∈ K } (1)

wheref is a polynomial,K ⊂ R
n is a basic semi-algebraic

set, andf∗ is theglobalminimum ofP (as opposed to a local
minimum). One way to approximate the global optimum
f∗ of P is to solve a hierarchy of either LP-relaxations or
semidefinite relaxations as proposed in e.g. Lasserre [4], [5].
Despite practice with the semidefinite relaxations seems to
reveals that convergence is fast, the matrix size in thei-th
semidefinite relaxation of the hierarchy grows up as fast as
O(ni). Hence, for large size (and sometimes even medium
size) problems, only a few relaxations of the hierarchy can
be implemented (the first, second or third relaxation). In that
case, one only obtains a lower bound onf∗, and no feasible
solution in general. So an important issue is:

How can we use the result of thei-th semidefinite relax-
ation to find an approximate feasible solution of the original
problem?

For some well-known special cases of 0/1 optimization
like e.g. the celebrated MAXCUT problem, one may gener-
ate a feasible solution with guaranteed performance, from a
randomized rounding procedure that uses an optimal solution
of the first semidefinite relaxation (i.e. withi = 1); see
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Goemans and Williamson [2]. But in general there is no
such procedure.

Our contribution is to provide two relatively simple al-
gorithms for polynomial programs which builds up upon
the so-called ”joint+marginal” approach (in short (J+M))
developed in [6] forparametric polynomial optimization.
The (J+M)-approach for variablesx ∈ R

n and parameters
y in a simple setY, consists of the standard hierarchy of
semidefinite relaxations in [4] where one treats the param-
etersy also as variables. But now the moment-approach
implemented in the semidefinite relaxations, considers ajoint
probability distribution on the pair(x,y), with the additional
constraint that themarginal distribution onY is fixed (e.g.
the uniform probability distribution onY); whence the name
”joint+marginal” .

For everyk = 1, . . . , n, let the compact intervalYk :=
[xk, xk] ⊂ R be contained in the projection ofK into the
xk-coordinate axis. In the context of the (non-parametric)
polynomial optimization (1), the above (J+M)-approach can
be used as follows in what we call the(J+M)-algorithm :
• (a) Treatx1 as a parameter in the compact intervalY1 =

[x1, x1] with associated probability distributionϕ1 uniformly
distributed onY1.
• (b) with i ∈ N fixed, solve thei-th semidefinite

relaxation of the (J+M)-hierarchy [6] applied to problem
P(x1) with n− 1 variables(x2, . . . , xn) and parameterx1,
which is problemP with the additional constraint that the
variablex1 ∈ Y1 is fixed. The dual provides a univariate
polynomialx1 7→ J1

i (x1) which, if i would increase, would
converge toJ1(x1) in the L1(ϕ1)-norm. (The mapv 7→
J1(v) denotes the optimal value function ofP(v), i.e. the
optimal value ofP given that the variablex1 is fixed at the
value v.) Next, computex̃1 ∈ Y1, a global minimizer of
the univariate polynomialJ1

i on Y1 (e.g. this can be done
by solving a single semidefinite program). Ideally, wheni is
large enough,̃x1 should be close to the first coordinatex∗

1of
a global minimizerx∗ = x∗

1, . . . , x
∗

n) of P.
• (c) go back to step (b) with nowx2 ∈ Y2 ⊂ R instead

of x1, and withϕ2 being the probability measure uniformly
distributed onY2. With the same method, compute a global
minimizer x̃2 ∈ Y2, of the univariate polynomialx2 7→
J2
i (x2) on the intervalY2. Again, if i would increase,J2

i

would converge in theL1(ϕ2)-norm to the optimal value
function v 7→ J2(v) of P(x2) (i.e. the optimal value ofP
given that the variablex2 is fixed at the valuev.) Iterate until
one has obtained̃xn ∈ Yn ⊂ R.

One ends up wih a point̃x ∈
∏n

k=1 Yk and in general
x̃ 6∈ K. One may then usẽx as initial guess of a local
optimization procedure to find a local minimum̂x ∈ K.



The rational behind the (J+M)-algorithm is that ifi is large
enough andP has a unique global minimizerx∗ ∈ K, then
x̃ as well asx̂ should be close tox∗.

The computational complexity before the local optimiza-
tion procedure is less than solvingn times thei-th semidef-
inite relaxation in the (J+M)-hierarchy (which is itself of
same order as thei-th semidefinite relaxation in the hierarchy
defined in [4]), i.e., a polynomial in the input size ofP.

When the feasible setK is convex, one may define the
following variant to obtain afeasiblepoint x̃ ∈ K. Again,
let Y1 be the projection ofK1 into thex1-coordinate axis.
Oncex̃1 ∈ Y1 is obtained in step (b), consider the new opti-
mization problemP(x̃1) in then−1 variables(x2, . . . , xn),
obtained fromP by fixing the variablex1 ∈ Y1 at the
value x̃1. Its feasible set is the convex setK1 := K ∩ {x :
x1 = x̃1}. Let Y2 be the projection ofK1 into the x2-
coordinate axis. Then go back to step (b) with nowx2 ∈ Y2

as parameter and(x3, . . . , xn) as variables, to obtain a point
x̃2 ∈ Y2, etc. until a point̃x ∈

∏n

k=1 Yk is obtained. Notice
that now x̃ ∈ K becauseK is convex. Then proceed as
before withx̃ being the initial guess of a local minimization
algorithm to obtain a local minimizer̂x ∈ K of P.

II. T HE ” JOINT+MARGINAL APPROACH TO PARAMETRIC

OPTIMIZATION

Most of the material of this section is taken from [6].
Let R[x,y] denote the ring of polynomials in the variables
x = (x1, . . . , xn), and the variablesy = (y1, . . . , yp),
whereasR[x,y]d denotes its subspace of polynomials of
degree at mostd. Let Σ[x,y] ⊂ R[x,y] denote the subset of
polynomials that are sums of squares (in short s.o.s.). For a
real symmetric matrixA the notationA � 0 stands forA
is positive semidefinite.

The parametric optimization problem

Let Y ⊂ R
p be a compact set, called theparameterset,

and letf, hj ∈ R[x], j = 1, . . . ,m. Let K ⊂ R
n × R

p be
the basic closed semi-algberaic set:

K := {(x,y) : y ∈ Y ; hj(x,y) ≥ 0, j = 1, . . . ,m} (2)

and for eachy ∈ Y, let

Ky := {x ∈ R
n : (x,y) ∈ K }. (3)

For eachy ∈ Y, fixed, consider the optimization problem:

J(y) := inf
x

{ f(x,y) : (x,y) ∈ K }. (4)

The interpretation is as follows:Y is a set of parameters
and for each instancey ∈ Y of the parameter, one wishes
to compute an optimaldecision vector x∗(y) that solves
problem (4). Letϕ be a Borel probability measure onY, with
a positive density with respect to the Lebesgue measure on
R

p (or with respect to the counting measure ifY is discrete).
For instance

ϕ(B) :=

(
∫

Y

dy

)−1 ∫

Y∩B

dy, ∀B ∈ B(Rp),

is uniformly distributed onY. Sometimes, e.g. in the context
of optimization with data uncertainty,ϕ is already specified.
The idea is to useϕ (or more precisely, its moments) to get
information on the distribution of optimal solutionsx∗(y)
of Py, viewed as random vectors. In this section we assume
that for everyy ∈ Y, the setKy in (3) is nonempty.

A. A related infinite-dimensional linear program

Let M(K) be the set of finite Borel probability measures
on K, and consider the following infinite-dimensional linear
programP:

ρ := inf
µ∈M(K)

{
∫

K

f dµ : πµ = ϕ

}

, (5)

whereπµ denotes the marginal ofµ on R
p, that is,πµ is a

probability measure onRp defined byπµ(B) := µ(Rn×B)
for all B ∈ B(Rp). Notice thatµ(K) = 1 for any feasible
solutionµ of P. Indeed, asϕ is a probability measure and
πµ = ϕ one has1 = ϕ(Y) = µ(Rn × R

p) = µ(K).
The dual ofP is the the following infinite-dimensional

linear program:

ρ∗ := sup
p∈R[y]

∫

Y

p(y) dϕ(y)

f(x)− p(y) ≥ 0 ∀(x,y) ∈ K.

(6)

Recall that a sequence of measurable functions(gn) on
a measure space(Y,B(Y), ϕ) converges tog, ϕ-almost
uniformly, if and only if for every ǫ > 0, there is a set
A ∈ B(Y) such thatϕ(A) < ǫ and gn → g, uniformly on
Y \A.

Theorem 1 ([6]): Let both Y ⊂ R
p and K in (2) be

compact and assume that for everyy ∈ Y, the setKy ⊂ R
n

in (3) is nonempty. LetP be the optimization problem (5)
and letX∗

y := {x ∈ R
n : f(x,y) = J(y)}, y ∈ Y. Then:

(a) ρ =

∫

Y

J(y) dϕ(y) andP has an optimal solution.

(b) Assume that forϕ-almosty ∈ Y, the set of minimizers
of X∗

y is the singleton{x∗(y)} for somex∗(y) ∈ Ky. Then
there is a measurable mappingg : Y → Ky such that

g(y) = x∗(y) for every y ∈ Y

ρ =

∫

Y

f(g(y),y) dϕ(y),
(7)

and for everyα ∈ N
n, andβ ∈ N

p:
∫

K

xαyβ dµ∗(x,y) =

∫

Y

yβ g(y)α dϕ(y). (8)

(c) There is no duality gap between (5) and (6), i.e.ρ = ρ∗,
and if (pi)i∈N ⊂ R[y] is a maximizing sequence of (6) then:

∫

Y

| J(y)− pi(y) | dϕ(y) → 0 as i → ∞. (9)

Moreover, define the functions(p̃i) as follows:p̃0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . .

Then p̃i → J(·), ϕ-almost uniformly.



An optimal solutionµ∗ of P encodesall information on
the optimal solutionsx∗(y) of Py. For instance, letB be a
given Borel set ofRn. Then from Theorem 1,

Prob (x∗(y) ∈ B) = µ∗(B× R
p) = ϕ(g−1(B)),

with g as in Theorem 1(b).
Moreover from Theorem 1(c), any optimal or nearly

optimal solution ofP∗ provides us with some polynomial
lower approximation of the optimal value functiony 7→ J(y)
that converges toJ(·) in the L1(ϕ) norm. Moreover, one
may also obtain a piecewise polynomial approximation that
converges toJ(·), ϕ-almost uniformly.

In [6] the first author has defined a (J+M)-hierarchy of
semidefinite relaxations(Qi) to approximate as closely as
desired the optimal valueρ. In particular, the dual of each
semidefinite relaxationQi provides a polynomialqi ∈ R[y]
bounded above byJ(y), andy 7→ q̃i(y) := maxℓ=1,...i qℓ(y)
convergesϕ-almost uniformly to the optimal value function
J , as i → ∞. This last property is the rationale behind the
heuristic developed below.

III. A ” JOINT+MARGINAL ” APPROACH

Let Nn
i := {α ∈ N

n : |α| ≤ i} with |α| =
∑

i αi. With
a sequencez = (zα) indexed in the canonical basis(xα) of
R[x], let Lz : R[x] → R be the linear mapping:

f (=
∑

α

fα(x)) 7→ Lz(f) :=
∑

α

fα zα, f ∈ R[x].

Moment matrix: The moment matrixMi(z) associated
with a sequencez = (zα), α ∈ N

n
2i, has its rows and columns

indexed in the canonical basis(xα), and with entries.

Mi(z)(α, β) = Lz(x
α+β) = zα+β, ∀α, β ∈ N

n
i .

Localizing matrix: Let q be the polynomialx 7→ q(x) :=
∑

u qux
u. The localizing matrixMi(q z) associated withq ∈

R[x] and a sequencez = (zα), has its rows and columns
indexed in the canonical basis(xα), and with entries.

Mi(q z)(α, β) = Lz(q(x)x
α+β)

=
∑

u∈Nn

quzα+β+u, ∀α, β ∈ N
n
i .

A sequencez = (zα) ⊂ R is said to have arepresenting
finite Borel measure supported onK if there exists a finite
Borel measureµ such that

zα =

∫

K

xα dµ, ∀α ∈ N
n.

A. A ”joint+marginal” approach

With {f, (gj)mj=1} ⊂ R[x], let K ⊂ R
n be the basic

compact semi-algebraic set

K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}, (10)

and consider the polynomial optimization problem (1).
Let Yk ⊂ R be some interval[xk, xk], assumed to be

contained in the orthogonal projection ofK into the xk-
ccordinate axis.

For instance when thegj ’s are affine (so thatK is a
convex polytope),xk (resp.xk) solves the linear program
min(resp max ) {xk : x ∈ K}. Similarly, whenK is convex
and defined by concave polynomials, one may obtainxk and
xk, up to (arbitrary) fixed precision. In many cases, (upper
and lower) bound constraints on the variables are already
part of the problem definition.

Let ϕk the probability measure uniformly distributed on
Yk, hence with moments(βℓ) given by:

βℓ =

∫ x1

x
1

xkdϕk(x) =
xℓ+1
k − xℓ+1

k

(k + 1)(xk − xk)
(11)

for every ℓ = 0, 1, . . .. Define the following parametric
polynomial program inn− 1 variables:

Jk(y) = min
x

{f(x) : x ∈ K; xk = y}, (12)

or, equivalentlyJk(y) = min {f(x) : x ∈ Ky}, where for
everyy ∈ Y:

Ky := {x ∈ K; xk = y}. (13)

Observe that by definition,f∗ = min
x

{Jk(x) : x ∈ Yk},

andKy 6= ∅ whenevery ∈ Yk, whereYk is the orthogonal
projection ofK into thexk-coordinate axis.

Semidefinite relaxations

To compute (or at least approximate) the optimal value
ρ of problem P in (5) associated with the parametric
optimization problem (12), we now provide a hierarchy of
semidefinite relaxations in the spirit of those defined in [4].
Let vj := ⌈(deg gj)/2⌉, j = 1, . . . ,m, and fori ≥ maxj vj ,
consider the semidefinite program:

ρik = inf
z

Lz(f) (14)

s.t. Mi(z) � 0, Mi−vj (gj z) � 0, j = 1, . . . ,m

Lz(x
ℓ
k) = βℓ, ℓ = 0, 1, . . .2i,

where(βℓ) is defined in (11). We call (14) theparametric
semidefinite relaxationof P with parametery = xk. Observe
that without the ”moment” constraintsLz(x

ℓ
k) = βℓ, ℓ =

1, . . . 2i, the semidefinite program (14) is a relaxation ofP

and if K is compact, its corresponding optimal valuef∗

i

converges tof∗ ask → ∞; see Lasserre [4].
Letting g0 ≡ 0, the dual of (14) reads:

ρ∗ik = sup
λ,(σj)

2i
∑

ℓ=0

λℓ βℓ

s.t. f(x)−
2i
∑

ℓ=0

λℓx
ℓ
k = σ0 +

m
∑

j=1

σj gj

σj ∈ Σ[x], 0 ≤ j ≤ m;
deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(15)

Equivalently, recall thatR[xk]2i is the space of univariate
polynomials of degree at most2i, and observe that in (15),
the criterion reads

2i
∑

ℓ=0

λℓ βℓ =

∫

Yk

pi(y)dϕk(y),



where pi ∈ R[xk]2i is the univariate polynomialxk 7→
pi(xk) :=

∑2i
ℓ=0 λℓx

ℓ
k. Then equivalently, the above dual

may be rewritten as:

ρ∗ik = sup
pi,(σj)

∫

Yk

pidϕk

s.t. f − pi = σ0 +

m
∑

j=1

σj gj

pi ∈ R[xk]2i; σj ∈ Σ[x], 0 ≤ j ≤ m;
deg σjgj ≤ 2i, 0 ≤ j ≤ m.

(16)

Assumption 1:The family of polynomials(gj) ⊂ R[x] is
such that for someM > 0,

x 7→ M − ‖x‖2 = σ0 +
m
∑

j=1

σj gj ,

for someM and some s.o.s. polynomials(σj) ⊂ Σ[x].
Theorem 2:Let K be as (10) and Assumption 1 hold.

Let the intervalYk ⊂ R be the orthognal projection ofK
into the xk-coordinate axis, and letϕk be the probability
measure, uniformly distributed onYk. Assume thatKy in
(13) is not empty, lety 7→ Jk(y) be as in (12) and consider
the semidefinite relaxations (14)-(16). Then asi → ∞:

(a) ρik ↑

∫

Yk

Jkdϕk andρ∗ik ↑

∫

Yk

Jkdϕk

(b) Let (pi, (σi
j)) be a nearly optimal solution of (16), e.g.

such that
∫

Yk
pidϕk ≥ ρ∗ik − 1/i. Thenpi(y) ≤ Jk(y) for

all y ∈ Yk, and
∫

Yk

|Jk(y)− pi(y)| dϕk(y) → 0, as i → ∞. (17)

Moreover, if one defines̃p0 := p0, and

y 7→ p̃i(y) := max [ p̃i−1(y), pi(y) ], i = 1, 2, . . . ,

then p̃i(y) ↑ Jk(y), for ϕk-almost ally ∈ Yk, and sop̃i →
Jk, ϕk-almost uniformly onYk.

Theorem 2 is a direct consequence of [6, Corollary 2.6].

B. A ”joint+marginal” algorithm for the general case

Theorem 2 provides a rationale for the following (J+M)-
algorithm in the general case. In what follows we use the
primal and dual semidefinite relaxations (14)-(15) with index
i fixed.

ALGO 1: (J+M)-algorithm: non convex K, relaxation i

Set k = 1;
Step k: Input: K, f , and the orthogonal projectionYk =
[xk, xk] of K into the xk-coordinate axis, with associated
probability measureϕk, uniformly distributed onYk.
Ouput: x̃k ∈ Yk.

Solve the semidefinite program (16) and from an optimal
(or nearly optimal) solution(pi, (σj)) of (16), get a global
minimizer x̃k of the univariate polynomialpi on Yk.
If k = n stop and output̃x = (x̃1, . . . , x̃n), otherwise set
k = k + 1 and repeat.

Of course, in general the vector̃x ∈ R
n does not

belong toK. Therefore a final step consists of computing
a local minimumx̂ ∈ K, by using some local minimization
algorithm starting with the (unfeasible) initial pointx̃. Also
note that whenK is not convex, the determination of bounds
xk and xk for the intervalYk may not be easy, and so
one might be forced to use a subintervalY′

k ⊆ Yk with
conservative (but computable) boundsx′

k ≥ xk andx′

k ≤ xk.
Remark 1:Theorem 2 assumes that for everyy ∈ Yk,

the setKy in (13) is not empty, which is the case ifK is
connected. IfKy = ∅ for y in some open subset ofYk, then
the semidefinite relaxation (14) has no solution (ρik = +∞),
in which case one proceeds by dichotomy on the intervalYk

until ρik < ∞.

C. A ”joint+marginal” algorithm whenK is convex

In this section, we now assume that the feasible setK ⊂
R

n of problemP is convex (and compact). The idea is to
computex̃1 as in ALGO 1 and then repeat the procedure
but now for the(n − 1)-variable problemP(x̃1) which is
problemP in which the variablex1 is fixedat the valuẽx1.
This alternative is guaranteed to work ifK is convex (but
not always ifK is not convex).

For every j ≥ 2, denote byxj ∈ R
n−j+1 the vector

(xj , . . . , xn), and byx̃j−1 ∈ R
j−1 the vector(x̃1, . . . , x̃j−1)

(and sox̃1 = x̃1).
Let the intervalY1 ⊂ R be the orthogonal projection of

K into the x1-coordinate axis. For everỹx1 ∈ Y1, let the
intervalY2(x̃1) ⊂ R be the orthogonal projection of the set
K ∩ {x : x1 = x̃1} into the x2-coordinate axis. Similarly,
givenx̃2 ∈ Y1×Y2(x̃1), let the intervalY3(x̃2) ⊂ R be the
orthogonal projection of the setK∩{x : x1 = x̃1; x2 = x̃2}
into thex3-coordinate axis, and etc. in the obvious way.

For everyk = 2, . . . , n, and x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×
Yk−1(x̃k−2), let f̃k(xk) := f((x̃k−1,xk)), and g̃kj (xk) :=
gj((x̃k−1,xk)), j = 1, . . . ,m. Similarly, let

Kk(x̃k−1) := {xk : g̃kj (xk) ≥ 0, j = 1, . . . ,m},

= {xk : (x̃k−1,xk) ∈ K}, (18)

and consider the problem:

P(x̃k−1) : min {f̃k(xx) : xx ∈ Kj(x̃k−1)}, (19)

i.e. the original problemP where the variablexℓ is fixed at
the valuex̃ℓ, for everyℓ = 1, . . . , k − 1.

Write Yj(x̃k−1) = [xk, xk], and letϕk be the probability
measure uniformly distributed onYk(x̃k−1).

Let z be a sequence indexed in the monomial basis
of R[xk]. With index i, fixed, the parametric semidefinite
relaxation (14) with parameterxk, associated with problem
P(x̃k−1), reads:

ρik = inf
z

Lz(f̃k)

s.t. Mi(z), Mi−vj (g̃
k
j z) � 0, j = 1, . . . ,m

Lz(x
ℓ
k) = βℓ, ℓ = 0, 1, . . . , 2i,

(20)



where (βℓ) is defined in (11). Its dual is the semidefinite
program (withg̃k0 ≡ 1)):

ρ∗ik = sup
pi,(σj)

∫

Yk(x̃k−1)

pidϕk (21)

s.t. f̃k − pi = σ0 +
m
∑

j=1

σj g̃
k
j

pi ∈ R[xk]2i, σj ∈ Σ[xk], j = 0, . . . ,m

deg σj g̃
k
j ≤ 2i, j = 0, . . . ,m.

The important difference between (14) and (20) is thesize
of the corresponding semidefinite programs, sincez in (14)
(resp. in (20)) is indexed in the canonical basis ofR[x] (resp.
R[xk]).

The (J+M)-algorithm forK convex

Recall that the orderi of the semidefinite relaxation is
fxed. The (J+M)-algorithm consists ofn steps. At stepk of
the algorithm, the vector̃xk−1 = (x̃1, . . . , x̃k−1) (already
computed) is such that̃x1 ∈ Y1 and x̃ℓ ∈ Yℓ(x̃ℓ−1) for
every ℓ = 2, . . . , k − 1, and so the setKk(x̃k−1) is a
nonempty compact convex set.

ALGO 2: (J+M)-algorithm: convex K, relaxation i

Set k = 1;
Step k ≥ 1: Input: For k = 1, x̃0 = ∅, Y1(x̃0) = Y1;
P(x̃0) = P, f1 = f and g̃1j = gj , j = 1, . . . ,m.
For k ≥ 2, x̃k−1 ∈ Y1 ×Y2(x̃1) · · · ×Yk−1(x̃k−2).
Output: x̃k = (x̃k−1, x̃k) with x̃k ∈ Yk(x̃k−1).
Consider the parametric semidefinite relaxations (20)-(21)
with parameterxk, associated with problemP(x̃k−1) in (19).

• From an optimal solution of (21), extract the univariate
polynomialxk 7→ pi(xk) :=

∑2i
ℓ=0 λ

∗

ℓx
ℓ
k.

• Get a global minimizerx̃k of pi on the interval
Yk(x̃k−1) = [xk, xk], and set̃xk := (x̃k−1, x̃k).

If k = n stop and ouput̃x ∈ K, otherwise setk = k + 1
and repeat.

As K is convex,x̃ ∈ K and one may stop. A refinement
is to now usẽx as the initial guess of a local minimization
algorithm to obtain a local minimizer̂x ∈ K of P. In view
of Theorem 2, the larger the indexi of the relaxations (20)-
(21), the better the valuesf(x̃) andf(x̂).

Of course,ALGO 2 can also be used whenK is not
convex. However, it may happen that at some stagek, the
semidefinite relaxation (20) may be infeasible becauseJk(y)
is infinite for some values ofy ∈ Yk(x̃k−1). This is because
the feasible setK(x̃k−1) in (18) may be disconnected.

IV. COMPUTATIONAL EXPERIMENTS

We report on preliminary computational experiments on
some non convex NP-hard optimization problems. We have
tested the algorithms on a set of difficult global optimization
problems taken from Floudas et al. [1]. To solve the semidef-
inite programs involved inALGO 1 and in ALGO 2 , we
have used the GloptiPoly software [3] that implements the
hierarchy of semidefinite relaxations defined in [4, (4.5)].

Prob n m f∗ i ALGO 2 rel. error

2.2 5 11 -17 2 -17.00 0%
2.3 6 8 -361.5 1 -361.50 0%
2.6 10 21 -268.01 1 -267.00 0.3%
2.9 10 21 0 1 0.00 0%

2.8C1 20 30 -394.75 1 -385.30 2.4%
2.8C2 20 30 -884.75 1 -871.52 1.5%
2.8C3 20 30 -8695 1 -8681.7 0.15%
2.8C4 20 30 -754.75 1 -754.08 0.09%
2.8C5 20 30 -4150.41 1 -3678.2 11%

TABLE I

ALGO 2 FOR CONVEX SETK

A. ALGO 2 for convex setK

Those problems are taken from [1,§2]. The setK is a
convex polytope and the functionf is a nonconvex quadratic
polynomialx 7→ x′Qx+b′x for some real symmetric matrix
Q and vectorb. In Table I one displays the problem name,
the numbern of variables, the numberm of constraints, the
gobal optimumf∗, the indexi of the semidefinite relaxation
in ALGO 2 , the optimal value obtained using the output of
ALGO 2 as initial guess in a local minimization algorithm
of the MATLAB toolbox, and the associated relative error.
As recommended in Gloptipoly [3] for numerical stability
and precision, the problem data have been rescaled to obtain
a polytope contained in the box[−1, 1]n. As one may see,
and excepted for problem 2.8C5, the relative error is very
small. For the last problem the relative error (about11%)
is relatively high despite enforcing some extra upper and
lower boundsxi ≤ xi ≤ xi, after reading the optimal
solution. However, using̃x ∈ K as initial guess of the
local minimization algorithm in MATLAB, one still finds
the optimal valuef∗.

B. ALGO 1 for non convex setK

In this section,K = {x : x ∈ Ω; x′Qx+b′x ≥ 0} where
Ω is a convex polytope andQ is neither semidefinite nor
negative definite. Again in tables below,n (resp.m) stands
for the number of variables (resp. constraints), and the value
displayed in the ”ALGO 1 ” column is obtained in running a
local minimization algorithm of the MATLAB toolbox with
the outputx̃ of ALGO 1 as initial guess.

In Problems3.2, 3.3 and3.4 from Floudas et al. [1,§3],
one has2n linear bound constraints and additional linear and
non convex quadratic constraints. As one may see, the results
displayed in Table II are very good.

For the Haverly Pooling problem 5.2.2 in [1,§5] with three
different data sets, one hasn = 9 andm = 24 constraints,
among which3 nonconvex bilinear constraints and18 linear
bound constraints0 ≤ xi ≤ 500, i = 1, . . . , 9. In the first
run of ALGO 1 we obtained bad results because the bounds
are very loose and in the hierarchy of lower bounds(f∗

k )
in [4] that converge tof∗, if on the one handf∗

2 = f∗, on
the other hand the lower boundf∗

1 < f∗ is loose. In such a
case, and in view of the rationale behind the ”joint+marginal”
approach, it is illusory to obtain good results withALGO



Prob n m f∗ i ALGO 1 rel. error

3.2 8 22 7049 1 7049 0%
3.3 5 16 -30665 1 -30665 0%
3.4 6 18 -310 1 -298 3.8%

TABLE II

ALGO 1 FOR NON CONVEX SETK

Prob n m f∗ i ALGO 1 rel. error

5.2.2 (1) 9 24 400 1 400 0%
5.2.2 (2) 9 24 600 1 600 0%
5.2.3 (3) 9 24 750 1 750 0%

TABLE III

ALGO 1 FOR NON CONVEX SETK

1 or ALGO 2 . Therefore, from the optimal solutionx∗ in
[1], and when0 < x∗

i < 500, we have generated stronger
bounds0.4x∗

i ≤ xi ≤ 1.6x∗

i . In this case,f∗

1 is much closer
to f∗ and we obtain the global minimumf∗ with ALGO
1 followed by the local minimization subroutine; see Table
III. Importantly, in ALGO 1 , and before running the local
optimization subroutine, one ends up with a non feasible
point x̃. Moreover, we had to sometimes use the dichotomy
procedure of Remark 1 because ifYk is large, one may have
Ky = ∅ for y in some open subintervals ofYk.

Finally, in problem 5.2.4 in [1] we also obtained the global
optimumf∗. In Problem 7.2.2, to handle the non-polynomial
functionx0.5

i , one uses the liftingu2
i = xi, ui ≥ 0, i = 5, 6.

Here again, one obtains the optimal valuef∗ with ALGO 1
followed by a local optimization subroutine.

C. ALGO 2 for MAXCUT

Finally we have testedALGO 2 on the famous NP-hard
discrete optimization problem MAXCUT, which consists of
minimizing a quadratic formx 7→ x′Qx on {−1, 1}n, for
some real symmetric matrixQ ∈ R

n×n. In this case,Yk =
{−1, 1} and the marginal constraintLz(x

ℓ
k) = γℓ in (20)

need only be imposed forℓ = 1, because of the constraints
x2
k = 1 for everyk = 1, . . . , n. Accordingly, in an optimal

solution of the dual (21),pi ∈ R[xk] is an affine polynomial
xk 7→ pi(xk) = λ0+λ1xk for some scalarsλ0, λ1. Therefore
after solving (21) one decides̃xk = −1 if pi(−1) < pi(1)
(i.e. if λ1 > 0) and x̃k = 1 otherwise.

Recall that inALGO 2 one first computẽx1, then withx1

fixed at the valuẽx1, one computes̃x2, etc. until one finally
computesx̃n, and getx̃. In what we call the ”max-gap”
variant of ALGO 2 , one first solvesn programs (14)-(15)

n 20 30 40

(ρ− f∗

1
)/|f∗

1
| 10.3% 12.3% 12.5%

TABLE IV

RELATIVE ERROR FORMAXCUT

with parameterx1 to obtain an optimal solutionpi(x1) =
λ1
0 + λ1

1x1 of the dual (15), then withx2 to obtain(λ2
0, λ

2
1),

etc. finally withxn to obtain(λn
0 , λ

n
1 ). One then selectk such

that |λk
1 | = maxℓ |λℓ

1|, and computẽxk accordingly. This is
because the larger|λ1|, (i.e. the larger|pi(−1)− pi(1)|), the
more likely the choice−1 or 1 is correct. Afterxk is fixed
at the valuex̃k, one repeats the procedure for the(n − 1)-
problemP(x̃k), etc.

We have tested the ”max-gap” variant for MAXCUT
problems on random graphs withn = 20, 30 and40 nodes.
For each value ofn, we have solved50 randomly generated
problems and100 for n = 40. The probability ϕk on
Yk = {−1, 1} is uniform (i.e.,β1 = 0 in (20)). Let f∗

1

denote the optimal value of the Shor’s relaxation with famous
Goemans and Williamson’s 0.878 performance guarantee.
Let ρ denote the cost of the solutionx ∈ {−1, 1}n generated
by the ALGO 2 . In Table IV below, we have reported the
average relative error(ρ−f∗

1 )/|f
∗

1 |, which as one may see, is
comparable with the Goemans and Williamson (GW) ratio.

V. CONCLUSION

First preliminary results are promising, even with small
relaxation orderi. When the feasible set is non convex, it
may become difficult to obtain a feasible solution and an
interesting issue for further investigation is how to proceed
when Ky = ∅ for y in some open subinterval ofYk

(proceeding by dichotomy onYk is one possiblity).

REFERENCES

[1] C.A. Floudas et al.,Handbook of Test Problems in Local and Global
optimization, Kluwer Academic Publishers, Dordrecht, 1999.

[2] M.X. Goemans, D.P. Williamson,Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite pro-
gramming, Journal of the ACM 42, pp.1115-1145, 1995.

[3] D. Henrion, J. B. Lasserre, J. Lofberg,GloptiPoly 3:
moments, optimization and semidefinite programming,
Optim. Methods and Softw. 24, pp. 761–779, 2009.
http://www.laas.fr/∼henrion/software/gloptipoly3/

[4] J.B. Lasserre,Global optimization with polynomials and the problem
of moments, SIAM J. Optim.11, pp. 796–817, 2001.

[5] J.B. Lasserre,Polynomial programming: LP-relaxations also con-
verge, SIAM J. Optim. 15, pp. 383–393, 2004.

[6] J.B. Lasserre,A ”joint+marginal” approach to parametric polynomial
optimization, SIAM J. Optim. 20, pp. 1995-2022, 2010.


