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Abstract. We study one-head machines through symbolic and topological dynamics. In
particular, a subshift is associated to the subshift, and we are interested in its complexity
in terms of realtime recognition. We emphasize the class of one-head machines whose
subshift can be recognized by a deterministic pushdown automaton. We prove that this
class corresponds to particular restrictions on the head movement, and to equicontinuity
in associated dynamical systems.

Keywords: Turing machines, discrete dynamical systems, subshifts, formal lan-
guages.

We study the dynamics of a system consisting in a finite automaton (the head)
that can write and move over an infinite tape, like a Turing machine. We use the
approach of symbolic and topological dynamics. Our interest is to understand its
properties and limitations, and how dynamical properties are related to computa-
tional complexity.

This approach was initiated by Kůrka in [1] with two different topologies: one
focused on the machine head, and the other on the tape. The first approach was
further developed in [2,3]. More recently, in [4,5], a third kind of dynamical system
was associated to Turing machines, taking advantage of the following specificity:
changes happen only in the head position whilst the rest of the configuration re-
mains unaltered. The whole evolution can therefore be described by the sequence
of states taken by the head and the symbols that it reads. This observation actu-
ally yields a factor map between Kůrka’s first dynamical system and a one-sided
subshift.

In [4], it has been proved that machines with a sofic subshift correspond to
machines whose head makes only bounded cycles. We prove here a similar char-
acterization of machines with a shift that can be recognized by a deterministic
pushdown automaton. Moreover, we establish links between these two properties
and equicontinuity in all three spaces.

In the first section, we recall the definitions and fundamental results. The sec-
ond section is devoted to defining the different dynamical systems associated to
one-head machines, and to stating basic results about equicontinuity within these
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systems. In the last section, we define the class of bounded-zigzag machines and
state our main results.

1 Preliminaries

Consider a finite alphabet A, and M to stand either for N or for Z. For a finite
word u ∈ A∗, we will note |u| its length, and index its letters from 0 to |u| − 1,
unless specified otherwise. We denote A≤m the set of words on A of length at most
m ∈ N. If i, j ∈ Z and i ≤ j, Ji, jK will denote the closed interval of integers
i, . . . , j, Ji, jJ = Ji, j − 1K, etc. A point x ∈ AM will be called configuration. For a
configuration or a word x, we define xJi,jK = xi . . . xj . A⊔B will denote the disjoint
union of two sets A and B.

1.1 Topological dynamics

A dynamical system (DS) is a pair (X,F ) where X is a metric space and F a
continuous self-map of X . Sometimes the space will be implicit.

The orbit of a point x ∈ X is the set of the F t(x) for all iteration t > 0. A point
x is called preperiodic if there exist two naturals q, p such that F q+p(x) = F q(x).
If q and p are minimal, then q is called the transient and p the period. When t = 0,
x is called periodic.

A point x ∈ X is isolated if there is an ε > 0 such that the ball of radius ε
and center x contains only x. A point x ∈ X is equicontinuous for F if, for any
ε > 0, there exists some δ > 0 such that, for any y ∈ X with d(x, y) < δ, we have
that, for all t ∈ N, d(F t(x), F t(y)) < ε. The DS (X,F ) is equicontinuous if, for
any ε > 0, there exists some δ > 0 such that, for any x, y ∈ X with d(x, y) < δ, we
have that, for all t ∈ N, d(F t(x), F t(y)) < ε. When X is compact, this is equivalent
to having only equicontinuous points. The DS (X,F ) is almost equicontinuous if
it has a residual set of equicontinuous points.

A DS (X,F ) is a factor of a DS (Y,G) if φG = Fφ for some continuous onto
map φ : Y → X , then called a factor map.

1.2 Subshifts

We can endow the space AM of configurations with the product of the discrete
topology ofA. This topology is based on the cylinders [u]i =

{

x ∈ AM
∣

∣ xJi,i+kJ = u
}

,
where i ∈ M, k ∈ N and u ∈ Ak; this notation shall be extended to semi-infinite
words. If M = Z, u ∈ A2r+1 and r ∈ N, we note [u] = [u]−r.

This topology corresponds to the metric d : x, y 7→ 2−minxi 6=yi
|i|. In other words,

d(x, y) ≤ 2−i ⇔ xJ−i,iK = yJ−i,iK; two points are ”close to each other” if they
coincide ”around position 0”. It is easy to extend this metric to spaces AM × Q



and AM ×Q× Z. In that setting, AM and AM ×Q are compact, but AM ×Q× Z

is not.
The shift map is the function σ : AM → AM defined by σ(x)i = xi+1. A subshift

Σ is a closed subset of AM which is also invariant by σ. It can be seen as a compact
DS where the map is σ.

A subshift Σ is characterized by its language L(Σ) =
{

zJi,jJ

∣

∣ z ∈ Σ and i, j ∈ M
}

,
containing all finite patterns that appear in some of its configurations. We denote
Ln(Σ) = L(Σ) ∩An. If the language L(Σ) is regular, then we say that Σ is sofic.
Equivalently, a sofic subshift can be seen as the set of labels of infinite paths in some
finite arc-labeled graph; this graph basically corresponds to the finite automaton
that recognizes its language, without initial nor terminal state.

Any subshift can also be defined from a set of forbidden finite patterns F ⊂ A∗

by Σ =
{

z ∈ AM
∣

∣∀i, j ∈ M, zJi,jJ /∈ F
}

. If F can be chosen to be finite, then Σ is
a subshift of finite type (SFT).

A DS F onAM is completely determined by the family of its factor subshifts, i.e.
the factors which are also subshifts in some alphabet. Up to some letter renaming,
all factor subshifts of F are of the form (P(F j(x)))j∈N, where P is a finite partition
of X into closed open sets, and P(y) denotes the unique element of this partition
which contains y ∈ X .

1.3 Deterministic pushdown automata

Definition 1 A deterministic pushdown automaton (DPDA) is a tuple
(A,Ω, Γ,⊥, λ, o0, F ) where A is the input alphabet, Ω is the set of states , Γ
is the stack alphabet, ⊥ ∈ Γ is the stack bottom, o0 is the initial state, F ⊂ Ω
is the subset of terminal states and λ : A× Ω × Γ → Ω × Γ≤2 is the transition
function such that: if λ(a, o,⊥) = (o′, µ), then µ contains exactly one ⊥, which is
on its end, and if λ(a, o, β) = (o′, µ) with β 6= ⊥, then µ does not contain any ⊥.

An (infinite) arc-labeled graph G is associated to the automaton. Its set of
vertices is Ω × (Γ \ {⊥})∗⊥, and there exists an arc from (e, µ) to (f, ν) labeled a
if and only if ν = ρµJ1,|µ|−1J and λ(a, e, µ0) = (f, ρ). The word µ is called the stack
content.

The language L recognized by the automaton consists of all words w in A∗ such
that there exists a finite path in G with label w, starting on vertex (o0,⊥) and
ending in some vertex (o, µ) with o ∈ F . A subshift is recognized by the automaton
if its language is recognized by the automaton.

2 Turing Machines

In this article, a Turing Machine (TM) is a triple (A,Q, δ), where A and Q are the
finite tape alphabet and set of state, and δ : A × Q → A × Q × {−1, 1} the rule.



We do not particularize any halting state. We can see the TM as evolving on a
bi-infinite tape. The phase space is X = AZ ×Q× Z. Any element of X is called
a configuration and represents the state of the tape, the state of the head and
its position. We consider here the topology introduced in Section 1.1. Thus, the
farther the head is from the center, the less important become the read symbols,
but the head state and position remain important. On this (non-compact) space,
T : X → X by T (x, q, i) = (xK−∞,iJaxKi,∞J, p, i + d) if δ(xi, q) = (a, p, d) gives
the corresponding DS. We can extend the shift function to TM configurations by
σ : (x, q, i) 7→ (σ(x), q, i− 1), and it clearly commutes with T .

We can represent the head state and position by adding a “mark” on the tape.
If we want a compact space, this corresponds to the following phase space:

XH =
{

x ∈ (A ⊔ (A×Q))Z
∣

∣ |{ i ∈ Z| xi ∈ A×Q}| ≤ 1
}

where the head position is implicitly given by the only cell with a symbol in
(A×Q), and the function TH : XH −→ XH is defined by TH(xK−∞,iJ(b, q)xKi,∞J) =
yK−∞,i+dJ(yi+d, p)yKi+d,∞J, where y = xK−∞,iJaxKi,∞J and δ(b, q) = (a, p, d), and
TH(x) = x if x does not contain any symbol in A × Q. With the topology of
XH as a subshift of (A⊔ (A×Q))Z, the head state and movement are less impor-
tant when the head is far from 0. This model corresponds to the TM with moving
head defined by Kůrka in [1], which highlights the tape configuration. It is a par-
ticular case of cellular automaton, i.e. based on some uniformly-applied local rule.
We can intuitively see a continuous injection Φ : X → XH such that ΦT = THΦ
and Φσ = σΦ.

Focusing on the movements and states of the head, [1] also defines the system
with moving tape TT : XT → XT on the (compact) space
XT = AZ × Q by TT (x, q) = (σd(xK−∞,0JaxK0,∞J), p) if δ(x0, q) = (a, p, d). Here
the head is assumed to be always at position 0, and the tape is shifted at each step
according to the rule. There is a continuous non-injective surjection Ψ : X → XT

such that ΨT = TTΨ .
Finally, we can have a vision centered on the head and which emphasizes only

the relevant part of the configuration, as in [4,5]. The system ST is the one-sided
subshift on alphabet Q × A, which is the image of the factor map τT : XT → ST

defined by τT (x, q)t = (y0, p) if (y, p) = T t
T (x, q). In other words, it represents the

sequence of pairs corresponding to the successive states of the head and the letters
that it reads.

XH

TH

��

Xoo
Φoooo

T

��

Ψ // // XT

TT

��

τT // // ST

σ

��

XH Xoo
Φoooo Ψ // // XT

τT // // ST

Similarly, we will note SH the one-sided subshift on alphabet Q⊔ (A×Q) which
is the image of the factor map τH : XH → SH defined by τH(x)t = T t

H(x)0. Unlike



ST , this subshift does not always contain the relevant information, since the head
can be completely absent.

2.1 Equicontinuous configurations

Topological notions can actually formalize various types of head movements. One
first example is equicontinuity of the DS TT . It is strongly related with periodicity,
as the next remark establishes. This is natural since the symbol that the head
reads in XT is always at position 0. Hence, if the head visits an infinite number
of cells, say to the right, any perturbation on the initial configuration will get to
position 0, and thus will become largely significant for this topology. We conclude
the following.

Remark 1 Let x ∈ X be a configuration and T a machine over X. The following
statements are equivalent:

1. The head position on x is bounded.
2. x is preperiodic for T .
3. Φ(x) is preperiodic for TH .
4. Ψ (x) is equicontinuous for TT .
5. τTΨ (x) is preperiodic and isolated –i.e. equicontinuous– in ST .

Moreover, if one of the above occurs, then Ψ (x) is preperiodic for TT , x is equicon-
tinuous for T and Φ(x) is equicontinuous for TH . The set of equicontinuous con-
figurations for TT is a union of cylinders of XT .

If Ψ (x) is preperiodic for TT , then τTΨ (x) is also periodic (for σ), but x need
not be periodic for T . For example, a machine that simply moves to the left on
every symbol will produce a periodic point for TT if the initial configuration x is
spatially periodic. From the previous remark, such a point is not equicontinuous,
and τTΨ (x) is a non-isolated periodic point in ST , because any perturbation of x
will produce a neighbor of τTΨ (x) in ST . Periodic points for T generate isolated
periodic points in ST because, once the system falls in the periodic behavior, its
future is fixed.

Preperiodicity in T also implies equicontinuity in TH , but TH may have other
equicontinuous points. The previously mentioned machine which always go to the
left produces equicontinuous points for TH which are not equicontinuous nor prepe-
riodic for TT .

The following proposition states that the equicontinuity of preperiodic configu-
rations is transmitted to factor subshifts of TH , which will be helpful in the sequel.

Proposition 1 If z ∈ SH is a preperiodic word involving the machine head in-
finitely often, then it is isolated.



Proof. We can assume that z is periodic, and then include the transient evolution
in a larger ball. Let p ∈ N \ {0} be the period of z; let us prove that the ball
U = [zJ0,|Q||A|p+1(p+1)2K]0 of SH is equal to {z}. Let z′ ∈ U and x ∈ τ−1

H (z′). It can be

seen that the head computing over z′ always remains between the positions ⌊−p/2⌋
and ⌊p/2⌋, which correspond to at most |Q| |A|p+1 (p+ 1) distinct finite patterns.
Hence there are i < j ≤ |Q| |A|p+1 (p+1) such that T i(x) = T j(x); as a consequence
σi(z′) is (j − i)-periodic. Together with σi(z), they are both (j − i)p-periodic and
coincide on their first (j − i)p letters, since (j − i)p ≤ |Q| |A|p+1 (p+ 1)2 − i. As a
conclusion, z′ = z. ⊓⊔

2.2 Preperiodic machines

When all the configurations are uniformly preperiodic, we say that the system
is preperiodic, i.e. there exist q, p such that T q+p = T q. In the present case,
global preperiodicity of each of the considered systems comes directly from local
preperiodicity of T ; and it is equivalent to global equicontinuity of each of the
systems as the next theorem establishes.

Theorem 1 Considering a machine, the following statements are equivalent:

1. The head position is (uniformly) bounded.
2. Any configuration of X (or XH , XT ) is preperiodic.
3. T (or TH , TT , ST , SH) is preperiodic.
4. T (or TH , TT , ST , SH) is equicontinuous.
5. ST (or SH) is finite.

Proof. We give only an idea of the main implications.

– It is quite obvious from the commutation diagrams that the preperiodicity of
T , TH and TT are equivalent, and they imply those of ST and SH . They also
imply, from Remark 1, that the head position is bounded.

– Clearly, the equicontinuity of T and TH are equivalent.
– It is known from cellular automata theory that the equicontinuity of TH , its

preperiodicity, that of all its configuration and the finiteness of SH are equiva-
lent.

– If the head position on all configurations is bounded, then from Remark 1 they
are all equicontinuous for TT . XT being compact, TT is equicontinuous.

– It is obvious that ST is finite if and only if the head reads a bounded part of
the initial configuration. ⊓⊔

2.3 Sofic machines

Now we allow computations where the head can go arbitrarily ”far”, but without
ever making ”large” movements back.



Definition 2 We say that a machine makes a right-cycle ( left-cycle) of width
N ∈ N over a configuration x ∈ AZ × Q × Z and a cell i ∈ Z if there exist time
steps 0 = t0 < t1 < t2 such that the head position is i at time 0 and t2, and is
i+N (i−N) at time t1.

In this section, we consider machines whose cycles have bounded width, i.e. there
exists an integer N such that the machine cannot make any cycle wider than N .
These machines have been studied in [5,4], where it was proved that they are
exactly the machines for which ST is sofic.

Theorem 2 Considering a machine, the following statements are equivalent:

1. ST is sofic.
2. All configurations of XH that contain the head are equicontinuous.

Proof.

1⇒2 From [4], we know that there exists an integer N such that the machine can-
not make any cycle wider than N ∈ N, and let x ∈ XH a configuration
containing the head within J−k, kK, for some k ∈ N. Let us show that if
y ∈ [xJ−k−N,k+NK], then for every t ∈ N we have T t

H(y) ∈ [T t
H(x)J−k,kK]. Let

us remark that while the head is inside J−k −N, k +NK, we necessarily have
T t
H(y) ∈ [T t

H(x)J−k,kK]. Let us suppose that there exists j ∈ N such that the head
is outside J−k −N, k +NK at time j and let us take this j minimal. Then the
heads of T j

H(x) and T
j
H(y) are outside J−k −N, k +NK. At some moment, the

head has gone from k to k +N (or from −k −N); if it comes back to J−k, kK,
it would make a cycle. Therefore, the head cannot come back to J−k, kK, and
this is true both for x and y, and we have the result.

2⇒1 Conversely, assume that the head can do arbitrarily wide right-cycles in cell 0,
i.e. for each j ∈ N there exists a cylinder [uj]0 of XH with uj ∈ (A × Q)Anj ,
with nj > j, such that over each configuration of [uj]0, the head starts at 0,
it visits the whole interval J0, njK and comes back to cell 0. Let us take some
configuration cj in each cylinder [uj]0. By compactness, the sequence (cj)j∈N
admits an adhering value c, on which the head necessarily goes infinitely far to
the right without ever coming back to cell 0. By construction, for any N , there
is some j ∈ N such that the configuration cjJ−N,NK = cJ−N,NK. But there exists a

time t ∈ N such that T t
H(c

j) has the head in cell 0, whilst T t
H(c) has not; hence

c is not equicontinuous. ⊓⊔

From [5], any of the former properties implies that any configuration is either
preperiodic or gives rise to a movement of the head arbitrarily far in some direction,
but the converse is not true. Any configuration of SH is preperiodic, hence this
subshift is numerable.



3 Bounded-zigzag machines

Whilst the sofic machines did not allow any large cycle, we can wonder what
happens when allowing a single one, or a finite number of these. The first step is
to allow one cycle of arbitrary width but to forbid two overlapped unbounded cycles
(zigzags). We remark that two independent cycles, each on a different direction,
are allowed in this case.

Definition 3 We say that a machine makes a right-zigzag (resp., left-zigzag) of
width N ∈ N over a configuration x ∈ AZ × Q× Z and a cell i ∈ Z, if there exist
time steps 0 = t0 < t1 < t2 such that the machine position is i at times t0 and t2,
and i+N (resp., i−N) at time t1. We say that a machine is bounded-zigzag if
the maximal width of the zigzags that it can make is finite.

3.1 Complexity of ST

While bounded cycle machines have a sofic shift ST , the bounded-zigzag machines
have a subshift recognized by a deterministic pushdown automata. The words of
ST contain information about the tape symbols and the head state. From this
data, it is possible to deduce the tape symbol of the visited cells and the relative
position of the head at each time step. In order to recognize ST , we can register
this information and check its coherence at each time step. When the width of the
cycles is bounded, we only need to register a finite part of the tape (bounded-cycle
machines have a subshift that can be recognized by a finite state automaton).

When only one “wide” cycle can be done, we can register the information in a
stack, from which it can be read exactly once (and is lost forever once read). This
corresponds to the fact that the cells registered in the stack cannot be visited any
more and zigzags cannot be allowed.

Theorem 3 A machine T is bounded-zigzag if and only if ST is recognized by
some deterministic pushdown automaton.

3.2 Complexity of SH

If we now adopt a point of view fixed on the tape –SH– rather than the head, a
cycle in the subshift corresponds to a waiting time during which cell 0 does not
change. We can adapt the previously built DPDA so that it recognizes exactly
these waiting words between two visits of the head. The key point here is that
these languages are unary, and unary context-free languages are regular (see for
example [6]), and thus they can be recognized with a finite automaton.

When the machine is bounded-zigzag, the head can make at most one long cycle
by side. The rest of the time, the head is either moving closer to or farther from



cell 0, or staying in some finite window around cell 0. All of these behaviors can be
recognized by a finite automaton, thus the language of SH is regular. Therefore,
we obtain a surprising reduction in language complexity when changing the point
of view: if ST is recognized by some DPDA, then SH is sofic. Note that, up to a
rescaling of the tape alphabet, all factor subshifts can be reduced to the case of
SH .

Theorem 4 For any bounded-zigzag machine, all the factor subshifts of TH are
sofic.

The converse of this theorem is false: we can construct a machine with a tape
with n levels, where the head vertically shifts down the content of each level while
moving right. It rebounds when it finds a wall in the lowest level (which is erased
in the same way), and does the same in the opposite direction. We can see that
the machine can make arbitrarily wide n-zigzags, each of independent length, in
such a way that the factor subshifts of TH are sofic.

Nevertheless, we can prove that this kind of construction is possible only with
a bounded n. Let us introduce this formally.

Definition 4 We say that a machine makes an n-cycle of width N ∈ N over
configuration x ∈ AZ × Q × Z and cell i ∈ Z, if there exist 2n + 1 time steps
0 = t0 < t1 < . . . < t2n such that the head is in position i at time t2q and outside
J−N,NK at time t2q+1, for each q ∈ J0, nK. We say that the machine is n-bounded-
cycle if there is some N such that the head cannot make n-cycles of width larger
than N .

When ST is sofic, the machine is 1-bounded cycle. Considering some machine T ,
we denote ψN(x) ∈ N ⊔ {+∞} the maximum n such that the machine can make
an n-cycle of width N over configuration x. Clearly, T is n-bounded cycle if and
only if for some N ∈ N, ψN is bounded by n− 1.

Let us call Φi(x) the set of time steps for which the head has position i ∈ Z

when computing over configuration x. This set is linked to cycles by the following
intuitive observation.

Proposition 2 If T is an n-bounded-cycle machine, then there exists p ∈ N such
that for any cell i ∈ Z and any non-preperiodic configuration x ∈ X, |Φi(x)| ≤ p.

Proof. Let n,N ∈ N be such that max {ψN(x)| x ∈ X} = n − 1, and x ∈ X
such that |Φ0(x)| > p = 2n |A|2N+1 – the case i 6= 0 can be obtained by shifting.
Consider {t0, . . . , tp} ⊂ Φ0(x) with t0 < t1 < . . . < tp. If we consider an (n−1)-cycle
over x in cell 0, we can see that there exist tk1 < tk2 < . . . < tkn−1)

such that for any
i ∈ J1, n− 1K, the head goes beyond N or −N between time steps tki and tki+1, but
not between (possibly equal) times tki+1 and tki+1

. This means that tki is the last
time that the head is in 0 before going beyond J−N,NK. Let k0 = −1 and kn = p,



in such a way that J0, pK =
⋃n

i=0 Ii, where Ii = Jki + 1, ki+1K for 0 ≤ i ≤ n. There

are n+1 such intervals, so one of them, say Ii, has at least |A|
2N+1 elements; this

is all the more the case for
q
tki+1, tki+1

y
⊃

{

tkj
∣

∣ ki < j ≤ ki+1

}

. Hence, between

time steps tki+1 and tki+1
there are at least |A|2N+1 consecutive time steps in Φ0(x)

such that the head stays within the interval of cells J−N,NK. As a result, there
are i, j ∈

q
tki+1, tki+1

y
with i < j and T i(x) = T j(x), which implies that x is

preperiodic. ⊓⊔

Theorem 5 If SH is sofic, then T is n-bounded-cycle for some n.

Proof. Assume that SH = τH(XH) is recognized by some finite automaton with
N states, and that there exists some configuration x ∈ X on which the machine
makes some N -cycle of width N . Let t0, . . . , t2N be as in the definition of N -
cycles, and u = τH(x)J0,t2N J. Let o0 . . . ot2N+1 be the corresponding path of the
finite automaton. We can see that there are i < j < N such that ot2i = ot2j , hence
there is some periodic infinite word z ∈ τH(XH) corresponding to the path w that
repeats the cycle (ot2i . . . ot2j ). From Proposition 1, z is isolated. As a consequence,
w is the only path to start from ot2i . Therefore, its vertices are all different, and
t2j − t2i ≤ N , but in this case the head does not have the time to go beyond
J−N,NK between these two iterations, which is a contradiction. We have proved
that T is N -bounded-cycle. ⊓⊔

Here, too, the converse is false, since it is easy to build a machine doing a given
number of arbitrarily wide rebounds on specific wall characters before stopping.
The language of such a machine cannot be regular because the time intervals
between two rebounds are not independent.

3.3 Almost equicontinuity

We have already seen that in sofic machines, almost all configurations of XH are
equicontinuous. It is still so when allowing n-cycles, though in this case there are
some configurations with head which are not equicontinuous – recall that Theo-
rem 2 is an equivalence.

Theorem 6 If T is an n-bounded-cycle machine for some n, then TH is almost
equicontinuous.

Proof. By compactness of the space, it is enough to prove that for any cylinder
[u] and any k ∈ N, there exist some x ∈ [u] and some m ∈ N such that for
any y ∈ [xJ−m,mK] and any t ∈ N, T t

H(y) ∈ [T t
H(x)J−k,kK]. Let N ∈ N be as in

the definition of n-bounded-cycle machine, [u] a cylinder of XH and k ∈ N. If [u]
contains some preperiodic configuration with the head, then we can easily find m
thanks to Remark 1. Otherwise, let us consider some configuration x ∈ [u] (with



the head) maximizing |Φ−k(x) ⊔ Φk(x)|, which is finite thanks to Proposition 2.
Let m ∈ Z be such that m ≥ k and the interval J−m,mK contains all the cells
visited, when computing from x, up to time step t = max(Φ−k(x) ⊔ Φk(x)). Then
we can see that any configuration y ∈ [xJ−m,mK] has the same evolution as x until
this time step, and that after that, its head cannot visit cell −k nor k, otherwise
it would contradict the maximality of x. We can deduce that the head of x (then
also y) is outside J−k, kK after iteration t, otherwise it would be trapped between
−k and k and would become periodic. We observe, then, that the cells of J−k, kK
evolve exactly in the same way for configurations x and y. ⊓⊔

The converse is untrue: imagine a machine whose head rebounds between two
walls, each time shifting them to the left. Every configuration where the head
starts enclosed between two walls is equicontinuous. Any finite pattern can be
extended by adding walls to enclose the head, therefore equicontinuous points are
dense, but the head can make an arbitrary number of arbitrarily wide cycles.

Conclusion

The complexity of the Turing machine will always be very hard to understand. In
our attempt to treat this issue through the theories of topological and symbolic
dynamics, we have found interesting relations between:

– the head movements that can be observed during the computation;
– the density of equicontinuous points;
– the language complexity of the associated subshifts ST and SH .

These relations introduce a new point of view on how computation is performed. In
addition to generalizing them to more machines, the next step would be to study
Turing machines as computing model by introducing a halting state, and to link
all of these considerations to the result itself of the computation, and eventually
the temporal or spatial complexity of the computation.
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Proofs

The Ogden Lemma [7] is a well-know generalization to the case of pushdown
automata of the pumping lemma on finite automata. It can be expressed on paths
of the graph as follows.

Lemma 1 Consider a DPDA (A,Ω, Γ,⊥, λ, o0, F ), and (o0, µ
0) . . . (on, µ

n) some
path of its graph and I ⊂ J0, nK a subset of distinguished positions of size |I| > q =

2|Ω|2|Γ |2+1. Then there exist four positions 0 ≤ l1 ≤ l2 < l3 ≤ l4 ≤ n and such that:

1. (ol1 , µ
l1
0 ) = (ol2 , µ

l2
0 );

2. (ol3 , µ
l3
0 ) = (ol4 , µ

l4
0 );

3. ∀i ∈ Jl1, l4K , |µi| ≥
∣

∣µl1
∣

∣;
4. ∀i ∈ Jl2, l3K , |µi| ≥

∣

∣µl2
∣

∣.
5. (o0, µ

0) . . . (ol1 , µ
l1)(ol2+1, µ̃

l2+1) . . . (ol3, µ̃
l3)(ol4+1, µ

l4+1) . . . (on, µ
n) is also a valid

path of the graph, where µ̃t = µl1µt

K|µl2 |,|µt|J;
6. I ∩ Jl2, l3J 6= ∅;
7. |I ∩ Jl1, l4J| ≤ q;
8. Either I ∩ J0, l1J 6= ∅ 6= I ∩ Jl1, l2J or I ∩ Jl3, l4J 6= ∅ 6= I ∩ Jl4, nJ.

If T is a machine with rule δ : A×Q→ A×Q× {−1, 0, 1} and α, q ∈ A×Q,
then we note δA(α, q) = β, δQ(α, q) = p and δD(α, q) = d if δ(α, q) = (β, p, d). If
u = (u, q, n) ∈ Ak ×Q×Z, then we can define the corresponding cylinder in space
X :

[u]i =
{

y, p, j ∈ AZ ×Q× Z
∣

∣ y ∈ [u]i and p = q and (n ∈ Ji, i+ |u|J ⇒ j = n)
}

.

Let ε denote the empty word.
Theorem 3 comes from the following lemmas.

Lemma 2 Let N be a fixed natural number and T a Turing machine. Given two
partial configurations u = (u, p, 0), v = (v, q, k) ∈ A2N+1 × Q × J−N,NK, there
exists a DFA Cu,v that recognizes the language Cu,v of the words (τTΨ (x))

t
j=0 for

t ∈ N, x ∈ [u] such that T t(x) ∈ [v] and for any j ∈ J0, tJ the head position of
T j(x) is in K−N,NJ.

Moreover, if x satisfies the conditions of Cu,v, then every y ∈ [u] also does, with
the same time t.

The language Cu,v can be either empty, a singleton or, when v is periodic for T ,
infinite. The automaton Cu,v simply simulates T by loading u on its memory, and
making the partial configuration over cells K−N,NJ evolve simply by applying the
machine rule. The next lemma corresponds to similar and more evolved proof.



Lemma 3 Let N be a fixed natural number and let T be a Turing machine that
cannot do 1-zigzags of width N . If we have three partial configurations u = (u, p,N), v =
(v, q, k), u′ = (u′, p′, 0) ∈ A2N+1 ×Q× N such that uJ−N,0K = vJ−N,0K and Cu′,u 6= ∅,
then there exists a DPDA Ru,v that recognizes the language Ru,v of the words
(τTΨ (x))

t
j=0 for t ∈ N, x ∈ [u] such that T t(x) ∈ [v] and for any j ∈ J0, tJ, the

head position of T j(x) is strictly positive.
Moreover, if x satisfies the conditions of Ru,v, then every y such that yK0,∞J =

xK0,∞J also does, with the same time t.
Symetrically, if u = (u, p,−N), v = (v, q, k), u′ = (u′, p′, 0) ∈ A2N+1 ×Q × Z−

such that u J0, NK = v J0, NK and Cu′,u 6= ∅, then there exists a DPDA Lu,v that
recognizes the language Lu,v of the words (τTΨ (x))

t
j=0 for t ∈ N, x ∈ [u] such that

T t(x) ∈ [v] and for any j ∈ J0, tJ, the head position of T j(x) is strictly negative.
Moreover, if x satisfies the conditions of Lu,v, then every y such that yK−∞,0J =

xK−∞,0J also does, with the same time t.

Proof. We will do the proof only for Ru,v. The automaton registers the states of
the tape and updates them at each step. The states of the cells at the right of the
head will be registered in the internal state of the automaton, while the states of
the cells at the left will be stocked in the stack. The position of the head is given
by the stack depth; in this way the head is always reading the symbol w0.

We define actually an automaton in a slightly different model than previously
defined. The initial and terminal states actually involve the content of the stack:
we initially push a given finite word into the stack, and to accept a word, we verify
if both the terminal state and the stack content are in some given finite sets. It
is easy to see, by considering some complex encoding in the stack alphabet Γ ,
that this model can be simulated by the previous one. The automaton Ru,v has
input alphabet A × Q, states set Ω = (A≤N × Q) ⊔ {REJECT}, stack alphabet
A≤N ; its initial state is o = (uN , p) and initial stack content the mirror of uJ1,NJ;
it terminates when the pair composed of the internal state and the stack content
is in F = {((w, q), µ)| v = (µw, q, |µ|+ 1)}; its transition function λ is defined by:

λ((α, p), (w, q), β) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

((wJ1,NJ, δQ(α, q)), δA(α, p)β) if

{

p = q and δD(α, p) = 1
w = ε or w0 = α

((βδA(α, p)wJ1,N−2K, q
′), ε) if

{

p = q and δD(α, p) = −1
w = ε or w0 = α

REJECT in any other case.

Let us denote by µj ∈ A∗ and (wj, qj) ∈ A≤N×Q the respectively stack content
and internal state at iteration j ∈ N.

– We will prove by induction on j ∈ N, that if x satifies the conditions of Ru,v,
then T j(x) ∈ [(µjwj, qj, |µj|+ 1)].



For j = 0 it is clear, because x ∈ [u] ⊂ [(µ0w0, q0, N)]. Let us suppose that it
is true for a given j ∈ N, and let us prove it for j + 1.
If wj 6= ε, the head is reading the symbol wj

0 and is in state qj , hence the only
input accepted is (wj

0, q
j). In this case, the head will pass to state δQ(w

j
0, q

j)
and will move to δD(w

j
0, q

j). If δD(w
j
0, q

j) = 1 the automaton must push
δA(w

j
0, q

j) and “erase” wj
0. If δD(w

j
0, q

j) = −1 the automaton must replace
wj

0 by δA(w
j
0, q

j), pop a symbol and concatenate it to wj.
If wj = ε, the automaton will accept (α, p) only if p = qj ; in this case it will
work, assuming that wj = α.

– Now we need to prove that every word recognized by Ru,v is in fact in Ru,v.
We use recurrence to define the configuration x that certifies this. The first
condition is that x ∈ [(uN , p, N)], it follows from the first verification: (α, p) =
(w0

0, q
0) = (uN , p). Let us suppose that we have defined x = (x, p,N) such that

T s(x) ∈ [(µsws, qs, |µs| + 1)] for every s ≤ j and that the set of cells visited
by the head is Jr, iK for some r < N and i ≥ |µjwj| + 1. Let us prove that
the same is true for j + 1 for a suitable x′. We can note that the condition
T j(y) ∈ [(µjwj, qj, |µj|+ 1)] holds for any y satisfying yJ0,iK = xJ0,iK.
If wj = ε, then the automaton will accept any pair (α, p) with p = qj if cell
k = |µr|+1 has already been visited; the value of xk is important and cannot be
defined to be α. But if k was visited, its value was registered in ws for somme s,
and it has been erased because the head has moved to k −N in some moment
(then k > N). The existence of u′ = (u′, p′, 0) such that Cu′,u 6= ∅ insures that
the head has moved from 0 to N , which means that, the head has made a
1-zigzag to the right between cells k−N and k, with is forbiden by hypothesis.
Hence k has not been visited before (i < k) and we can define x′k = α.
When wj 6= ε, we know that the value of cell k in T j(x) is wj

0. The automaton
will only accept the pair (α, p) = (wj

0, q
j). This and the former construction

insure that T j+1(x) ∈ [(µj+1wj+1, qj+1, |µr+1|+ 1)]. ⊓⊔

Proof (of Theorem 3).
(⇒) Since ST does not regards the head position, we can suppose that the head

starts at 0. Let x be a configuration.

– If the head does not exit the interval J−N,NK during the whole evolution,
then only M is needed to recognize τTΨ (x), we conclude that τTΨ (x)J0,kK ∈
CxJ−N,NK,T

k(x)J−N,NK
, for every k ∈ N.

– If the head exits J−N,NK for the first time at iteration t0, by the right side, and
never comes back to cell 0 after that, then τTΨ (x)J0,kK ∈ CxJ−N,NK,T

t0(x)J−N,NK
RT t0 (x)J−N,NK,T

k(x)J−N,NK
,

for any k.
– If the head exits J−N,NK for the first time at iteration t0, by the right side,

comes back to 0 at iteration t1, and never exit J−N,NK again, then τTΨ (x)J0,kK ∈
CxJ−N,NK,T

t0(x)J−N,NK
RT t0 (x)J−N,NK,T

t1(x)J−N,NK
CT t1(x)J−N,NK,T

k(x)J−N,NK
, for any k.



– If the head exits J−N,NK for the first time at iteration t0, by the right side,
comes back to 0 at iteration t1, and exits J−N,NK again at t2 and does
not ever come back to 0, then τTΨ (x)J0,kK is in the concatenation of the lan-
guages CxJ−N,NK,T

t0(x)J−N,NK
, RT t0 (x)J−N,NK,T

t1(x)J−N,NK
, CT t1 (x)J−N,NK,T

t2(x)J−N,NK
and

LT t2(x)J−N,NK,T
k(x)J−N,NK

, for any k.

– If the head exits J−N,NK for the first time at iteration t0, by the right side,
comes back to 0 at iteration t1, exits J−N,NK again at t2, and comes back to 0 at
t3, then τTΨ (x)J0,kK is in the concatenation of CxJ−N,NK,T

t0(x)J−N,NK
,RT t0 (x)J−N,NK,T

t1(x)J−N,NK
,

CT t1 (x)J−N,NK,T
t2(x)J−N,NK

, LT t2(x)J−N,NK,T
t3(x)J−N,NK

and CT t3(x)J−N,NK,T
k(x)J−N,NK

, for
any k.

The analogous case when the head first exits J−N,NK through cell −N − 1
can be treated in a similar way. We conclude that for any x and any k, the word
τTΨ (x)J0,kK is in the language

⋃

u0,w

Cu0,w

⋃ ⋃

u0,v0,w

Cu0,v0Rv0,w

⋃ ⋃

u0,v0,u1,w

Cu0,v0Rv0,u1Cu1,w

⋃

⋃

u0,v0,u1,b1,w

Cu0,v0Rv0,u1Cu1,b1Lb1,w

⋃ ⋃

u0,v0,u1,b1,u2,w

Cu0,v0Rv0,u1Cu1,b1Lb1,u2Cu2,w

⋃

⋃

u0,b0,w

Cu0,b0Lb0,w

⋃ ⋃

u0,b0,u1,w

Cu0,b0Lb0,u1Cu1,w

⋃

⋃

u0,b0,u1,v1,w

Cu0,b0Lb0,u1Cu1,v1Rv1,w

⋃ ⋃

u0,b0,u1,v1,u2,w

Cu0,b0Lb0,u1Cu1,v1Rv1,u2Cu2,w ,

where ui ∈ A2N+1×Q×{0}, vi ∈ A2N+1×Q×{N}, bi ∈ A2N+1×Q×{−N}, and
w ∈ A2N+1 ×Q× J−N,NK. This language is recognizable by a DPDA since it is a
concatenation and union of languages which are recognizable by DPDAs, thanks
to Lemmas 2 and 3.

We have to prove now that this union of languages contains only words of
L(ST ). The proof is similar for each of the listed languages; we will develop it only
for Cu0,v0Rv0,u1Cu1,b1Lb1,w.

From Lemma 2, we know that if Cu0,v0 6= ∅, then any x ∈ [u0] will satisfy
τTΨ (x)J0,t0K ∈ Cu0,v0 if the head position at time t0 is N . From Lemma 3, if Rv0,u1 6=
∅, then there exists y ∈ [v0] and t1 such that T t1(y) ∈ [u1] and τTΨ (x)Jt0,t1K ∈ Rv0,u1.
We define xJN,∞J = yJN,∞J, which will satisfy τTΨ (x)J0,t1K ∈ Cu0,v0Rv0,u1. From the
same lemmas, we know that the values of x on K−∞,−NK are still “free” and
T t1(x) ∈ [u1] gives τTΨ (x)Jt1,t2K ∈ Cu1,b1, where t2 is the instant in which the head
reaches the cell −N for the first time.

We can suppose that Lb1,w is not empty – otherwise the result is trivial. Then
there exists y′ such that T k(y′) ∈ [w] and τTΨ (x)Jt2,kK ∈ Lb1,w. The values of y

′ over



K−N,∞J are not important and we can fix them to those of T t2(x), or in other
words, to define xK−∞,−NK = yK−∞,−NK. We obtain

τTΨ (x)J0,kK ∈ Cu0,v0Rv0,u1Cu1,b1Lb1,w .

This completes the proof.
(⇐) Let us assume that the language of ST is recognized by some DPDA M ,

that p is as in Lemma 1, and that the machine can do a 1-zigzag of width N = p+3;
we can easily find some configuration x with time steps 0 < t1 < t2 < t3 such that
the machine visits cell 1 at time 0, cell N at times t1 and t3, and cell 0 at time
t2. It can also be assumed that the zigzag is minimal, in the sense that no other
configuration satisfies the condition with a lower t3. Moreover, we can assume that
t1 is the last time when cell N is visited before t3, and t2 is the first time when cell
0 is visited. Note that t2 − t1 ≥ N . Let c = (o0, µ

0) . . . (ot3 , µ
t3) the corresponding

path in the graph of M .
The key point of the proof is that, thanks to the determinism of the automaton,

given w ∈ L(ST ), the i − th cell is visited by the head for the fist time if and
only if the corresponding vertex in the graph of M has out-degree more than 1.
Since the out degree of a vertex (q, u) of M depends only on (q, u0). Let V be
the set of vertices with out-degree 1, and L be the subset of V corresponding to
vertices whose unique out-neighbor is not in V and such that this unique transition
corresponds to a left movement of the head. These vertices represent cells which
are at the left extremity of some visited zone. For instance, note that the vertices
(ot1+1, µ

t1+1), . . . , (ot2−1, µ
t2−1) are in V since the corresponding visited cells are

between 1 and N , and (ot2−1, µ
t2−1) is the first vertex of the path c to belong to

L.
If we apply Lemma 1 with I = Kt1, t2 − 1J, we obtain time steps 0 ≤ l1 ≤ l2 <

l3 ≤ l4 < t3 such that

c̃ = (o0, µ
0) . . . (ol1, µ

l1)(ol2+1, µ̃
l2+1) . . . (ol3 , µ̃

l3)(ol4+1, µ
l4+1) . . . (ot3 , µ

t3)

is a valid path in the graph of M , i.e. it can be obtained from some configuration
x̃, which we can suppose to have the head in cell 1 without loss of generality.

– First, suppose l4 ≥ t2 − 1. Since |I ∩ Kl1, l4K| ≤ p, we must have l1 > t1. More-
over, the nonemptiness of I∩Kl2, l3K gives t1 < l1 ≤ l2 < t2−1 ≤ l4 ≤ t3. The ver-
tices of d = (ol1, µ

l1) . . . (ot2−1, µ
t2−1) are in V , then d is the only subpath of this

length starting at (ol1, µ
l1). Thus, (ol1, µ

l1)(ol2+1, µ̃
l2+1) . . . (ot2−1−l2+l1 , µ̃

t2−1−l2+l1) =
d. In particular, (ot2 , µ̃

t2) = (ot2−l2+l1 , µ
t2−l2+l1). From the lemma, (ot2 , µ̃

t2
0 ) =

(ot2 , µ
t2
0 ); the same automaton rule is applied in both vertices, and since (ot2 , µ

t2)
is not in V, we conclude that (ot2−l2+l1 , µ

t2−l2+l1) 6∈ V . This results in l1 = l2,
and from the Ogden Lemma we get l3 < l4 < t2, which is a contradiction.



– Now suppose that l4 < t2. As no vertex of c̃ is in L before (ot2−1, µ
t2−1), we can

see that, in this path too, the vertex (ot2 , µ
t2) corresponds, at time t2− l4+ l3−

l2 + l1, to the first visit of cell 0 – at the first time we go more to the left than
the visited zone. Since both paths coincide after that, the head does the same
movements, and we obtain that its position at the last vertex (ot3 , µ

t3) of path
c̃ is N . But, from path c, we know that (ot3 , µ

t3) ∈ V , so on x̃ too the machine
had already visited cell N before arriving on this vertex. It could not be after
time t2− l4+ l3− l2+ l1, since from then on we have followed the same positions
as in c, hence c̃ represents a 1-zigzag; from the last point of the lemma, it is
shorter than c, so x̃ satisfies the construction hypotheses of x but contradicts
its minimality. ⊓⊔

Proof (of Theorem 4). Let us define the following languages.

Ru,v =
{

uk0
∣

∣ ∃w ∈ Ru,v, |w| = k
}

Lu,v =
{

uk0
∣

∣ ∃w ∈ Lu,v, |w| = k
}

It is a context-free language since it is the transformation of a context-free
language through a letter morphism. It is also a regular language because it uses a
single symbol u0. If x and t satisfy the conditions ofRu,v, then τHΦ(x)J0,t−1K ∈ Ru,v.

We also define the language Cu,v of the words τHΦ(x)K0,tJ with t ∈ N and x ∈ [u0]
such that T t(x) ∈ [u1] and for any j ∈ J0, tJ, the head of T j(x) is in K−N,NJ.

It is recognized by an automaton that simulates M and accepts a pair (α, p) if
and only if the current head position is 0, and p and α match the simulation.

If the head starts at cell 0, the analogous concatenation and union of the Cs,
Rs and Ls would represent L(SH). But if the head does not start at 0, we need
to consider, for u = (u, p, 0) ∈ A2N+1 ×Q× {0}, the language Bu of the words ut0
for which there exists x with T t(x) ∈ [u] and for any j < t, the head of T j(x) is
not in cell 0. Bu represents the set of sequences of states observed at cell 0 until
the head reaches it, when the partial configuration u is observed in J−N,NK. Bu

is always an nonempty “interval”, i.e. Bu = {ut0| 0 ≤ t ≤ n} for some n ∈ N which
may be 0 – if u is a “garden of Eden”.

Since Bu is either finite or equal to {u
t
0| t ∈ N}, it can be recognized with a DFA

Bu. L(SH) will be the concatenation and union of Bs and the other languages.



Globally, we obtain that τFΦ(x)J0,kK is in the following union:

{xk0}
⋃ ⋃

u0,w

Bu0Cu0,w

⋃ ⋃

u0,v0,w

Bu0Cu0,v0Rv0,w

⋃ ⋃

u0,v0,u1,w

Bu0Cu0,v0Rv0,u1Cu1,w

⋃

⋃

u0,v0,u1,b1,w

Bu0Cu0,v0Rv0,u1Cu1,b1Lb1,w

⋃ ⋃

u0,v0,u1,b1,u2,w

Bu0Cu0,v0Rv0,u1Cu1,b1Lb1,u2Cu2,w

⋃

⋃

u0,b0,w

Bu0Cu0,b0Lb0,w

⋃ ⋃

u0,b0,u1,w

Bu0Cu0,b0Lb0,u1Cu1,w

⋃

⋃

u0,b0,u1,v1,w

Bu0Cu0,b0Lb0,u1Cu1,v1Rv1,w

⋃ ⋃

u0,b0,u1,v1,u2,w

Bu0Cu0,b0Lb0,u1Cu1,v1Rv1,u2Cu2,w .⊓⊔


