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Low-Resolution Electromagnetic
Tomography Neurofeedback

Marco Congedo, Joel F. Lubar, and David Joffe

Abstract—Through continuous feedback of the electroen-
cephalogram (EEG) humans can learn how to shape their brain
electrical activity in a desired direction. The technique is known as
EEG biofeedback, or neurofeedback, and has been used since the
late 1960s in research and clinical applications. A major limitation
of neurofeedback relates to the limited information provided by
a single or small number of electrodes placed on the scalp. We
establish a method for extracting and feeding back intracranial
current density and we carry out an experimental study to ascer-
tain the ability of the participants to drive their own EEG power
in a desired direction. To derive current density within the brain
volume, we used the low-resolution electromagnetic tomography
(LORETA).

Six undergraduate students (three males, three females) under-
went tomographic neurofeedback (based on 19 electrodes placed
according to the 10–20 system) to enhance the current density
power ratio between the frequency bands (16–20 Hz) and
(8–10 Hz). According to LORETA modeling, the region of interest
corresponded to the Anterior Cingulate (cognitive division). The
protocol was designed to improve the performance of the subjects
on the dimension of sustained attention. Two hypotheses were
tested: 1) that the current density power ratio increased over
sessions and 2) that by the end of the training subjects acquired
the ability of increasing that ratio at will. Both hypotheses received
substantial experimental support in this study.

This is the first application of an EEG inverse solution to neuro-
feedback. Possible applications of the technique include the treat-
ment of epileptic foci, the rehabilitation of specific brain regions
damaged as a consequence of traumatic brain injury and, in gen-
eral, the training of any spatial specific cortical electrical activity.
These findings may also have relevant consequences for the devel-
opment of brain–computer interfaces.

Index Terms—Brain–computer interfaces (BCI), electroen-
cephalogram (EEG) biofeedback, electromagnetic tomography,
inverse solution, low-resolution electromagnetic tomography
(LORETA), neurofeedback, -value combination.

I. INTRODUCTION

I N THIS STUDY, we merge two widespread techniques used
in electromagnetic neurosciences, electroencephalogram

(EEG) biofeedback (neurofeedback) and low-resolution elec-
tromagnetic tomography (LORETA). The aim is to enhance
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the human ability to self-regulate brain electric activity. Neu-
rofeedback is a technique used mainly in behavioral medicine
as an adjunct to psychotherapy. An electronic device records
EEG activity at a particular scalp location, extrapolates phys-
iological measurements from the signal and converts them to
visual and/or auditory representations dynamically covarying
with the brain signals. The process is real-time, that is, the
feedback modalities continuously represent brain activity with
a minimum constant delay. Typically, over 20-40 sessions of
30 min each, spaced two to three days apart, the participant
may acquire an enhanced awareness of the underlying brain
processes and learn how to shape them in a desired direction.
Research in this field commenced in the late 1960s (e.g.,
[1]–[3]) and focused mainly on the acquisition of control over
the posterior dominant rhythm, 8–13 Hz, known as alpha.
Clinical applications of neurofeedback have received much
attention. Several successful protocols have been established
for the treatment of attention deficit disorder [4]–[10], unipolar
depression [11], and epilepsy [12]–[16]. Research is currently
in progress relating to such disorders as traumatic brain injury
[17], anxiety disorders [18], and chronic fatigue syndrome
[19]. Similar learning processes related to the self-regulation of
EEG have been recently reported in studies on brain-computer
interfaces (BCIs, [20]).

Neurofeedback treatments do not always bring clinical im-
provements or rehabilitation. The most influential factor con-
tributing to the success of neurofeedback training is probably
the motivation of the participant, as argued in [6]. The neuro-
feedback process can be seen as a means of acquiring a cer-
tain degree of control over a physiological process. In fact, hu-
mans are not aware of their brain electrical activity directly,
but rather through the associated conscious phenomena in the
form of emotions, feelings, sensations, impressions, thoughts,
and pain. Hereafter, by motivation, we refer to the volitional
effort to achieve a result. In this sense, motivation belongs to
consciousness and is synonymous with will. For instance [21],
individuals are able to correctly estimate changes in their brain
activity, corroborating the hypothesis that by means of feedback
it is possible to acquire a certain awareness of physical brain
processes. In other words, the control exercised upon a quantifi-
able phenomenon (electrophysiology) appears to be volitional,
whereas in comparative research, e.g., [15], it has been shown
to be susceptible to operant conditioning. In any case, how the
brain achieves self-control by way of indirect feedback remains
an open issue.

The most attractive qualities of neurofeedback as a clinical
tool are that it is noninvasive and that it requires an active role
on the part of the patient. A major limitation relates to the limited
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information provided by a single or small number of electrodes
placed on the scalp. The response of any particular electrode is
spatially unspecific. The EEG is produced by the measurable
potential difference between the active electrodes and a refer-
ence location. The EEG signal mainly reflects the superposi-
tion of the electrical activity created by the ionic charge oscilla-
tion due to postsynaptic potentials of neocortical pyramidal cells
(see [22] and [23]). Thus, a large population of neurons beneath
an electrode is superimposed to create the measurable EEG but
relatively little spatial information can be derived from a single
channel of EEG. We argue that the learning process could be
improved using more spatially specific information, which is
achieved using an electromagnetic tomographic technique.

LORETA is a popular inverse solution technique. First
reported in [24] and further expanded in [25]–[27], it has been
recently reviewed in [28] and [29]. In its original formulation,
or in a slight variant called the variable resolution electro-
magnetic tomography (VARETA), LORETA has been used
extensively in applied electrophysiological research [30]–[33]
and has been evaluated independently in several laboratories
[34]–[37]. LORETA estimates the distribution of electrical neu-
ronal activity in three-dimensional space, utilizing information
acquired from a dense grid of electrodes placed over the entire
scalp. While EEG is a measure of electric potential differences,
LORETA estimates the current densities at depth which pro-
duce the measurable potential differences, or observed electric
field on the scalp. In the LORETA-Key1 implementation of
the LORETA method [27], the current density is estimated
for 2394 voxels of dimension 7 7 7 mm. The solution is
restricted to gray matter (including part of the Hippocampus,
Amygdala, and the entire Cingulate gyrus). LORETA-Key im-
plements a three shell spherical model (skin, skull, and cortex)
co-registered to the MRI atlas of Talairach and Tournoux [38].
Anatomical labeling of each grid point is then possible [39],
[40]. The co-registration makes use of realistic EEG electrode
coordinates reported in [41]. While traditional EEG information
is limited to activity measured on the scalp, intracranial activity
can be inferred through the use of inverse solution techniques.
In [25], it has been shown that this inverse reconstruction is
independent of the reference used in obtaining the EEG record-
ings as long as the reference is common to all electrodes. This
is another distinctive advantage of linear inverse solutions over
scalp EEG, which depends on the reference, because reference
free methods yield more consistent results across laboratories.

Since neurofeedback is provided using electronic equipment,
the whole field benefits from advances in technical instrumen-
tation. Reference [42] explored functional magnetic resonance
imaging (fMRI) neurofeedback. The aim of this study was to
explore the use of LORETA current density data for neuro-
feedback. Possible applications of the techniques described
herein include the treatment of epileptic foci, the rehabilita-
tion of specific brain regions damaged as a consequence of
traumatic brain injury, and the training of any specific cortical
electrical activity in general. However, the technique is inter-
esting beyond its clinic applications. Fields that may be using
tomographic neurofeedback-like methods in the future include

1LORETA-Key is freeware software available from the Key-Institute for
Brain-Mind Research, Zurich, Switzerland.

virtual reality and BCIs. Recent advances in noncontact detec-
tion of human EEG using ultrahigh input impedance sensors
[43] let us foresee in the near future a myriad of technological
implementations. However, we need to establish the validity
of the proposed method and this study constitutes the first step
in this direction. Our contribution is twofold: we implemented
the first LORETA tomographic neurofeedback system and we
provided the first experimental evidence of learning based upon
intracranial current density feedback. In the following sections,
we describe both of these innovations.

II. METHOD

A. Subjects

Six undergraduate students (three males, three females, be-
tween 19 and 22 years old) volunteered to participate in the ex-
periment in exchange for extra-credit and monetary compensa-
tion. They were selected according to exclusion and inclusion
criteria and according to their interest in the research. Poten-
tial participants or their first-degree relatives were required to
have no history of depression, anxiety, epilepsy, eating disorder,
drug abuse, attention deficit, or any other psychiatric or neuro-
logical disorders that would confound their status as nonclinical
healthy college students. The personal history and current habits
of participants were assessed using a semistructured interview.
In addition, we performed a comprehensive quantitative EEG
evaluation comparing absolute and relative power in 13 stan-
dard bandpass regions at 19 electrodes (scalp voltage power)
and all 2394 intracranial LORETA-Key voxels (LORETA cur-
rent density power) to a normative database. This database was
constructed using data acquired from 82 healthy undergraduate
students from the University of Tennessee. We followed the non-
parametric comparison method of [44]. Individuals displaying
an abnormal number of significant (with 0.05) deviations
from the norms were excluded from the study. All participants
were required to be alcohol and medication free for 24 h prior
to sessions and were required to sign an informed consent form.
All aspects of this study were approved by the University of
Tennessee Human Subjects Review Board.

B. Procedures

For each subject, a measure of the distance between nasion
and inion was used to determine the proper electrode cap [45]
size for recording purposes. In preparation for neurofeedback
sessions, both forehead and ears were cleaned using a mild abra-
sive gel to remove any oil from the skin. The cap was then fitted
and each electrode site carefully injected with conductive gel.
The scalp underlying each cap electrode location was mechan-
ically abraded with the gel applicator so that impedances be-
tween each electrode site and each ear measured individually,
as well as the impedance between both ears, was between 3 and
5 k . The EEG was then recorded at the standard 10–20 system
19 locations (FP1, FP2, F3, F4, Fz , F7, F8, C3, C4, Cz, T3, T4,
T5, T6, P3, P4, Pz, O1, and O2) using the Neurosearch-24 EEG
acquisition system.2 The EEG was sampled at 256 Hz and the

2Neurosearch-24 is produced and marketed by Lexicor Medical Technolo-
gies, Inc., Boulder, CO.
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Fig. 1. Anterior Cingulate cognitive division (ACcd). The ROI used in LORETA modeling for training is shown with the LORETA-Key image viewer.
ROI extension = 38 voxels (area = 13:034 cm ). Axial view: left of picture is left of the brain. The slice is seen from the top of the brain. Sagittal view: left of
picture is front of the brain. The slice is seen from the left of the brain. Coronal view: left of picture is left of the brain. The slice is seen from the back of the brain.

low- and high-pass filters were set at 64– and 0.5-Hz cutoffs,
respectively.

C. Protocol

The Neurofeedack protocol was designed to enhance low beta
(16–20 Hz) and suppress low alpha (8–10 Hz) current density
amplitude (vector length) in a region corresponding approxi-
mately to the anterior cingulate cognitive division (ACcd). Here-
after, we will refer to the protocol using the symbol .
The region of interest (ROI) is depicted in Fig. 1 using the
LORETA-Key software. The region includes 38 voxels encom-
passing, according to the LORETA-Key head model, a total
of 13.034 cm . With other functional neuroimaging techniques
such as positron emission tomography (PET) and fMRI, the
ACcd has been consistently shown to be actively involved in
attention processes [46], [47]. The choice of the bandpass re-
gions was dictated by previous EEG studies. Converging evi-
dence points to the role of frontal alpha and beta power in atten-
tion. A common pattern of abnormality in the electrophysiology
of individuals affected by attention deficit disorder with (ADD)
or without (ADHD) hyperactivity includes excessive low alpha
power and weak low beta power [48]. Those individuals have a
very short attention span and poor mental focusing capabilities,
despite being of normal intelligence. On the other hand, alpha
activity is known to decrease during cognitive functions [49]
and to be inversely related to metabolism [50]. For over 30 years
[6], the 16–20-Hz power enhancement protocol (in mid-frontal
or mid-central locations Fz or Cz) has been used to enhance at-
tention in individuals suffering from ADD/ADHD. A merging
of these lines of evidence resulted in our decision to suppress
low alpha and enhance low beta power with the aim
of facilitating attention processes. Three subjects underwent six
sessions consisting of six 3-min trials while the remaining three
underwent 20 sessions of three 15-min trials. All parts of the ex-
periment were conducted in a dimly illuminated and sound at-
tenuated room at the Brain Research and Neurophysiology Lab-
oratory, University of Tennessee. Two or three sessions were
scheduled per week. For each individual, the time of the day for
sessions was held constant.

D. Physiological Signal

In this section, we describe in detail the nature of the phys-
iological signal (feature) extracted in real-time from the EEG.
The feature we extracted has never been used before. We em-
ployed an protocol, with alpha in the 8–10-Hz range and
beta in the 16–20-Hz range. The peak-to-peak amplitude in both
band-pass regions was continuously extracted in short time inter-
vals (250ms) throughtheuseofdigitalfiltering(seeSectionII-I.).
Acommonchoice (e.g., [6]and[9])of thephysiologicalsignal for
a protocol is the amplitude ratio. However, such a
feature has several undesirable properties. Among others, its av-
erage level is subjective, as suggested in [51], and this precludes
any direct intersubject comparisons. To overcome this limitation
at each instant time we evaluated the (first-derivative) fractional
changes of and expressed as

(1)

and

(2)

respectively. The ratio is no longer a natural measure
of the overall changes because the quantities and are
signed. Therefore, the function is defined later to allow the
extraction of a meaningful parameter relating to changes rather
than raw measurements. Fig. 2 illustrates the changes in the two
generic bandpass regions plotted in a Cartesian space where
points have coordinates . The point in Fig. 2 corre-
sponds to an approximately 25% decrease in alpha power and
approximately 75% increase in beta power, hence it is found in
the second quadrant. The polar coordinates
and represent the distance of the point
from the origin, which is indicated by a segment labeled , and
the angle of the segment, indicated by .

For a protocol we wish to use a function that increases
monotonically as increases and decreases monotonically as

increases.Withoutlossofgenerality,aprotocol involvingtwo
bandpass regions can be arranged changing the angular coordi-
nate of and evaluating . In this manner, we can
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Fig. 2. Plot of fractional changes ������ and ������ in a two-dimensional space.
Any measurement of fractional changes �� and �� can be represented as a
point with polar coordinates r and �, where r represents the strength of the
change and � represents the direction of the change. The angular coordinate 

depends on the protocol employed. Mapping �� and �� to the abscissa and
ordinates respectively, for a��j�+ protocol, 
 equals 45 . The new abscissa is
represented as a thick line. Due to the rotation, Sin(��
) reaches its maximum
when �� increases as �� decreases (most desirable event), and its minimum
when the opposite is true (most undesirable event).

conveniently map any direction of change for any ratio protocol.
In the particular case of this study, since and
have been mapped to the abscissa and ordinates, respectively,
has to be equal to 45 . This is seen graphically in Fig. 2, where the
thick line is the rotated abscissa. Thanks to the rotation, the quan-
tity reaches its maximum (1.0) when beta decreases
as alpha decreases, and its minimum ( 1.0) for the opposite out-
come. Those are defined as the most desirable and the most unde-
sirableoutcomesrespectively,accordingtotheprotocolwechose.
In order to account for the strength of the outcome and to obtain a
function with bounded dynamical range, we also considered the
negative exponential function , which assumes a zero
value when is zero and reaches 1.0 as approaches infinity. The

function is defined by multiplying the sine of by this
exponential function to obtain the function

(3)

bounded between 1.0 and 1.0. With two parameters and ,
the function unfolds in three dimensions. Fig. 3 illustrates the
mesh plot of the function expressed with the original and

coordinates. Both axes are restricted to 7.0, the equivalent
of a 700% change in alpha and beta. In Fig. 3 the axis is ,
while the axis is . The axis is the color-coded value of

, which is clearly shown to be a function of the axes rotated
by (45 ). In the plot, white corresponds to the maximum of

, whereas black corresponds to its minimum. reaches its
maximum faster for , and the minimum for .
For values of close to zero ( 45 and 225 ),
when desirable changes in beta are compromised by undesirable
changes in alpha and vice versa, the function reaches its max-
imum extremely slowly, meaning that a very high value of is
required for the attainment of a high value of .

If the brain was a homeostatic system with fractional changes
comparable across individuals, then the expected value of
should be zero. In other words, since changes in the two band-
pass regions of interest cannot continue indefinitely in the pos-
itive (increase in power) or negative (decrease in power) direc-
tion, and assuming that changes in one direction will be simi-

Fig. 3. Contour plot of the ��� function. The x axis is �� and the y axis is
��. Both axes in the plot are limited by a �700% change. The z axis is the
color-coded value of � , which is a function of the axes rotated by 
 (45 ).
White = Max(� ) = 1:0. Black = Min(� ) = �1:0. Changes �� and
�� are given by formula (1) and (2). The � is given by formula (3). See text
for details.

larly compensated for by changes in the opposite direction so
as to maintain a sort of symmetric homeostasis, then over a suf-
ficiently long period of time the realization of will lead to
a sample mean of zero. Our empirical observation is that
for alpha and beta oscillates with sample means close to but
not equal to zero. This is due to the fact that the empirical dis-
tribution of the function is not exactly symmetric and sug-
gests that positive and negative changes are subject to different
physiological dynamics. In other words, while increases and de-
creases in amplitude are balanced in the long run, they do not
follow the same distribution with respect to each other. How-
ever, the distribution of is very similar across individuals, but
the distribution of the power ratio is not, hence by using the

function we achieve data normalization across individuals.
This property of is further discussed in the following section.

E. Feedback Signal

The neurofeedback literature makes a distinction between a
self-regulation and an operant conditioning paradigm. Self-reg-
ulation stresses the importance of motivation in achieving a
result and seems to be facilitated by the use of a continuous
feedback signal [52]. Traditional operant conditioning, in
contrast, requires the use of a discrete reinforcement [14] to
reward changes in the predefined direction. We shall refer to the
continuous feedback signal as CFS and to the discrete feedback
signal as DFS. In our experiments, we used both auditory and
visual CFS and DFS. Visual CFS was provided in the form of a
moving scatter plot where each value of was represented by
a square. Fig. 4 shows a snapshot of the subjects’ screen during
LORETA neurofeedback. The horizontal line in the middle of
the moving scatter plot corresponds to a zero value. Dots above
the line indicate positive values (desirable changes), while dots
below the line indicate negative values (undesirable changes).
The auditory CFS implemented was a short (100 ms) tone
whose pitch increased proportionally to . The range of the

function was divided into 21 equal intervals. Each interval,
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from the lower to the upper, corresponded to an increasing
pitch ranging over the 21 notes comprising three octaves of
the C-major scale. In all our experiments, the function
was updated every 250 ms. Feedback provided at such a short
interval can be considered continuous.

Visual DFS was provided in the form of a large flashing light
on the screen (Fig. 4). The color of the flashing light, as with all
other feedback settings, was chosen by the participants during
a pilot session so as to be subjectively pleasant. They were also
able to choose between visual and/or auditory feedback modal-
ities with one single constraint: at least one continuous and one
discrete modality had to be selected. The auditory DFS con-
sisted of a short melody formed by a fast sequence of three tones,
the total duration of which was less than 600 ms. The auditory
DFS was easily discernible from the auditory CFS due to its dis-
tinct duration and fixed sequence of tones. All DFS (light flashes
or sequence of tones) were delivered as soon as the reinforce-
ment conditions were matched. In all our experimental studies,
the conditions to deliver a reinforcement at any instant time
were the same, and exactly: and . The

function constantly oscillated between positive and negative
values. The conditions we set for reinforcement required that
the individual maintained a desirable change for at least 500
ms. The objective was to train individuals to sustain changes
in the desired direction. The 0.1 threshold was introduced in
order to suppress noise. We carried out a total of six experi-
ments using the above protocol. For all six individuals, the per-
cent time spent in the reinforcement state, as seen in preneu-
rofeedback baselines, was around 10%. We can finally point to
a critical advantage of the function: the same threshold and
conditions for reinforcement could be used for all individuals.
As implied in the previous section, the use of traditional features
such as raw amplitude and amplitude ratio does not allow for a
common threshold to be applied to several individuals attaining
similar percent times in the reinforcement state.

F. Inhibition Filters

When working with the EEG in general, and especially in
real-time applications, it is extremely important to address
the problem of extra-cranial sources of artifacts [53]. EEG
artifacts can introduce a large amount of noise into the signal
and, thus, can invalidate the generation of inverse solutions.
Among others, two families of artifacts represent a serious
problem for real-time applications; electromyography (EMG)
refers to electrical activity generated by muscle contraction.
Jaw, neck, shoulders, forehead, and other facial muscle activity
are easily recorded from electrodes on the scalp resulting
in low auto-correlation high-frequency noise that masks the
signal. Eye movements, blinks, etc. [electrooculogram (EOG)],
produce low-frequency high-amplitude potentials.

In order to limit the influence of these artifacts, we imple-
mented two inhibition filters that constantly monitored the
EMG and EOG activity during all neurofeedback sessions.
Anytime the EMG or EOG signal exceeded its threshold, the
corresponding inhibit filters turned on and interrupted the
feedback loop. The loop resumed one second subsequent to
the inactivation of the inhibition filters. The status of each
filter was communicated to the subject by means of secondary

Fig. 4. Snapshot of the LORETA neurofeedback program interface. This
is an example of the computer screen as seen by the participants during
neurofeedback. The interface is controlled by the server program (see
Section II-I.). The flashlights of the EMG inhibition filter, EOG inhibition filter,
and the DFS reinforcement flashlight are shown in a putative “on” position.
With these color settings, they would turn white if in “off” position.

flashing lights on the screen (Fig. 4). We observed that, thanks
to the flashing lights, by the end of the first session all subjects
acquired an awareness of the causes of the filters activation.
Thereafter, subjects were able to reduce the production of facial
EMG and EOG activity to a minimum.

Thresholds for EMG and EOG were established and set in a
pilot session for each individual separately. EMG activity was
detected by computing the average LORETA current density
in the ROI in the 35–55 Hz EEG filtered band (EMG channel).
EOG activity was detected by measuring the maximum absolute
voltage across frontal electrodes FP1, FP2, F7, F8, F4, and F3
(EOG channel). Fig. 5 shows time series of the second 15-min
trial for the second session of subject 4. Data points are measure-
ments continuously extracted every 250 ms. (see Section II-I for
details on data extraction) while both inhibition filters were off.
Fig. 5(a) plots the current density power ratio in the ROI
(target channel). Fig. 5(b) and (c) plot the corresponding EMG
and EOG channel, respectively. Fig. 5(d)–(f) are all possible
pair-wise ( 10 s) cross-correlation plots of the target, EMG
and EOG channels. In this example of training data, we can see
that, after suppressing suprathreshold data containing excessive
artifacts, the time course of the target feature ( ratio) was
poorly correlated to EMG and EOG artifacts. However, since for
no time lag and short time lags some correlation exists, we treated
the EMG andEOG measurementas covariates (see Section II-H).

G. Statistical Data Analysis

Neurofeedback experiments usually involve a collection of
single-case experiments as the learning process is unique to each
individual. There is no reason to expect the learning curve of an
individual to be congruent with the learning curve of another.
This is one of those experimental situations in which average
group analysis is of questionable value. Instead of averaging the
data from all individuals we ran single-case statistical tests and
then combined the -values obtained across individuals. A com-
bination of -values is a -value itself. It is the probability of
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Fig. 5. Example time series of the artifact-free training session data. Time series of the �=� current density power (CDP) ratio in the ROI (A: target channel),
35–55 Hz current density power in the ROI (B: EMG channel) and maximum absolute voltage (MAV) at frontal electrodes FP1, FP2, F7, F8, F4, and F3 (C: EOG
channel). Data refer to the second round of session 2 for subject 4. Measurements were extracted every 250 ms and the process was suspended anytime either the
EMG or the EOG inhibition filter turned on. D, E, and F are cross-correlation plots obtained lagging the time series from around�10 s to around+10 s. The trial
lasted approximately 15 min, of which, 8.6 (2064 samples) were used for data analysis. These were the periods when no inhibition filters detected artifacts.

obtaining -values as small as those observed, given that the
complete null hypothesis was true. This concept is similar to that
of multivariate testing, where a unique -value is derived for all
variables. The most important advantage of this approach is that
it does not require the experimental conditions to be identical for
all subjects, nor does it assume that the learning process is the
same in different individuals. Finally, the sample size is not a
concern in -value combination. The only assumption of (para-
metric) -value combination is that the -values all be pair-wise
independent. Since individuals are truly independent statistical
entities, deriving -values for each subject separately is always
a valid approach.

There exist several parametric methods that can be used to
combine -values. In our experimental studies, we systemati-
cally used two of them, namely the multiplicative combining
function due to Fisher [55] and the additive combining function
of Edgington [54]. The multiplicative combining function
is given by

(4)

where is the inverse c.d.f. of a central Chi-Square distribu-
tion with 2 degrees of freedom, and .

The additive combining function is directly calculated as

(5)

where is the number of combinations drawing items
out of , , the minus and plus signs between terms
alternate, and additional terms are used as long as the number

subtracted from is smaller than . In all of the expressions,
indicates the individual -value.

We chose to use both of these functions because they display
distinct sensitivities for extreme distributions of -values. In
particular, the multiplicative combining function is more sensi-
tive to distributions where there is one or more extremely small

-value. The additive combining function is more sensitive
when the -values are all similar to each other. For combined

-values we set the type I error to 0.05, but to claim significance
we required that both combining functions produce a -value
less then or equal to 0.05.

H. Experimental Hypotheses

To test hypotheses regarding the modification of brain elec-
trical activity we focused on two distinct types of learning
associated with neurofeedback. The first, here called exercise
learning (EL), describes a monotonic trend of the target activity
over sessions. It shows that the brain activity of the partici-
pants, as recorded during the sessions, tends to increase (or
decrease) as a function of the number of sessions. The second,
called volitional control (VC), describes the acquired ability of
the participant to shape his or her target brain activity in the
desired direction at will. EL could be achieved through either
motivation (self-regulation) or mere operant conditioning. On
the other hand, the test on VC that we here introduce, rules
out any influence of unconscious processes. Regarding the EL
hypothesis, we analyzed five dependent variables. For each
participant and for each neurofeedback session, we extracted

1) the median of the average amplitude in the ROI;
2) the median of the average amplitude in the ROI;
3) the ratio (2/1);
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4) the median of the function;
5) the percent time spent in reinforcement state.

Within each session, the median was computed as the mean
of the median of the signal continuously extracted during each
trial. We also extracted the median EMG and EOG in the same
way. Those two variables were used as covariates. For the VC
hypothesis, all participants underwent eight 3-min trials at the
end of the experiment. In four of them, labeled as “A,” the partic-
ipants were instructed to obtain as much reinforcement as pos-
sible. In the remaining four trials (“B”), the participants were in-
structed to obtain as little reinforcement as possible. The partic-
ipants underwent the trials according to the same protocol em-
ployed during the neurofeedback sessions. The order of A and
B trials was randomized by shuffling eight cards, of which four
reported the letter A, and four reported the letter B. The random
order was established once and applied to all subjects. It was: A,
B, A, B, B, B, A, A. The dependent variables analyzed were the
same as those analyzed for the EL hypothesis. For both the EL
and VC all dependent variables were analyzed by means of an
exact randomization ordinary least square (OLS) linear regres-
sion model [56] as computed using the BLOSSOM statistical
package [57]. In both cases, EMG and EOG were treated as co-
variates in order to control for their confounding influence. The
test procedure implemented in the program is the randomiza-
tion-permutation equivalent of an analysis of covariance (AN-
COVA) and is explained in [58] and [59]. We stress the impor-
tance of considering EEG artifacts as confounding variables in
this kind of experiment. Since artifacts may result in the mod-
ification of the target feature, there exists a risk that learning
processes will be reported due simply to increased/decreased
artifactual activity. Note that in addition to feeding back the
function, we also analyzed the amplitude ratio, and the
and amplitude as well.

I. Equipment

Tomographic neurofeedback was implemented using two
linked computers. The first, hereafter referred to as the server,
was interfaced to the EEG preamplifiers in order to acquire
23 channels of raw physiological data (19 EEG and 4 auxil-
iary) at a sample rate of 512 Hz. After suitable amplification,
high-pass filtering to reject dc offset, and notch filtering (to
eliminate 60-Hz power line interference), each channel was
then subjected to analog eighth-order lowpass maximally flat
Butterworth filters in the bandpass (70-Hz 3-db cutoff) for
anti-aliasing purposes prior to analog/digital conversion. Each
of the 23 channels of data was then lowpass digital filtered
and resampled in order to derive 23 channels at a sample
rate of 256 Hz (80-Hz 3-db cutoff). This produced 23 data
streams with a closely matched interchannel phase response
and overall filter characteristics. The server program allowed
for the specification of three maximally flat (in the bandpass
region) Butterworth bandpass filters. Nineteen of the 23 re-
sampled channels of incoming data, those corresponding to the
active EEG electrodes, were then subjected to real-time digital
bandpass filtering, which resulted in three parallel streams of 19
channel data. In these experiments the filters were set to alpha,
beta, and EMG bandwidths, as defined previously in the paper.
The LORETA transformation (inversion) matrix values were

extracted from the LORETA-Key package, and loaded into the
server software prior to data acquisition. During real-time data
acquisition, the portions of the LORETA-Key transformation
matrix corresponding to the predefined ROI were then applied
to the real-time 19 channel EEG data stream output of the three
bandpass filters described earlier, on a sample by sample basis,
thus producing an alpha, beta, and EMG current density ampli-
tude value for each voxel in the ROI. Current density amplitude
is defined as the square root of the sum of the square of each
dipole basis moment , , and (vector length). The signal
value at each voxel in each of the three digitally filtered ROI
bands was then subjected to smoothing using a simple moving
average circular buffer technique, and a running average value
was computed for each voxel in the ROI, for each band. Finally,
the average power for each band in the ROI was calculated,
scaled, and then transmitted over a serial connection to the
client every 250 ms.

The job of the second computer, the client, was to compute
the target feature (Section II-D), deliver the appropriate visual
and/or auditory feedback to the participant (Section II-E), and
manage the inhibition filters (Section II-F). The client computer
also took responsibility for storing data for subsequent anal-
ysis. The server-client system involved two independent com-
puter monitors, one for the experimenter and one for the par-
ticipant. The server monitor was continuously observed by the
experimenter and displayed the raw EEG in real-time. In this
manner, the experimenter could verify the behavior of the inhi-
bition filters, and insure that other sources of artifact did not ap-
pear such as those that might result, for example, from a broken
electrode/skin contact. The client software reported only arti-
fact-free data, that is, while the EMG or EOG filter was on, the
program suspended data storage.

III. RESULTS

We tested the hypothesis that the participants attained VC
(volitional control) and EL (exercise learning). A priori hy-
potheses for the direction of results were available for all tests,
based on the protocol employed. Therefore, all tests were
one-tailed and, for all results, a combined -value smaller than
0.5 indicates evidence supporting the alternative hypothesis,
whereas a combined -value larger than 0.5 argues against the
alternative hypothesis. Individual and combined results for VC
are presented in Table I. For all dependent variables, observed
changes between trials A and B were in the desired direction
according to both combining functions. At the individual level,
depending on the dependent measure, results were in the de-
sired direction for four to six subjects. The major dependent
variable of this study, the amplitude ratio, was significantly
larger during trials A as compared to trials B, that is, overall,
participants were successful in generating an increase of the

ratio at will ( ; ). At the individual
level, the -values were significant for three out of six subjects.
Results pertaining to the and amplitude alone suggest that
the change was predominantly driven by an increase in the
amplitude, although decrease in was, overall, also marginally
significant. Neither the percent time spent in reinforcement
state nor the function itself were significantly affected by
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TABLE I
RESULTS OF THE VC HYPOTHESIS

Individual p-values for the exact OLS linear model testing the VC hypothesis, and the additive (P ) and multiplicative (P ) combined p-values (n = 6).
Dependent variables were � amplitude, � amplitude, �=� amplitude ratio, � , and percent time spent in reinforcement state (%tRS). Tests compared randomized
trials A versus B. See text for details. In all tests EMG and EOG entered the model as covariates. Significant results (both P and P � 0.05) are flagged with
an asterisk. For individual p-values, italic font flags results in the predicted direction (p < 0.5).

TABLE II
RESULTS OF THE EL HYPOTHESIS

Individual p-values for the exact OLS linear model testing the EL hypothesis, and the additive (P ) and multiplicative (P ) combined p-values (n = 6).
Dependent variables were � amplitude, � amplitude, �=� amplitude ratio, � , and percent time spent in reinforcement state (%tRS). Tests evaluated linear trends
across sessions. See text for details. In all tests EMG and EOG entered the model as covariates. Significant results (both P and P � 0.05) are flagged with an
asterisk. For individual p-values, italic font flags results in the predicted direction (p < 0.5).

the intention of the subjects, however, the additively combined
-value for the time spent in reinforcement state was signifi-

cantly small .
Results for the EL hypothesis displayed a similar pattern (see

Table II). Again, regardless of the combination function consid-
ered, all combined -values were in the expected direction. The

ratio was significant according to the multiplicative com-
bining function , but not according to the additive
one . However, the amplitude increased signif-
icantly over session ( ; ), with one
subject only (S2) displaying a clearly negative result. For the
EC hypothesis the percent time spent in the reinforcement state
did not change over session. Instead, the function increased
significantly ( ; ), the trend being sup-
ported by the data of five out of six subjects. In general, it ap-
pears that subjects could achieve changes in raw power measure-
ments more easily than changes in the feedback signal itself, or
in the time spent in reinforcement state. These results may be ex-
plained by the fact that fractional changes need to continuously
reverse sign as changes in one direction (e.g., increase in alpha
power) cannot proceed indefinitely, and their long-term average
must converge to zero. On the whole these results indicate that
during adequate training, average current density power in the
ACdc can increase or decrease according to the chosen protocol
(EL) and that soon after the training, subject are able to tem-
porarily shift the average power in the desired direction by an
act of will (VC).

IV. DISCUSSIONAND CONCLUSION

The decision to combine the -values of the six subjects for
both the volitional control and exercise learning hypotheses re-
ceived substantial support in this LORETA neurofeedback ex-

periment. While VC is largely ignored in the literature on neu-
rofeedback, it is very important in our understanding of the neu-
rofeedback learning process and is relevant to the development
of BCIs. Indeed, communication with electronic devices, the
goal of BCI systems, is intended as a volitional act. This finding
suggests that operant conditioning theory is not necessary for
explaining the human ability to self-regulate and/or voluntarily
produce specific brain electrical activity. A shift in the am-
plitude ratio over session was also supported by the experiment,
although indirectly; changes in the ratio per se were not signifi-
cant. However changes in alpha and beta were found in the de-
sired direction, and the latter reached significance. EL is relevant
for clinical application of neurofeedback, but it does not consti-
tute a proof that the changes are permanent, that is, that they
last once the session is ended. To test whether or not a change
is persistent, one has to collect presession baselines and demon-
strate learning curves with respect to the presession data. This
latter kind of learning process, which we call long-term learning
(LL), is the one that really matters in neurofeedback clinical ap-
plications.

Our findings suggest not only that a spatial filter (EEG in-
verse solution) can be applied to the feedback signal to train
spatial specific brain regions, but also that the feedback signal
can be based on a complex function of the raw power measure-
ments. The former suggestion extends the applicability of neu-
rofeedback techniques to deep neocortical regions. The latter
implies that it is possible to overcome the subjective configura-
tion of raw power measurements, yielding neurofeedback pro-
tocols identical for all individuals.

We assume that learning associated with neurofeedback is
achievable for most but not all individuals. Actually, all we
know is that experiments designed to demonstrate learning
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do not always succeed, and that the same phenomenon is
observed in clinical practice. In this experiment, individual

-values (Table I and II) showed considerable variability. In
future research, it would be important to understand under
what circumstances the training is successful and under what
circumstances it is not, and if the decisive factors for success
are related to experimental variables and/or technical factors,
to variables extraneous to the individual or to individual char-
acteristics.

A recent advance in the LORETA method has been achieved
introducing the standardized LORETA method (sLORETA).
While LORETA has a low localization error, sLORETA has the
theoretical ability to localize correctly single sources, as seen in
noise-free point spread function simulations [60]. The imple-
mentation of sLORETA is recommended for future research.

While localization has been shown to be accurate in the ab-
sence of noise, for real EEG data, which is mixed with several
source of intracranial and extracranial noise [61], localization
accuracy is expected to decrease. Current research in real-time
denoising algorithms [62], [63] will prove essential for the ef-
fective use of real-time brain research based on electromagnetic
tomographic techniques.

Another limitation of the current method that needs to be
addressed is the influence of the spatial smearing observed in
LORETA and sLORETA current density reconstructions [25],
[60]. Both the inverse methods achieve precision in source
localization by sacrificing spatial resolution, i.e., the sources
are reconstructed spatially dispersed even if they are point-like
[24]–[27]. As a consequence, even if the ROI is spatially
delimited, strong current densities in adjacent regions may
influence the current density estimation within the ROI. If this
influence is found to be important, weights could be applied
to the appropriate rows of the inverse solution transformation
matrix [25] in order to attenuate the influence of neighboring
regions.

We demonstrated a possible implementation of neurofeed-
back based on the LORETA. We developed a method and we
conducted some preliminary experimentation. In this paper,
we addressed several methodological concerns that arise in
real-time EEG applications and we proposed some solutions.
The results we obtained are encouraging but by no means con-
clusive. In this research, we focused on methodological aspects.
The advantage of tomographic neurofeedback over traditional
(scalp) neurofeedback still needs to be assessed. In the future,
we predict the use of stereoscopic feedback, high-impedance
electrodes and other sophisticated apparatus to facilitate the
delivery of feedback. An immersive virtual three-dimensional
brain navigation system utilizing electromagnetic data feedback
is currently under development. In addition to providing more
immersive and realistic feedback experiences, the integration
of several sensory modalities seems particularly promising.
We hypothesize that the more complex the feedback sensory
experience, the more likely the electrophysiological processes
of interest will be engaged. Henceforth, speed and precision
of learning may be improved considerably by means of vari-
ations on this proposed technology. Furthermore, we think
that more informative feedback signals could be employed
in future research. The increase or decrease of power, power

asymmetry or coherence, the typical focus of current neuro-
feedback experiments and clinical applications, may provide
too little information about the brain’s electrical activity. Insuf-
ficient feedback information may actually impede the learning
process. The function we here introduced proved useful.
Incorporating other features such as multivariate autoregressive
analysis or joint time-frequency-space correlation [53] may
also provide significant advantages.

ACKNOWLEDGMENT

The authors would like to thank J. Rothove for his assistance
during experimentation and Dr. M. Koca for his comments about
the draft of the paper.

REFERENCES

[1] D. R. Engstrom, P. London, and J. T. Hart, “Hypnotic susceptibility in-
creased by EEG alpha training,” Nature, vol. 227, pp. 1261–1262, 1970.

[2] D. P. Nowlis and J. Kamiya, “The control of electroencephalographic
alpha rhythms through auditory feedback and the associated mental ac-
tivity,” Psychophysiology, vol. 6, no. 4, pp. 476–484, 1970.

[3] T. A. Travis, C. Y. Kondo, and J. R. Knott, “Alpha conditioning: A con-
trolled study,” J. Nerv. Mental Dis., vol. 158, pp. 163–173, 1974.

[4] M. Barabasz and A. Barabasz, “Attention deficit disorder: Diagnosis,
etiology and treatment,” Child Study J., vol. 26, no. 1, pp. 1–37, 1996.

[5] M. Linden, T. Habib, and V. Radojevic, “A controlled study of the effects
of EEG biofeedback on cognition and behavior of children with attention
deficit disorder and learning disabilities,” Biofeedback Self-Regulat., vol.
21, no. 1, pp. 35–49, 1996.

[6] J. F. Lubar, “Discourse on the development of EEG diagnostics and
diofeedback for attention-deficit/hyperactivity disorders,” Biofeedback
Self-Regulat., vol. 16, no. 3, pp. 201–225, 1991.

[7] , “Neocortical dynamics: Implications for understanding the role of
neurofeedback and related techniques for the enhancement of attention,”
Appl. Psychophysiol. Biofeedback, vol. 22, no. 2, pp. 111–126.

[8] J. F. Lubar and M. N. Shouse, “EEG and behavioral changes in a hy-
perkinetic child concurrent with training of the sensorimotor rhythms
(SMR),” Biofeedback Self-Regulat., vol. 1, no. 3, pp. 293–306, 1976.

[9] T. Rossiter, “Neurofeedback for AD/HD: A ratio feedback case study
and tutorial,” J. Neurotherapy, vol. 6, no. 3, pp. 9–35, 2003.

[10] M. A. Tansey and R. L. Bruner, “EMG and EEG biofeedback training
in the treatment of a 10-years-old hyperactive boy with a developmental
reading disorder,” Biofeedback Self-Regulat., vol. 8, no. 1, pp. 25–37,
1983.

[11] J. P. Rosenfeld, “An EEG biofeedback protocol for affective disorders,”
Clin. Electroencephalogr., vol. 3, no. 1, pp. 7–12, 2000.

[12] J. F. Lubar and W. W. Bahler, “Behavioral management of epileptic
seizures following EEG biofeedback training of the sensorimotor
rhythm,” Biofeedback Self-Regulat., vol. 1, no. 1, pp. 77–104, 1976.

[13] J. F. Lubar, H. S. Shabsin, S. E. Netelson, G. S. Holder, S. F. Whitsett,
W. E. Pamplin, and D. I. Krulikowski, “EEG operant conditioning in
intractable epileptic,” Arch. Neurol., vol. 38, pp. 700–704, 1981.

[14] M. B. Sterman, “Neurophysiologic and clinical studies of sensorimotor
EEG biofeedback training: Some effects on epilepsy,” Sem. Psych., vol.
5, no. 4, pp. 507–525, 1973.

[15] , “EEG biofeedback: physiological behavior modification,” Neu-
rosci. Biobehav. Rev., vol. 5, pp. 405–412, 1981.

[16] P. G. Swingle, “Neurofeedback treatment of pseudoseizure disorder,”
Biol. Psych., vol. 44, pp. 1196–1199, 1998.

[17] K. E. Thornton, “The improvement/rehabilitation of auditory memory
functioning with EEG biofeedback,” NeuroRehab., vol. 17, pp. 69–80,
2002.

[18] N. C. Moore, “A review of EEG biofeedback treatment of anxiety dis-
orders,” Clin. Electroencephalogr., vol. 31, no. 1, pp. 1–6, 2000.

[19] L. C. James and R. A. Folen, “EEG biofeedback as a treatment for
chronic fatigue syndrome: A controlled case report,” Behav. Med., vol.
22, pp. 77–81, 1996.

[20] A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbaumer,
“Brain-computer communication: unlocking the locked in,” Psych.
Bull., vol. 127, no. 3, pp. 358–375, 2001.



396 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 12, NO. 4, DECEMBER 2004

[21] B. Kotchoubey, A. Kubler, U. Strehl, H. Flor, and N. Birbaumer, “Can
humans perceive their brain states?,” Conscious. Cogn., vol. 11, no. 1,
pp. 98–113, Mar. 2002.

[22] P. L. Nunez, Neocortical Dynamics and Human EEG Rhythms. Ox-
ford, U.K.: Oxford Univ. Press, 1995.

[23] P. L. Nunez and R. B. Silberstein, “On the relationship of synaptic ac-
tivity to macroscopic measurements: Does co-registration of EEG with
fMRI make sense?,” Brain Topogr., vol. 13, no. 2, pp. 79–96, 2000.

[24] R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, “Low resolution
electromagnetic tomography: a new method for localizing electrical ac-
tivity in the brain,” Int. J. Psychophysiol., vol. 18, pp. 49–65, 1994.

[25] R. D. Pascual-Marqui, “Review of methods for solving the EEG inverse
problem,” Int. J. Bioelectromagn., vol. 1, no. 1, pp. 75–86, 1999a.

[26] , “Reply to comments made by Grave de Peralta Menendez and S.
I. Gonzalez Andino,” Int. J. Bioelectromagn., vol. 1, no. 2, 1999b.

[27] , “Reply to comments by Hämäläinen, Ilmonieni, and Nunez,” in
Source Localization: Continuing Discussion on the Inverse Problem, W.
Skrandies, Ed: ISBET Newsletter, 1995, vol. 6, pp. 16–28.

[28] R. D. Pascual-Marqui, M. Esslen, K. Kochi, and D. Lehmann, “Func-
tional imaging with low resolution brain electromagnetic tomography
(LORETA): A review,” Meth. Findings Exp. Clin. Pharmacol., vol. 24C,
pp. 91–95, 2002a.

[29] , “Functional imaging with low resolution brain electromagnetic to-
mography (LORETA): Review, new comparisons, and new validation,”
Jpn. J. Clin. Neurophysiol., vol. 30, pp. 81–94, 2002b.

[30] J. Bosch-Bayard, P. Valdés-Sosa, T. Virues-Alba, E. Aubert-Vázquez, E.
R. John, T. Harmony, J. Riera-Diaz, and N. Trujillo-Barreto, “3-D sta-
tistical parametric mapping of EEG source spectra by means of variable
resolution electromagnetic tomography (VARETA),” Clin. Electroen-
cephalogr., vol. 32, pp. 47–61, 2001.

[31] T. Isotani, H. Tanaka, D. Lehmann, R. D. Pascual-Marqui, K. Kochi, N.
Saito, T. Yagyu, T. Kinoshita, and K. Sasada, “Source localization of
EEG activity during hypnotically induced anxiety and relaxation,” Int.
J. Psychophysiol., vol. 41, pp. 143–153, 2001.

[32] J. F. Lubar, M. Congedo, and J. H. Askew, “Low-resolution electromag-
netic tomography (LORETA) of cerebral activity in chronic depressive
disorder,” Int. J. Psychophysiol., vol. 49, no. 3, pp. 175–185, Sept. 2003.

[33] D. Pizzigalli, R. D. Pascual-Marqui, J. B. Nitschke, T. R. Oakes, C. L.
Larson, and H. C. Abercrombie et al., “Anterior cingulate activity as
predictors of degree of treatment response in major depression: Evidence
from brain electrical tomography analysis,” Amer. J. Psych., vol. 158, pp.
405–415, 2001.

[34] A. Fernández-Bouzas, T. Harmony, J. Bosch-Bayard, E. Aubert-
Vázquez, T. Fernández, and T. P. Valdés-Sosa et al., “Source of
abnormal EEG activity in the presence of brain lesions,” Clin. Elec-
troencephalogr., vol. 30, pp. 46–52, 1999.

[35] M. Fuchs, M. Wagner, T. Köhler, and H. Wischmann, “Linear and non-
linear current density reconstructions,” J. Clin. Neurophysiol., vol. 16,
no. 3, pp. 267–295, 1999.

[36] L. S. Prichep, E. R. John, and M. Tom, “Localization of deep white
matter lymphoma using VARETA: A case study,” Clin. Electroen-
cephalogr., vol. 32, pp. 62–66, 2001.

[37] G. A. Worrell, T. D. Lagerlund, F. W. Sharbrough, B. H. Brinckmann,
N. E. Bucacker, K. M. Cicora, and T. J. O’Brien, “Localization of the
epileptic focus by low-resolution electromagnetic tomography in pa-
tients with a lesion demonstrated by MRI,” Brain Topogr., vol. 12, pp.
273–282, 2000.

[38] J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human
Brain. Stuttgart, Germany: Thieme, 1988.

[39] J. L. Lancaster, L. H. Rainey, J. L. Summerlin, C. S. Freitas, P. T. Fox,
and A. Evans et al., “Automated labeling of the human brain: A prelim-
inary report on the development and evaluation of a forward-transform
method,” Human Brain Map., vol. 5, pp. 238–242, 1997.

[40] J. L. Lancaster, M. G. Woldorff, L. M. Parsons, M. Liotti, C. S. Freitas,
and L. Rainey et al., “Automated talairach atlas labels for functional
brain mapping,” Human Brain Map., vol. 10, pp. 120–131, 2000.

[41] V. L. Towle, J. Bolaños, D. Suarez, K. Tan, R. Grzeszczuk, and D. N.
Levin et al., “The spatial location of EEG electrodes: Locating the best
fitting sphere relative to cortical anatomy,” Electroencephalogr. Clin.
Neurophysiol., vol. 86, pp. 1–6, 1993.

[42] S. S. Yoo and F. A. Jolesz, “Functional MRI for neurofeedback; fea-
sibility study on a hand motor task,” Neuroreport, vol. 13, no. 11, pp.
1377–1381, Aug 2002.

[43] C. J. Harland, T. D. Clark, and R. J. Prance, “Remote detection of human
electroencephalograms using ultrahigh input impedance electric poten-
tial sensors,” Appl. Phys. Lett., vol. 81, pp. 3284–3286, 2002.

[44] M. Congedo and J. F. Lubar, “Parametric and nonparametric analysis of
qEEG: Normative database comparisons in electroencephalography, a
simulation study on accuracy,” J. Neurotherapy, vol. 7, no. 3, pp. 1–29,
2003.

[45] J. L. Blom and M. Anneveldt, “An electrode cap tested,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 54, pp. 591–594, 1982.

[46] G. Bush, J. A. Frazier, S. L. Rauch, L. J. Seidman, P. J. Whalen, and
M. A. Jenike et al., “Anterior cingulate cortex dysfunction in attention
deficit/hyperactivity disorder revealed by fMRI and the counting stroop,”
Biol. Psych., vol. 45, no. 12, pp. 1542–1552, 1999.

[47] O. Devinsky, M. J. Morrell, and B. A. Vogt, “Contributions of anterior
cingulate to behavior,” Brain, vol. 118, pp. 279–306, 1995.

[48] R. J. Barry, A. R. Clarke, and S. J. Johnston, “A review of electro-
physiology in attention-deficit/hyperactivity disorder: I. Qualitative and
quantitative electroencephalography,” Clin. Neurophysiol., vol. 114, pp.
171–183, 2003.

[49] P. L. Nunez, B. M. Wingeier, and R. B. Silberstein, “Spatial-temporal
structures of human alpha rhythms: Theory, microcurrent sources, mul-
tiscale measurements, and global binding of local networks,” Human
Brain Map., vol. 13, no. 3, pp. 125–164, 2001.

[50] A. F. Leuchter, S. H. J. Uijtdehaage, I. A. Cook, R. O’Hara, and M.
Mandelkern, “Relationship between brain electrical activity and cortical
perfusion in normal subjects,” Psych. Res.: Neuroimag. Sect., vol. 90,
pp. 125–140, 1999.

[51] J. L. Hernández, P. Valdés, R. Biscay, T. Virues, S. Szava, and J. Bosch
et al., “A global scale factor in brain,” Int. J. Neurosci., vol. 76, pp.
267–278, 1994.

[52] J. V. Hardt and J. Kamiya, “Conflicting results in EEG alpha feedback
studies. Why amplitude integration should replace percent time,”
Biofeedback Self-Regulat., vol. 1, no. 1, pp. 63–75, 1976.

[53] T. Ebrahimi, J. M. Vesin, and G. Garcia, “Brain-computer interface. A
new frontier in multimedia communication,” Signal Processing Mag., to
be published.

[54] E. S. Edgington, Randomization Tests, 3rd ed. New York: Marcel
Dekker, 1995.

[55] F. Pesarin, Multivariate Permutation Tests. New York: Wiley, 2001.
[56] B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in

Biology, 2nd ed. London, U.K.: Chapman & Hall, 1997.
[57] B. S. Cade and J. D. Richards, User Manual for Blossom Statistical Soft-

ware. Fort Collins, CO: U.S. Geological Survey, 1999.
[58] P. E. Kennedy and B. S. Cade, “Randomization tests for multiple regres-

sion,” Commun. Statist. Simula., vol. 25, pp. 923–936, 1996.
[59] M. J. Anderson and P. Legendre, “An empirical comparison of permuta-

tion methods for tests of partial regression coefficients in a linear model,”
J. Statist. Comput. Simula., vol. 62, pp. 271–303, 1999.

[60] R. D. Pascual-Marqui, “Standardized low resolution brain electromag-
netic tomography (sLORETA): Technical details,” Meth. Findings Exp.
Clin. Pharmacol., vol. 24D, pp. 5–12, 2002.

[61] S. A. Vorobyov and A. Cichocki, “Blind noise reduction for multisen-
sory signals using ICA and subspace filtering, with application to EEG
analysis,” Biol. Cybern., vol. 86, pp. 293–303, 2002.

[62] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Pro-
cessing. New York: Wiley, 2003.

[63] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

Marco Congedo was born in Italy, in 1972. He re-
ceived the B.A. degree in psychology from the Uni-
versity of Padua, Padua, Italy, in 1998, and the M.A.
and Ph.D. degrees in biological psychology (and a
minor Ph.D. degree in statistics) from the University
of Tennessee, Knoxville, in 2001 and 2003, respec-
tively.

Currently, he is a Postdoctoral Fellow with the
National Institute for Research in Informatics and
Random Systems, Rennes, France. His research
interests include basic EEG/MEG research, real-time

neuroimaging, and multivariate statistics.
While he was a graduate student, Dr. Congedo twice received the Department

of Psychology Award for Excellence in Scholarship and Graduate Research.
He is a member of the International Society of Neuronal Regulation and of the
Society of Applied Neuroscience.



CONGEDO et al.: LOW-RESOLUTION ELECTROMAGNETIC TOMOGRAPHY NEUROFEEDBACK 397

Joel F. Lubar received the B.S. and Ph.D. degrees
from the Division of the Biological Sciences, De-
partment of Biopsychology, University of Chicago,
Chicago, IL.

He has been an Assistant Professor with the Uni-
versity of Rochester, Rochester, NY; a Senior Faculty
Science Fellow with the National Science Founda-
tion, UCLA School of Medicine, Los Angeles; a Vis-
iting Professor at the Institute of Physiology, School
of Medicine, University of Bergen, Bergen, Norway;
and is currently a Full Professor with the University

of Tennessee, Knoxville. He has published more than 100 papers, wrote many
book chapters, and eight books in the area of neuroscience and applied psy-
chophysiology. He has been a Regional Editor for the Journal Physiology and
Behavior, and an Associate Editor for Biofeedback and Self Regulation, Asso-
ciate Editor for the Journal of Neurotherapy.

Dr. Lubar was the President of the Academy of Certified Neurotherapists,
which he incorporated into the Biofeedback Certification Institute of America
EEG Specialty area. He has also been President of the EEG Division of the
Association for Applied Psychophysiology and Biofeedback (AAPB), President
of AAPB from 1996 to 1997, a member of the Editorial Board for the Journal
of Applied Psychophysiology and Biofeedback. He is currently President of the
International Society for Neuronal Regulation.

David Joffe was born in New York, in 1952. He re-
ceived the B.A. degree in mathematics from the Uni-
versity of Colorado, Boulder, in 1980.

He has been involved in the founding of numerous
biomedical companies and the development of many
biomedical instruments. He is currently the Vice
President of Research and Development at Lexicor
Medical Technology, Boulder. His research interests
include the development of real-time multichannel
EEG signal processing algorithms.

Mr. Joffe received a Distinguished Achievement
Award from the Neurofeedback Division of the Association for Applied Psy-
chophysiology and Biofeedback in 2004.


	toc
	Low-Resolution Electromagnetic Tomography Neurofeedback
	Marco Congedo, Joel F. Lubar, and David Joffe
	I. I NTRODUCTION
	II. M ETHOD
	A. Subjects
	B. Procedures


	Fig.€1. Anterior Cingulate cognitive division (ACcd). The ROI us
	C. Protocol
	D. Physiological Signal

	Fig. 2. Plot of fractional changes ${\mmb{\Delta\alpha}}$ and ${
	Fig. 3. Contour plot of the ${\mmb\Phi}^{\bf 1}$ function. The $
	E. Feedback Signal
	F. Inhibition Filters

	Fig.€4. Snapshot of the LORETA neurofeedback program interface. 
	G. Statistical Data Analysis

	Fig.€5. Example time series of the artifact-free training sessio
	H. Experimental Hypotheses
	I. Equipment
	III. R ESULTS

	TABLE€I R ESULTS OF THE VC H YPOTHESIS
	TABLE€II R ESULTS OF THE EL H YPOTHESIS
	IV. D ISCUSSION AND C ONCLUSION
	D. R. Engstrom, P. London, and J. T. Hart, Hypnotic susceptibili
	D. P. Nowlis and J. Kamiya, The control of electroencephalograph
	T. A. Travis, C. Y. Kondo, and J. R. Knott, Alpha conditioning: 
	M. Barabasz and A. Barabasz, Attention deficit disorder: Diagnos
	M. Linden, T. Habib, and V. Radojevic, A controlled study of the
	J. F. Lubar, Discourse on the development of EEG diagnostics and
	J. F. Lubar and M. N. Shouse, EEG and behavioral changes in a hy
	T. Rossiter, Neurofeedback for AD/HD: A ratio feedback case stud
	M. A. Tansey and R. L. Bruner, EMG and EEG biofeedback training 
	J. P. Rosenfeld, An EEG biofeedback protocol for affective disor
	J. F. Lubar and W. W. Bahler, Behavioral management of epileptic
	J. F. Lubar, H. S. Shabsin, S. E. Netelson, G. S. Holder, S. F. 
	M. B. Sterman, Neurophysiologic and clinical studies of sensorim
	P. G. Swingle, Neurofeedback treatment of pseudoseizure disorder
	K. E. Thornton, The improvement/rehabilitation of auditory memor
	N. C. Moore, A review of EEG biofeedback treatment of anxiety di
	L. C. James and R. A. Folen, EEG biofeedback as a treatment for 
	A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbau
	B. Kotchoubey, A. Kubler, U. Strehl, H. Flor, and N. Birbaumer, 
	P. L. Nunez, Neocortical Dynamics and Human EEG Rhythms . Oxford
	P. L. Nunez and R. B. Silberstein, On the relationship of synapt
	R. D. Pascual-Marqui, C. M. Michel, and D. Lehmann, Low resoluti
	R. D. Pascual-Marqui, Review of methods for solving the EEG inve
	R. D. Pascual-Marqui, M. Esslen, K. Kochi, and D. Lehmann, Funct
	J. Bosch-Bayard, P. Valdés-Sosa, T. Virues-Alba, E. Aubert-Vázqu
	T. Isotani, H. Tanaka, D. Lehmann, R. D. Pascual-Marqui, K. Koch
	J. F. Lubar, M. Congedo, and J. H. Askew, Low-resolution electro
	D. Pizzigalli, R. D. Pascual-Marqui, J. B. Nitschke, T. R. Oakes
	A. Fernández-Bouzas, T. Harmony, J. Bosch-Bayard, E. Aubert-Vázq
	M. Fuchs, M. Wagner, T. Köhler, and H. Wischmann, Linear and non
	L. S. Prichep, E. R. John, and M. Tom, Localization of deep whit
	G. A. Worrell, T. D. Lagerlund, F. W. Sharbrough, B. H. Brinckma
	J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the
	J. L. Lancaster, L. H. Rainey, J. L. Summerlin, C. S. Freitas, P
	J. L. Lancaster, M. G. Woldorff, L. M. Parsons, M. Liotti, C. S.
	V. L. Towle, J. Bolaños, D. Suarez, K. Tan, R. Grzeszczuk, and D
	S. S. Yoo and F. A. Jolesz, Functional MRI for neurofeedback; fe
	C. J. Harland, T. D. Clark, and R. J. Prance, Remote detection o
	M. Congedo and J. F. Lubar, Parametric and nonparametric analysi
	J. L. Blom and M. Anneveldt, An electrode cap tested, Electroenc
	G. Bush, J. A. Frazier, S. L. Rauch, L. J. Seidman, P. J. Whalen
	O. Devinsky, M. J. Morrell, and B. A. Vogt, Contributions of ant
	R. J. Barry, A. R. Clarke, and S. J. Johnston, A review of elect
	P. L. Nunez, B. M. Wingeier, and R. B. Silberstein, Spatial-temp
	A. F. Leuchter, S. H. J. Uijtdehaage, I. A. Cook, R. O'Hara, and
	J. L. Hernández, P. Valdés, R. Biscay, T. Virues, S. Szava, and 
	J. V. Hardt and J. Kamiya, Conflicting results in EEG alpha feed
	T. Ebrahimi, J. M. Vesin, and G. Garcia, Brain-computer interfac
	E. S. Edgington, Randomization Tests, 3rd ed. New York: Marcel D
	F. Pesarin, Multivariate Permutation Tests . New York: Wiley, 20
	B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods
	B. S. Cade and J. D. Richards, User Manual for Blossom Statistic
	P. E. Kennedy and B. S. Cade, Randomization tests for multiple r
	M. J. Anderson and P. Legendre, An empirical comparison of permu
	R. D. Pascual-Marqui, Standardized low resolution brain electrom
	S. A. Vorobyov and A. Cichocki, Blind noise reduction for multis
	A. Cichocki and S. Amari, Adaptive Blind Signal and Image Proces
	A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Ana



