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Abstract:

A novel concept for the analysis of high-dimensional sig-
nal data is proposed. To this end, customized techniques
from manifold learning are combined with convolution
transforms, being based on wavelets. The utility of the
resulting method is supported by numerical examples con-
cerning low-dimensional parameterizations of scale mod-
ulated signals and solutions to the wave equation at vary-
ing initial conditions.

1. Introduction

Recent advances in nonlinear dimensionality reduction
and manifold learning have provided new methods for the
analysis of high-dimensional signals. In this problem, a
very large data setU ⊂ R

n of scattered points is given,
where the data points are assumed to lie on a compact
submanifoldM of R

n, i.e. U ⊂ M ⊂ R
n. More-

over, the dimensionk = dim(M) of M is assumed to
be much smaller than the dimension of the ambient space
R

n, k ≪ n. Now, the primary goal in the dimensionality
reduction is the construction of a low-dimensional repre-
sentation of the dataU .
In this paper, a novel concept for signal data analysis
through dimensionality reduction is proposed. To this end,
suitable techniques from manifold learning are combined
with convolution transforms. Moreover, another important
ingredient is a (suitable) projection mapP : R

n → R
k

that finally outputs the desired low-dimensional represen-
tation forU . Note that for the sake of approximation qual-
ity, we need to preserve intrinsic geometrical and topolog-
ical properties of the manifoldM, and so the construc-
tion of the composite dimensionality reduction method re-
quires particular care. In the proposed data analysis, the
geometric distortion of the manifold, being incurred by
the chosen convolution transform, plays a key role.
We remark that similar concepts from differential geom-
etry are enjoying increasing interest in related applica-
tions of sampling theory, including surface reconstruc-
tion in reverse engineering and image analysis [5]. Fur-
ther related concepts can be found in classical dimen-
sionality reduction schemes, such as inprincipal compo-
nent analysisand multidimensional scaling, while more
recent techniques are includingIsomapand LLE meth-
ods [4, 7] Local Tangent Space Alignment(LTSA) [6],

Sample Logmaps[1], and, most recently,Riemannian
Normal Coordinates[2, 3].
The outline of the paper is as follows. In the following
Section 2, the main ingredients of the proposed nonlinear
dimensionality reduction scheme, especially the construc-
tion of the convolution and projection map, are explained.
Then, in Section 3 relevant aspects concerning distortion
analysis are addressed. Finally, Section 4 shows the good
performance of the resulting nonlinear dimensionality re-
duction method. To this end, numerical examples con-
cerning low-dimensional parameterization of scale modu-
lated signals and solutions to the wave equation at varying
initial conditions are illustrated.

2. Construction of the Data Analysis

Given a set of signalsU = {ui}
m
i=1 ⊂ M, that we assume

to lie in (or near) a low-dimensional Riemannian compact
submanifoldM, of R

n, we wish to analyse the given data
for the purpose of dimensionality reduction. Therefore,
we assume that there is an embeddingA : Ω → M, giv-
ing a parameterization ofM, where the domainΩ ⊂ R

d

lies in a low-dimensional Euclidean spaceR
d, i.e.,d ≪ n.

But the parameter domainΩ is unknown. Therefore, the
goal of dimensionality reduction is to find a sufficiently
accurate approximationΩ′ of Ω, through which the de-
sired low-dimensional representation forU is obtained.
We remark that the construction of the data analysis is re-
quired to depend on intrinsic geometrical and topologi-
cal properties of the manifoldM. To this end, we ap-
ply a particular convolution transformT : M → MT ,
MT = {T (p) : p ∈ M}, to each of the data sitesui,
followed by a suitable projectionP : MT → Ω′, yielding
a nonlinear data transformation for dimensionality reduc-
tion. The following diagram reflects our concept.

Ω ⊂ R
d

A // U ⊂ M ⊂ R
n

T
��

Ω′ ⊂ R
d UT ⊂ MT ⊂ R

n

P
oo

(1)

Note that both the construction of the transformationT
and the projection need particular care. Indeed, in order to
maintain the intrinsic geometrical properties of the mani-
fold M, it is required to investigate the curvature distor-
tion of M under the transformT . For this purpose, con-
volution filters are powerful tools for the construction of



suitable signal transformsT . This is supported by our nu-
merical results in Section 4., where wavelet transforms are
used for a customized construction ofT .
Finally, let us remark that standard methods in signal pro-
cessing rely on on special characteristics of a discrete-time
signaluk ∈ R

n, such as frequency content, time duration,
phase and amplitude information, etc. In typical applica-
tion scenarios, signal data are not just isolated items of
information, but they are rather incorporating correlations
reflecting characteristic properties of the sampled object.
Therefore, when designing customized signal transforms,
one should exploit available context information on char-
acteristic properties of the target object in order to improve
the quality of the data analysis. In our particular applica-
tion scenario, special emphasis needs to be placed on in-
trinsic geometrical properties of the manifoldM, where
a preprocessing distortion analysis of the curvature is of
vital importance.

3. Curvature Distortion Analysis

Our main objective is to estimate the curvature distortion
in the geometry of the manifoldM incurred by the ap-
plication of the linear transformationT : M → MT ,
whereT may, for instance, representing a wavelet or a
convolution filter. To this end, we first need to evaluate
relevant effects on the geometrical deformation ofM un-
der various specific transformationsT . This then amounts
to constructing suitable transformationsT which are well-
adapted to the characteristic properties of the specific data.
Preferable choices forT : M → MT are diffeomor-
phisms, in which casedim(M) = dim(MT ).

3.1 Sectional Curvature Distortions

In general, a fundamental invariant of a manifold with re-
spect to its isometries are the sectional curvatures. This
concept is derived from the idea of the Gaussian curvature
in the setting of 2-manifolds, and is defined as

KM =
< R(X,Y )Y,X >

‖X‖2‖Y ‖2− < X,Y >2
,

for thecurvature tensorR, defined for a triple of smooth
vector fieldsX,Y,Z as

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

We recall that the affine connection (a Levi-Cevita con-
nection for our situation) is a bilinear map

∇ : C∞(M, TM) × C∞(M, TM) → C∞(M, TM)

that can be expressed with the Christoffel symbols defined,
for a particular system of local coordinates(x1, . . . , xn),
as∇∂i

∂j =
∑n

k=1 Γk
ij∂k. The Christoffel symbols can be

described with respect to the metric tensor via

Γk
ij =

1

2

m
∑

ℓ=1

(

∂gjℓ

∂xi

+
∂giℓ

∂xj

+
∂gij

∂xℓ

)

gℓk.

In order to estimate the distortion caused by the linear map
T : M → MT , we compare the Gaussian curvatures be-
tweenM andMT , denoted respectivelyKM, andKMT

,

DT
K(p) = KM(p) − KMT

(T (p)) for p ∈ M.

If T is invertible, then the Gaussian curvatureKMT
in

MT can be computed as a function of the metricg in M
by using apullbackof the curvature tensorR in M with
respect to the inverse mapT−1 : MT → M, or, equiva-
lently, by using apushforwardof the curvature tensorR in
M with respect toT : M → MT . An alternative strategy
is to consider the composition ofT with a particular sys-
tem of local coordinates(x1, . . . , xn) of M, along with
the metric tensor

gij(p) = gij(x1, . . . , xm) =

〈

∂

∂xi

,
∂

∂xj

〉

.

When considering the linear transformationT represent-
ing the convolution filter, an important case is whenT is
represented by a Toeplitz matrix, with filter coefficients
H = (h1, . . . , hm), i.e.,

T =

























h1 0 . . . 0
h2 h1 . . . 0
...

... . . .
...

hm hm−1 . . . h1

0 hm . . . h2

...
... . . .

...
0 0 . . . hm

























.

Note that the curvature distortion caused by the mapT will
be controlled by the singular values ofT , which due to the
Toeplitz matrix structure, are obtained from the Fourier
coefficients ofH.
Now, our primary objective is to investigate the influence
of the filter coefficients inH on the curvature distortion
DT

K . Moreover, we study filters being required to obtain a
given curvature distortion. The latter is particularly useful
for the adaptive construction of a low dimensional repre-
sentation ofU .

3.2 Curvature Distortions for Curves

As for the special case of a curver : I = [t0, t1] → R
m,

with arc-length parameterizations(a, t) =
∫ t

a
‖r′(x)‖ dx,

recall that the curvature ofr is k(s) = ‖r
′′

(s)‖. For an
arbitrary parameterizations ofr, its curvature is given by

K2 =
‖r̈‖2‖ṙ‖2− < r̈, ṙ >2

(‖ṙ‖2)3
.

In the remainder of this section, we briefly discuss the cur-
vature distortion under linear maps (e.g. convolution trans-
form) and under smooth maps. To compute the curvature
distortion of a curver : I = [t0, t1] → R

m under a linear
mapT , we consider the curvature ofrT = {Tr(t), t ∈ I},
computed as follows.

K2
T ≡ K2

T (t) =
‖T r̈‖2‖T ṙ‖2− < T r̈, T ṙ >2

(‖T ṙ‖2)3
. (2)

As for the general case of smooth mapsF : R
m → R

r,
the curvature distortion can be approximated by using the



Jacobian matrixJF and its singular value decomposition,

JF (p) =







∂f1

∂x1

(p) . . . ∂f1

∂xm
(p)

...
. . .

...
∂fr

∂x1

(p) . . . ∂fr

∂xm
(p)







= UF (p)DF (p)V T
F (p) for p ∈ M.

The curvature distortion of a curver : [t0, t1] → R
m un-

derF can in this case be analyzed through the expression

K2
F ≡ K2

F (p) =
‖JF r̈‖2‖JF ṙ‖2− < JF r̈, JF ṙ >2

(‖JF ṙ‖2)3
,

where, unlike in the linear case (2), the Jacobian matrices
JF depend onp ∈ M.

4. Numerical Examples

This section presents three different numerical examples
to illustrate basic properties of the proposed analysis of
high-dimensional signal data. Further details shall be dis-
cussed during the conference.

4.1 Low-dimensional parameterization of scale
modulated signals

In this example, we illustrate the geometrical effect of a
convolution transform for a set of functions lying on a
curve embedded in a high dimensional space. More pre-
cisely, we analyze a scale modulated family of functions
U ⊂ R

64, parameterized by three values inΩ ⊂ R
3,

U =

{

fα(t) =

3
∑

i=1

e−αi(t)(· −bi)
2

: α(t) ∈ Ω

}

.

The parameter set for the scale modulation is given by the
curve

Ω =
{

α(t) = (α1(t), α2(t), α3(t))
T ∈ R

3, : t ∈ [t0, t1]
}

.

Figure 1 (left) shows the parameter domainΩ, a star
shaped curve inR3. A PCA projection inR

3, applied
to the setU ⊂ R

64, is also displayed in Figure 1 (mid-
dle). The projection illustrates the curvature distortion
caused by the nonlinear mapA : Ω ⊂ R

3 → U ⊂
R

64, A(α(t)) = fα(t).

Figure 1: Parameter setΩ ⊂ R
3, dataU ⊂ R

64, and
wavelet correctionT (U) ⊂ R

64.

Finally, Figure 1 (right), shows the resulting data transfor-
mationT (U) using a Daubechies wavelet w.r.t. a specific
band of the multiresolution analysis, resulting in a filter-
ing process for each element inU . The resultingT (U),

presents a curvature correction that recovers the original
geometry ofΩ fairly well.
To explain the resulting curvature correction, we need to
analyze the singular values and singular vectors of the con-
volution mapT . In fact, the singular values ofT can be
viewed as scaling factors (stretching or shrinking) along
corresponding axis in the (local) embedding ofU . More-
over, the spectrum ofT depends on the particular filter
design.

4.2 Low dimensional parameterization of wave
equation solutions

In this second example, we regard the one-dimensional
wave equation

∂u

∂t
= c2 ∂u

∂x
, 0 < x < 1, t ≥ 0, (3)

with initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ 1. (4)

We make use of the previous example to construct a set
of initial values (i.e. functions) parameterized by a star
shaped curveU0 = U . Our objective is to investigate the
distortion caused by the evolutionUt of the solutions on
given initial valuesU0. Recall that the evolution of the
wave equation is constituted by the set of solutions

Ut = {uα ≡ uα(t, x) : uα satisfying(3) with

initial conditionf ≡ fα in (4) for α ∈ Ω}.

Now, the solution of the wave equation can numerically be
computed by using finite differences, yielding the iteration

u(j+1) = Au(j) + b(j),

where forµ = γ∆t/(∆x)2, the iteration matrix is given
by

A =















1 − 2µ µ
µ 1 − 2µ µ

µ 1 − 2µ µ
.. .

.. .
. ..

0 µ 1 − 2µ















.

Recall that in the convergence analysis of the iteration,
which can be rewritten as,

u(j+2) = Au(j+1) + b(j+1)

= A(Au(j) + b(j)) + b(j+1)

= A(2)u(j) + Ab(j) + b(j+1),

the spectrum of the matricesAk play a key role. In fact,
due to the decompositionAk = UDkUT , the geometrical
distortion in the evolution ofUt depends on the evolution
of the eigenvalues ofA.

4.3 Topological Distortion via Filtering

In this final example, we illustrate one relevant phe-
nomenon concerning the topological distortion caused by



Figure 2: One solution of the wave equationu(t, x) and
one measurementu(tk, x), tk = 20.

Figure 3: Curvature distortion of the initial manifold un-
der the evolution of the wave equation. The outer curve
represents the initial conditionsU0 while the inner curve
reflects the corresponding solutionsUt for some timet.

the utilized convolution transformation. In this couple of
two test cases, we take one 1-torusΩ1 ⊂ R

3 and one 2-
torusΩ2 ⊂ R

3 as parameter space, respectively. As in
the previous examples, we generate a corresponding set
of scale modulation functionsU1 andU2 (see Figure 4),
usingΩ1 andΩ2 as parameter domains. This gives, for
j = 1, 2, two different data sets

Uj =

{

fαj(t) =

3
∑

i=1

e−α
j

i
(t)(· −b

j

i
)2 : αj(t) ∈ Ωj

}

.
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Figure 4: PCA projections ofU1, U2 ⊂ R
64 ontoR

3, gen-
erated byΩ1,Ω2 ⊂ R

3, two tori of genus 1 and 2.

Now we combine the setU1 andU2 by

U =
{

ft = fα1(t) + fα2(t) : α1(t) ∈ Ω1, α
2(t) ∈ Ω2

}

.

The resulting projection of the dataU is shown in Figure 5.
For the purpose of illustration, we recover the setsU1 and
U2 from U . Note that this is a rather challenging task,
especially since the genus of surfacesU1 andU2 are dif-
ferent. Figure 6 shows the reconstructions of the two sur-
facesU1 andU2. Note that the both the geometrical and
topological properties ofU1 andU2 are recovered fairly
well, which supports the good performance of our convo-
lution transform yet once more. The reconstruction of the

utilized convolution involves a selection of suitable bands
from the corresponding wavelet multiresolution decompo-
sition. Further details on this shall be explained during the
conference.
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Figure 5: PCA projection ofU ⊂ R
64 ontoR
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Figure 6: Reconstruction ofU1 (left), U2 (right) fromU .
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