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Abstract:

We consider the recovery of jointly sparse multichannel

signals from incomplete measurements using convex re-

laxation methods. Worst case analysis is not able to pro-

vide insights into why joint sparse recovery is superior to

applying standard sparse reconstruction methods to each

channel individually. Therefore, we analyze an average

case by imposing a probability model on the measured sig-

nals. We show that under a very mild condition on the

sparsity and on the dictionary characteristics, measured

for example by the coherence, the probability of recov-

ery failure decays exponentially in the number of chan-

nels. This demonstrates that most of the time, multichan-

nel sparse recovery is indeed superior to single channel

methods.

1. Introduction

Recovery of sparse signals from a small number of mea-

surements is a fundamental problem in many different sig-

nal processing tasks such as image denoising [3], analog-

to-digital conversion [21, 11], radar, compression, inpaint-

ing, and many more. The recent framework of compressed

sensing (CS), founded in the works of Donoho [8] and

Candes [3], studies acquisition methods as well as effi-

cient computational algorithms that allow reconstruction

of a sparse vector x from linear measurements y = Ax,

where A is referred to as the measurement matrix. The

key observation is that y can be relatively short, and still

contain enough information to recover x.

Determining the sparsest vector x consistent with the data

y = Ax is generally an NP-hard problem [7]. To de-

termine x in practice, a multitude of efficient algorithms

have been proposed. The most extensively studied recov-

ery method by now is the ℓ1-minimization approach (Ba-

sis Pursuit). Greedy methods, such as simple thresholding

[23] or orthogonal matching pursuit (OMP) [26], are faster

in practice, but BP provides significantly better recovery

guarantees [10, 22].

The BP principle as well as greedy approaches have been

extended to the multichannel setup where the signal con-

sists of several channels [29, 30, 15, 6, 5, 20, 12, 13, 18].

Here one assumes that each channel is sparse and in ad-

dition that the channels have a small common support set.

In this situation the signals are called jointly sparse. A va-

riety of theoretical recovery results have been established

already in this setting. In [5] a recovery result was derived

for a mixed ℓp/ℓ1 program (multichannel BP) in which

the objective is to minimize the sum of the ℓp-norms of

the rows of the estimated matrix whose columns are the

unknown vectors.

Recovery results for the more general problem of block-

sparsity were developed in [13] based on the restricted

isometry property (RIP), and in [12] based on mutual co-

herence. In practice, multichannel reconstruction tech-

niques perform much better than recovering each channel

individually. However, the theoretical equivalence results

predict no performance gain. The reason is that these re-

covery results apply to all possible input signals, and are

therefore worst-case measurements. Clearly, if we input

the same signal to each channel, then no additional infor-

mation on the joint support is provided from multiple mea-

surements. Therefore, in this worst-case scenario there is

no advantage for multiple channels.

In order to capture more closely the true underlying be-

havior of existing algorithms and observe a performance

gain when using several channels, we consider an aver-

age analysis. In this setting, the inputs are considered to

be random variables so that the case of identical inputs

in all channels has zero probability. The idea is to de-

velop conditions on the measurement matrix A such that

the inputs can be recovered with high probability given

a certain input distribution. Most existing recovery re-

sults focus on worst-case analysis. Recently, there have

been several papers that consider random ensembles. In

[25] random sub-dictionaries of A are considered and an-

alyzed. This allows to obtain results for BP with a single

input channel. In [23], average-case performance of single

channel thresholding was studied. These ideas were then

extended to two multichannel recovery algorithms: thresh-

olding and simultaneous OMP (SOMP) [18, 17]. Under a

mild condition on the sparsity and on the matrix A, it was

shown that the probability of reconstruction failure decays

exponentially with the number of channels. In the present

paper we contribute to this line of research by adding an

average-case analysis of multichannel BP, that is mixed

ℓ2/ℓ1-minimization [30, 15, 13, 12].

We denote by AS the submatrix of A consisting of the

columns indexed by S ⊂ 1, . . . , N , while XS is the sub-

matrix of X consisting of the rows of X indexed by S.

The ℓth column of A is denoted by aℓ or Aℓ. The ℓp-norm

is denoted by ‖ · ‖p while ‖ · ‖F is the Frobenius norm.



2. Multichannel ℓ1-minimization

We consider multichannel signal recovery where our goal

is to recover a jointly-sparse matrix X ∈ C
N×L from n

linear measurements per channel. Here N denotes the sig-

nal length and L the number of channels, i.e., the number

of signals. We assume that X is jointly k-sparse, meaning

that there are at most k rows in the matrix X that are not

identically zero. More formally, we define the support of

the matrix X as suppX =
⋃L

ℓ=1 suppXℓ, where the sup-

port of the ℓth column is suppXℓ = {j,Xjℓ 6= 0}. Our

assumption is that ‖X‖0 = k where ‖X‖0 is equal to the

size of the support. The measurements are given by

Y = AX, Y ∈ C
n×L, (1)

where A ∈ C
n×N is a given measurement matrix. Each

measurement vector Yℓ corresponds to a measurement of

the corresponding signal Xℓ.

The natural approach to determine X given Y is to solve

the problem

min
X

‖X‖0 such that AX = Y. (2)

However, (2) is NP hard in general [7]. Therefore, we

consider instead the convex relaxation [30, 15, 13] defined

by

min ‖X‖2,1 =

N
∑

j=1

‖Xj‖2, subject to AX = Y, (3)

which promotes joint sparsity, as argued for instance in

[15]. In the single channel case L = 1 this is the usual BP

principle.

3. Worst Case Recovery Results

Recovery results for the program (3) were considered in

[5, 13, 12]. In particular, the lemma below is derived in

[5] and follows also from [12].

Proposition 3..1 Let S ⊂ 1, . . . , N and suppose that

‖A†
Saℓ‖1 < 1 for all ℓ /∈ S, (4)

with A†
S = (A∗

SAS)−1A∗
S denoting the pseudo-inverse of

AS . Then (3) recovers all X ∈ C
N×L with suppX = S

from Y = AX .

Assuming the columns of A are normalized, ‖aℓ‖2 = 1,

we can guarantee that (4) holds as long as the coherence µ
of A is small enough, where [9]

µ = max
j 6=ℓ

|〈aj , aℓ〉|. (5)

The following result follows from Proposition 3..1 or from

[12] by noting that the block coherence in this setting is

equal to µ/d.

Proposition 3..2 Assume that

(2k − 1)µ < 1. (6)

Then (3) recovers all X with ‖X‖0 ≤ k from Y = AX .

Note that in both of the cited results the conditions do not

depend on the number of channels. Indeed, under the same

conditions as in Propositions 3..1 and 3..2, it is shown in

[26] that BP will recover a single k-sparse vector. There-

fore, if (4) holds, then instead of solving (3) we may as

well use BP on each of the columns of Y .

The coherence is lower bounded by µ ≥
√

N−n
n(N−1)

[24]. The lower bound behaves like 1/
√

n for large N ,

which limits the Proposition 3..2 to maximal sparsities

k = O(
√

n). To improve on this we can generalize ex-

isting recovery results [3, 2] based on RIP to the multi-

channel setup. The next proposition follows from [13]:

Proposition 3..3 Assume X ∈ C
n×N with δ2k <

√
2−1,

where δ2k is the smallest constant δ such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2,

for all vectors x that are 2k-sparse. Let X ∈ C
N×L,

Y = AX , and let X be the minimizer of (3). Then

‖X − X‖F ≤ Ck−1/2‖X − X̂(k)‖1,2

where C is a constant, ‖X‖F =
√

Tr(X∗X) is the

Frobenius norm of X , ‖X‖1,2 =
∑N

j=1 ‖Xj‖2, and

X̂(k) denotes the best k-term approximation of X , i.e.,

supp X̂(k) consists of the indices corresponding to the k
largest row norms ‖Xℓ‖2. In particular, recovery is exact

if | suppX| ≤ k.

It is well known that Gaussian and Bernoulli random ma-

trices A ∈ R
n×N satisfy δ2k ≤

√
2 − 1 with high proba-

bility as long as [1, 4]

n ≥ Ck log(N/k). (7)

Therefore, Proposition 3..3 allows for a smaller number of

measurements. However, there is still no dependency on

the number of channels. Indeed, under the same RIP con-

dition BP will recover a single k-sparse vector and there-

fore, as before, BP may as well be applied to each of the

columns of Y individually.

4. Average Case Analysis

Intuitively, we would expect multichannel sparse recov-

ery to perform better than single channel recovery. How-

ever, in the worst case setting this is not true as already

suggested by the results cited above. The reason is very

simple. If each channel carries the same signal, Xℓ = x
for ℓ = 1, . . . , L, then also the components of Y = AX
are all the same and we do not have more information on

the support of X than provided by a single component Yℓ.

This can indeed be proven rigorously.

Proposition 4..1 Suppose there exists a k-sparse vector

x ∈ R
N that ℓ1-minimization is not able to recover from

y = Ax. Then there exists a k-sparse multichannel signal

X ∈ R
N×L for which mixed ℓ2/ℓ1-minimization fails on

Y = AX .



For the simple proof we refer to the journal version [14].

Realizing that (3) is not more powerful than usual BP in

the worst case, we seek an average-case analysis. This

means that we impose a probability model on the k-sparse

X . In particular, as in [18], we will assume that on the k-

sparse support set S the coefficients of X are independent

and follow a normal distribution,

XS = ΣΦ (8)

where Σ = diag(σj , j ∈ S) ∈ R
k×k is an arbitrary di-

agonal matrix with non-zero diagonal elements σj , while

Φ ∈ R
k×L is a Gaussian random matrix, i.e., all entries

are independent standard normal random variables. Note

that taking Σ to be the identity matrix results in a standard

Gaussian random matrix, while taking arbitrary non-zero

σj’s on the diagonal of Σ allows for different variances.

The following recovery condition is instrumental in prov-

ing average case recovery results for multichannel BP. It

generalizes results of [27, 16] for the monochannel case.

In order to introduce we need to introduce the sign sgn(X)
of a signal matrix,

sgn(X)ℓj =

{

Xℓj

‖Xℓ‖2

, ‖Xℓ‖2 6= 0;

0, ‖Xℓ‖2 = 0.

Proposition 4..2 Let X ∈ C
N×L with suppX = S and

assume AS to be non-singular. If

‖ sgn(XS)∗A†
Saℓ‖2 < 1 for all ℓ /∈ S (9)

then X is the unique minimizer of (3).

Combining the above proposition with a concentration in-

equality for sums of independent random variables that are

uniformly distributed on the sphere [19], we arrive at the

following average case recovery result for multichannel

BP.

Theorem 4..3 Let S ⊂ {1, . . . , N} be a set of cardinality

k and let X ∈ R
N×L with suppX ⊂ {1, . . . , N} such

that the coefficients on S are given by (8) with some diag-

onal matrix Σ ∈ R
k×k. If

‖A†
Saℓ‖2 ≤ α < 1 for all ℓ /∈ S, (10)

then with probability at least

1 − N exp

(

−L

2
(α−2 − log(α−2) − 1)

)

(11)

(3) recovers X from Y = AX .

The proof of the theorem will appear in the journal ver-

sion [14]. For α < 1 we are guaranteed that the exponent

has a negative argument, and therefore the error decays ex-

ponentially in L. We note that for the monochannel case

L = 1, Theorem 4..3 is contained implicitly in [28, Theo-

rem 13]. The appearance of the 2-norm in (10) instead of

the 1-norm as in (4) makes the condition of the theorem

weaker than worst-case estimates.

Let us finally state conditions on the matrix A and the

sparsity level k ensuring that ‖A†
Saℓ‖2 is small, which is

needed in order to apply Theorem 4..3.

Proposition 4..4 Suppose A has restricted isometry con-

stant δk+1 ≤ δ < 1/2. If S ⊂ {1, . . . , N} has cardinality

k then

‖A†
Saℓ‖2 ≤ δ

1 − δ
< 1 for all ℓ /∈ S.

Note that in contrast to the worst case result in Proposition

3..3 where a condition on δ2k is needed, we only require

that δk+1 is small, which is clearly weaker. For random

matrices A we have the following bound on ‖A†
Saℓ‖2.

Proposition 4..5 Let S ⊂ {1, . . . , N} be a set of cardi-

nality k and suppose that A ∈ R
n×N is drawn at random

according to a Gaussian or Bernoulli distribution. Then

‖A†
Saℓ‖2 ≤ δ for all ℓ /∈ S

with probability at least 1 − ǫ provided that

n ≥ Cδ−2[(k + 1) ln(1 + 12/δ) + ln(2N/ǫ)]. (12)

The constant C is no larger than 162/7 ≈ 23.1.

Note that the log-factor in (12) enters only as an additive

term, while in (7) it appears as multiplicative factor.

5. Conclusion

Our main result is that under mild conditions on the spar-

sity and measurement matrix, the probability of failure of

multichannel BP (3) decays exponentially with the num-

ber of channels. To develop this result we assumed a

probability model on the non-zero coefficients of a jointly

sparse signal. This shows that multichannel BP outper-

forms single channel BP applied to each channel individ-

ually, on average. Proofs of our theorems, together with

improved results for simple thresholding and numerical

experiments will appear in [14].
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