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Generic design of Chinese remaindering schemes

Jean-Guillaume Dumas∗ Thierry Gautier†

Jean-Louis Roch†

Abstract

We propose a generic design for Chinese remainder algorithms. A Chi-
nese remainder computation consists in reconstructing an integer value
from its residues modulo non coprime integers. We also propose an ef-
ficient linear data structure, a radix ladder, for the intermediate storage
and computations. Our design is structured into three main modules: a
black box residue computation in charge of computing each residue; a
Chinese remaindering controller in charge of launching the computation
and of the termination decision; an integer builder in charge of the re-
construction computation. We then show that this design enables many
different forms of Chinese remaindering (e.g. deterministic, early termi-
nated, distributed, etc.), easy comparisons between these forms and e.g.
user-transparent parallelism at different parallel grains.

1 Introduction

Modular methods are largely used in computer algebra to reduce the cost of co-
efficient growth of the integer, rational or polynomial coefficients. Then Chinese
remaindering (or interpolation) can be used to recover the large coefficient from
their modular evaluations by reconstructing an integer value from its residues
modulo non coprime integers.

LinBox1[9] is an exact linear algebra library providing some of the most
efficient methods for linear systems over arbitrary precision integers. For in-
stance, to compute the determinant of a large dense matrix over the integers
one can use linear algebra over word size finite fields [10] and then use a combi-
nation of system solving and Chinese remaindering to lift the result [13]. The
Frobenius normal form of a matrix is used to test two matrices for similarity.
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Although the Frobenius normal form contains more in formation on the matrix
than the characteristic polynomial, most efficient algorithms to compute it are
based on computations of characteristic polynomial (see for example [22]). Now
the Smith normal form of an integer matrix is useful e.g. in the computation
of homology groups and its computation can be done via the integer minimal
polynomial [12]. In both cases, the polynomials are computed first modulo sev-
eral prime numbers and then only reconstructed via Chinese remaindering using
precise bounds on the integer coefficients of the integer characteristic or minimal
polynomials [8].

An alternative to the deterministic remaindering is to terminate the recon-
struction early when the actual integer result is smaller than the estimated
bound [14, 12, 19]. There after the reconstruction stabilizes for some modular
iterations, the computation is stopped and gives the correct answer with high
probability.

In this paper we propose first in section 2 a linear space data structure
enabling fast computation of Chinese reconstruction. Then we propose in sec-
tion 3 to structure the design of a generic pattern of Chinese remaindering into
three main modules: a black box residue computation in charge of comput-
ing each residue; a Chinese remaindering controller in charge of launching the
computation and of the termination decision; an integer builder in charge of
the reconstruction computation. We show in section 4 that this design enables
many different forms of Chinese remaindering (e.g. deterministic, early termi-
nated, distributed, etc.) and easy comparisons between these forms. We show
then in section 5 that this structure provides also an easy and efficient way to
provide user-transparent parallelism at different parallel grains. Any parallel
paradigm can be implemented provided that it fulfills the defined controller in-
terface. We here chose to use Kaapi2[16] to show the efficiency of our approach
on distributed/shared architectures.

2 Radix ladder: linear structure for fast Chinese

remaindering

2.1 Generic reconstruction

We are given a black box function which computes the evaluation of an integer
R modulo any number m (often a prime number).

To reconstruct R, we must have enough evaluations rj ≡ R mod mj modulo
coprimes mj. To perform this reconstruction, we need two by two liftings with
U ≡ R mod M and V ≡ R mod N as follows:

RMN = U + (V − U)× (M−1 mod N)×M. (1)

We will need this combination most frequently in two different settings: when
M and N have the same size, and when N is of size 1. The first generic aspect
of our development is that for both cases, the same implementation can be fast.

2http://kaapi.gforge.inria.fr
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We first need a complexity model. We do not give much details on fast
integer arithmetic in this paper, instead our point is to show the genericity of our
approach and that it facilitates experiments in order to obtain goods practical
efficiency with any underlying arithmetic. Therefore we propose to use a very
simplified model of complexity where division/inverse/modulo are slightly slower
than multiplication. We denote bymαl

α the complexity of integer multiplication
of size l with 1 < α ≤ 2, and ranging from 2l2 for classical multiplication to
O(l1+ǫ) for FFT-like algorithms and by dαl

α the complexity of division, ranging
also from 3l2 to O(l1+ǫ). We refer to e.g. the GMP manual3 or [18, 15] for more
accurate estimates.

Size of operands Mul. Div. CRT
l × 1 l 3l 8l+O(1)
l × l mαl

α dαl
α 2(mα + dα)l

α + O(l)

Table 1: Integer arithmetic complexity model

With this in mind we compute formula (1) with one multiplication modulo
as follows:

Algorithm 1 Reconstruct

Input: U ≡ R mod M and V ≡ R mod N .
Output: RMN ≡ R mod M ×N .
1: UN ≡ V − U mod N ;
2: MN ≡ M−1 mod N ;
3: UN ≡ UN ×MN mod N ;
4: RMN = U + UN ×M ;
5: if RMN > M ×N then RMN = RMN −M ×N end if

Now, if the formula (1) is computed via algorithm 1 and the operation
counts is done using column “Mul.” for multiplication and “Div.” for divi-
sion/inverse/modulo, then we have the complexities given in column ”CRT” of
table 1.

2.2 Radix ladder

Fast algorithms for Chinese remaindering rely on reconstructing pairs of residues
of the same size. A usual way of implementing this is via a binary tree struc-
ture (see e.g. figure 1 left). But Chinese remaindering is usually an iterative
procedure and residues are added one after the other. Therefore it is possible to
start combining them two by two before the end of the iterations. Furthermore,
when a combination has been made it contains all the information of its leaves.
Thus it is sufficient to store only the partially recombined parts and cut its
descending branches. We propose to use a radix ladder for that task. A radix

3http://gmplib.org/gmp-man-4.3.0.pdf
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ladder is a ladder composed of successive shelves. A shelf is either empty or
contains a modulo and an associated residue, denoted respectively Mi and Ui at
level i. Moreover, at level I, are stored only residues or moduli of size 2i. New
pairs of residue and modulo can be inserted anywhere in the ladder. If the shelf
corresponding to its size is empty, then the pair is just stored there, otherwise
it is combined with occupant of the shelf, the latter is dismissed and the new
combination tries to go one level up as shown on algorithm 2.

Algorithm 2 RadixLadder.insert(U,M)

Input: U ≡ R mod M and a Radix ladder
Output: Insertion of U and M in the ladder.,
1: for i = size(M) while Shelf[i] is not empty do
2: U,M :=Reconstruct(U mod M,Ui mod Mi);
3: Pop Shelf[i];
4: Increment i;
5: end for
6: Push U,M in Shelf[i];

Then if the new level is empty the combination is stored there, otherwise it
is combined and goes up ... An example of this procedure is given on figure 1.

20

21

22

23

24

Figure 1: A residue going up the radix ladder

Then to recover the whole reconstructed number it is sufficient to iterate
through the ladder from the ground level and make all the encountered partial
results go to up one level after the other to the top of the ladder. As we will see in
section 3.3, LinBox-1.1.7 contains such a data structure, in linbox/algorithms/

cra-full-multip.h.
An advantage of this structure is that it enables insertion of any size pair with

fast arithmetic complexity. Moreover, merge of two ladders is straightforward
and we will make an extensive use of that fact in a parallel setting in section 5.
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Algorithm 3 RadixLadder.merge

Input: Two radix ladders RL1 and RL2.
Output: In place merge of RL1 and RL2.
1: for i = 0 to size(RL2) do
2: RL1.insert(RL2.Shelf[i]);
3: end for
4: Return RL1

3 A Chinese remaindering design pattern

The generic design we propose here comes from the observation that there are in
general two ways of computing a reconstruction: a deterministic way computing
all the residues until the product of moduli reaches a bound on the size of the
result ; or a probabilistic way using early termination. We thus propose an
abstraction of the reconstruction process in three layers: a black box function
produces residues modulo small moduli, an integer builder produces reconstruc-
tions using algorithm 2, and a Chinese remaindering controller commands them
both.

Here our point is that the controller is completely generic where the builder
may use e.g. the radix ladder data structure proposed in section 2 and has to
implement the termination strategy.

3.1 Black box residue computation

In general this consists in mapping the problem from Z to Z/mZ and com-
puting the result modulo m. Such black boxes are defined e.g. for the de-
terminant, valence, minpoly, charpoly, linear system solve as function objects
IntegerModular* (where * is one of the latter functions) in the linbox/solutions
directory of LinBox-1.1.7.

3.2 Chinese remaindering controller

The pattern we propose here is generic with respect to the termination strategy
and the integer reconstruction scheme. The controller must be able to initialize
the data structure via the builder ; generate some coprime moduli ; apply the
black box function ; update the data structure ; test for termination and output
the reconstructed element. The generations of moduli and the black box are
parameters and the other functionalities are provided by any builder. Then the
control is a simple loop. Algorithm 4 shows this loop which contains also the
whole interface of the Builder.

LinBox-1.1.7 gives an implementation of such a controller, parametrized by
a builder and a black box function as the class ChineseRemainder in linbox/

algorithms/cra-domain.h.
The interface of a controller is to be a function class. It contains a constructor

with a builder as argument and the functional operator taking as argument a
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Algorithm 4 CRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: v := BlackBox.apply(p);
5: Builder.update(v, p);
6: end while
7: Return Builder.reconstruct();

BlackBox, computing e.g. a determinant modulom, and a moduli generator and
returning an integer reconstructed from the modular computations. Algorithm
5 shows the specifications of the LinBox-1.1.7 controller. Then any higher-

Algorithm 5 C++ ChineseRemainder class

template<class Builder> struct ChineseRemainder {

ChineseRemainder(const Builder& b) : builder_(b) {}

template<class Function> Integer& operator() (

Integer & res,

const Function & BlackBox) {

// CRA-Control ...

}

const Builder& getBuilder() { return builder_; }

protected: Builder builder_;

};

level algorithm will just chose its builder and its controller and pass them the
modular BlackBox iteration it wants to lift over the integers.

3.3 Integer builders

The role of the builder is to implement the interface defined by algorithm 4.
There are already three of these implementations in LinBox-1.1.7: an early

terminated for a single residue, an early terminated for a vector of residues
and a deterministic for a vector of residues (resp. the files cra-early-single.h,
cra-early- multip.h and cra-full-multip.h in the linbox/algorithms direc-
tory). Up to now the radix ladder is not a separated class as only this data
structure is currently used and as it is simple enough to inherit from one of the
latter and modify the behavior of the methods.

Actually EarlyMultipCRA inherits from both EarlySingleCRAand FullMultipCRA
as it uses the radix ladder of FullMultipCRA for its reconstruction and the early
termination of EarlySingleCRA to test a linear combination a the residues to
be reconstructed as shown on figure 2

We give more implementation details on the early termination strategies in
sections 4 and 5.
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EarlySingle

EarlyMultip

FullMultip

...

combination
Linear

Figure 2: Early termination of a vector of residues via a linear combination

4 Termination strategies

Let us sketch here several early termination strategies and show that our design
enables to modify this strategy and only that while the rest of the implementa-
tion is unchanged.

4.1 Earliest termination

In a sequential mode, depending on the actual speed of the different routines
of table 1 on a specific architecture or if the cost of BlackBox.apply is largely
dominant, one can choose to test for termination after each call to the black
box. A way to implement the probabilistic test of [12, Lemma 3.1] and to reuse
every black box apply is to use random primes as the moduli generator. Indeed
then the probabilistic check can be made with the incoming black box residue
computed modulo a random prime. The reconstruction algorithm of section 3
is then only slightly modified as shown in algorithm 6 and the termination test
becomes simply algorithm 7.

In the latter algorithm, EarlyT erminationThreshold is the number of suc-
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Algorithm 6 EarlySingleCRA.update(v, p)

Global: U ≡ R mod M .
Global: A variable Stabilization initially set to 0.
Input: v ≡ R mod p.
Output: RMN ≡ R mod M × p.
1: u ≡ U mod p;
2: if u == v then
3: Increment Stabilization;
4: Return (U,M × p);
5: else
6: Stabilization = 0;
7: Return Reconstruct(U mod M, v mod p);
8: end if

Algorithm 7 EarlySingleCRA.notTerminated()

1: Return Stabilization < EarlyT erminationThreshold;

cessive stabilizations required to get a probabilistic estimate of failures. It will
be denoted ET for the rest of the paper. This is the strategy implemented in
LinBox-1.1.7 in linbox/algorithms/cra-early-single.h. With the estimates of
table 1, the cost of the whole reconstruction of algorithm 4 thus becomes

t
∑

i=1

(apply+ 8i+O(1)) =

(t+ ET )apply+ 4(t+ ET )2 +O(t) (2)

where t = ⌈log2β (R)⌉ and β is the word size.
This strategy enables the least possible number of calls to BlackBox.apply.

It it thus useful when the latter dominates the cost of the reconstruction.

4.2 Balanced termination

Another classic case is when one wants to use fast integer arithmetic for the
reconstruction. Then the balanced computations are mandatory and the radix
ladder becomes handy. The problem now becomes the early termination. There
a simple strategy could be to test for termination only when the number of
computed residues is a power of two. In that case the reconstruction is guaran-
teed to be balanced and fast Chinese remaindering is also guaranteed. Moreover
random moduli are not any more necessary for all the residues, only those test-
ing for early termination need be randomly generated. This induces another
saving if one fixes the other primes and precomputes all the factors Mi × (M−1

i

mod Mi+1). There the cost of the reconstruction drops by a factor of 2 from
2(mα + dα)l

α to (mα + dα)l
α.

8
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The drawback is an extension of the number of black box applications from
⌈log2β (R)⌉+ET to the largest power of two immediately superior and thus up
to a factor of 2 in the number of black box applies.

For the Builder, the update becomes just a push in the ladder as shown on
algorithm 8.

Algorithm 8 EarlyBalancedCRA.update(v, p)

1: RadixLadder.insert(v, p);

The termination condition, on the contrary tests only when the number of
residues is power of two as shown on algorithm 9.

Algorithm 9 EarlyBalancedCRA.notTerminated()

1: if Only one Shelf, Shelf[i], is full then
2: Set Ui to Shelf[i] residue;
3: for j = 1 to EarlyT erminationThreshold do
4: p :=PrimeGenerator();
5: if (Ui mod p) ! = BlackBox.apply(p) then
6: Return false;
7: end if
8: end for
9: Return true;

10: else
11: Return false;
12: end if

Then, the whole reconstruction of algorithm 4 now requires:

ET · (apply+ 3 · 2k) +

k−1
∑

i=0

2k

2i+1

(

apply+ (mα + dα)2
iα
)

+(apply+ 3 · 2i) =

(2k + k + ET − 1) · apply+
(

2k
)α mα + dα

2α − 2
+O(2k)

(3)

operations, where now k = ⌈log2(log2β (R))⌉.
Despite the augmentation in the number of black box applications, the latter

can be useful, in particular when multiple values are to be reconstructed.

Example 1. Consider the Gaußian elimination of an integer matrix where
all the matrix entries are larger than n and bounded in absolute value by A∞.
We denote log2β (A∞) by a∞. Suppose one would like to compute the rational
coefficients of the triangular decomposition only by Chinese remaindering (there
exist better output dependant algorithms, see e.g. [21], but the latter has the
same worst-case complexity). Now, Hadamard bound gives that the resulting

numerators and denominators of the coefficients are bounded by
√

nA2
∞

n
. Then

9



the complexity of the earliest strategy would be dominated by the reconstruction
where the balanced strategy or the hybrid strategy of figure 2 could benefit from
fast algorithms:

EarlySingleCRA O(n4a2∞)
EarlyMultipCRA O(nω+1a∞ + n2+αaα∞ + n2a2∞)
EarlyBalancedCRA O(2nω+1a∞ + n2+αaα∞)

Table 2: Early termination strategies complexities for Chinese remaindered
Gaußian elimination with rationals

In the case of small matrices with large entries the reconstruction dominates
and then a balanced strategy is preferable. Now if both complexities are com-
parable it might be useful to reduce the factor of 2 overhead in the black box
applications. This can be done via amortized techniques, as shown next.

4.3 Amortized termination

A possibility is to use the ρ-amortized control of [2]: instead of testing for
termination at steps 21, 22, . . ., 2i, . . . the tests are performed at steps ρg(1),
ρg(2), . . ., ρg(i), . . . with 1 < ρ < 2 and f satisfies ∀i, g(i) ≤ i. If the complexity
of the modular problem is C and the number of iterations to get the output is

b, [2] give choices for ρ and g which enable to get the result with only b + f(b)
b

iterations and extra O(f(b)) termination tests where f(b) = logρ(b).
In example 1 the complexity of the modular problem is nω, the size of the

output and the number of iterations is na∞ so that strategy would reduce
the iteration complexity from 2nω+1a∞ to (na∞ + o(na∞))nω and the overall
complexity would then become:

EarlyAmortizedCRA
O(nω+1a∞ + n2+αaα∞

+ log(na∞)nαaα∞)

Indeed, we suppose that the amortized technique is used only on a linear
combination, and that the whole matrix is reconstructed with a FullMultipCRA,
as in figure 2. Then the linear combination has size 2 log(n) + n · a∞ which is
still O(n · a∞). Nonetheless, there is an overhead of a factor log(na∞) in the
linear combination reconstruction since there might be up to O(log(na∞)) values
ρg(i), ρg(i+1), . . . between any two powers of two. Overall this gives the above
estimate. Now one could use other g functions as long as eq. 4 is satisfied.

{

(

ρg(i+1) − ρg(i)
)

= o(ρg(i))
(

ρg(i+k(i)) − ρg(i)
)

∼ 2⌈log2(ρ
g(i))⌉, k(i) = o(ρg(i))

(4)

5 Parallelization

All parallel versions of these sequential algorithms have to consider the parallel
merge of radix ladders and the parallelization of the loop of the CRA-control
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algorithm 4. Many parallel libraries can be used, namely OpenMP or Cilk
would be good candidates for the parallelization of the embarrassingly parallel
FullMultipCRA. Now in the early termination setting, the main difficulty comes
from the distribution of the termination test. Indeed, the latter depends on data
computed during the iterations. To handle this issue we propose an adaptive
parallel algorithm [5, 23] and use the Kaapi library [6, 16]. Its expressiveness
in an adaptive setting guided our choice, together with the possibility to work
on heterogenous networks.

5.1 Kaapi overview

Kaapi is a task based model for parallel computing. It was targeted for dis-
tributed and shared memory computers. The scheduling algorithm uses work-
stealing [3, 1, 4, 17]: an idle processor tries to steal work to a randomly selected
victim processor.

The sequential execution of a Kaapi program consists in pushing and pop-
ping tasks to dequeue the current running processor. Tasks should declare the
way they access the memory, in order to compute, at runtime, the data flow
dependencies and the ready tasks (when all their input values are produced).
During a parallel execution, a ready task, in the queue but not executed, may
be entirely theft and executed on an other processor (possibly after being com-
municated through the network). These tasks are called dfg tasks and their
schedule by work-stealing is described in [16, 17].

A task being executed by a processor may be only partially theft if it interacts
with the scheduler, in order to e.g. decide which part of the work is to be given
to the thieves. Such tasks are called adaptive tasks and allows fine grain loop
parallelism.

To program an adaptive algorithm with Kaapi, the programmer has to spec-
ify some points in the code (using kaapi_stealpoint) or sections of the code
(kaapi_stealbegin, kaapi_stealend) where thieves may steal work. To guar-
antee that parallel computation is completed, the programmer has to wait for
the finalization of the parallel execution (using kaapi_steal_finalize). More-
over, in order to better balance the work load, the programmer may also decide
to preempt the thieves (send an event via kaapi_preempt_next).

5.2 Parallel earliest termination

Algorithm 10 lets thieves steal any sequence of primes.
At line 4, the code allows the scheduler to trigger the processing of steal requests
by calling the splitter function. The parameters of kaapi_stealbegin are the
splitter function and some arguments to be given to its call. These arguments4

can e.g. specify the state of the computation to modify (here the builder object
plays this role). Then, on the one hand, concurrent modifications of the state of
computation by thieves, must be taken care of during the control flow between

4in or out
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Algorithm 10 ParallelCRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: kaapi stealbegin( splitter, Builder);
5: v := BlackBox.apply(p);
6: Builder.update(v, p);
7: kaapi finalize steal();
8: kaapi stealend();
9: if require synchronization step then

10: while kaapi nomore thief() do
11: (list of v, list of p) :=kaapi preempt next();
12: Builder.update(list of v, list of p);
13: end while
14: end if
15: end while
16: Return Builder.reconstruct();

lines 4 and 8: here the computation of the residue could be evaluated by multiple
threads without critical section5. On the other hand, after line 8, the scheduler
guarantees that no concurrent thief can modify the computational state when
they steal some work. Remark that both branches of the conditional if at line 9
must be executed without concurrency: the iteration of the list of thieves or the
generation of the next random modulo are not reentrant.

The role of the splitter function is to distribute the work among the thieves.
In algorithm 11, each thief receives a coPrimeGeneratorobject and the entrypoint
to execute.

Algorithm 11 Splitter(Builder,N, requests[])

1: for i = 0 to N − 1 do
2: kaapi request reply(request[i], entrypoint,

Builder.getCoPrimeGenerator() );
3: end for

The coPrimeGenerator depends on the Builder type and allows the thief
to generate a sequence of moduli. For instance the coPrimeGenerator for the
earliest termination contains at one point a single modulo M which is returned
by the next call of nextCoPrime() by the Builder.

The splitter function knows the number N of thieves that are trying to steal
work to the same victim. Therefore it allows for a better balance of the work
load. This feature is unique to Kaapi when compared to other tools having a
work-stealing scheduler.

5This depends on the implementation, most of the LinBox library functions are reentrant
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5.3 Synchronization

Now, the victim periodically tests the global termination of the computation
(line 9 of algorithm 10). Depending on the chosen termination method (Early*CRA,
etc.), the synchronization may occur at every iteration or after a certain num-
ber of iterations. The choice is made in order to e.g. amortize the cost of this
synchronization or reduce the arithmetic cost of the reconstruction. Then each
thief is preempted (line 11) and the code recovers its results before giving them
to the Builder for future reconstruction (line 12).

The preemption operation is a two way communication between a victim and
a thief: the victim may pass parameters and get data from one thief. Note that
the preemption operation assumes cooperation with the thief code. The latter
being responsible for polling incoming events at specific points (e.g. where the
computational state is safe preemption-wise).

On the one hand, to amortize the cost of this synchronization, more primes
should be given to the thieves. In the same way, the victim code works on a
list of moduli inside the critical section (at line 3 returns a list of moduli, and
at lines 5-6 the victim iterates over this list by repeatedly calling apply and
update methods). On the other hand, to avoid long waits of the victim during
preemption, each thief should test if it has been preempted to return quickly its
results (see next section).

5.4 Thief entrypoint

Finally, algorithm 12 returns both the sequence of residues and the sequence
of primes that where given to the BlackBox. This algorithm is very similar to
algorithm 10.

Algorithm 12 Thief’s EntryPoint(M)

1: Builder.initialize();
2: list of v.clear();
3: list of p.clear();
4: while Builder.CoPrimeGenerator() not empty do
5: if kaapi preemptpoint() then break; end if
6: p := Builder.nextCoPrime();
7: kaapi stealbegin( splitter, Builder);
8: list of p.push back(p);
9: list of v.push back(BlackBox.apply(p));

10: kaapi stealend();
11: end while
12: kaapi stealreturn (list of v, list of p);

Lines 7 and 10 define a section of code that could be concurrent with steal
requests. At line 5, the code tests if a preemption request has been posted by
algorithm 10 at line 11. If this is the case, then the thief aborts any further
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computation and the result is only a partial set of the initial work allocated by
the splitter function.

5.5 Efficiency

These parallel versions of the Chinese remaindering have been implemented
using Kaapi transparently from the LinBox library: one has just to change
the sequential controller cra-domain.h to the parallel one.

In LinBox-1.1.7 some of the sequential algorithms which make use of some
Chinese remaindering are the determinant, the minimal/characteristic polyno-
mial and the valence, see e.g. [19, 12, 11, 8] for more details.

We have performed these preliminary experiments on an 8 dual core machine
(Opteron 875, 1MB L2 cache, 2.2Ghz, with 30GBytes of main memory). Each
processor is attached to a memory bank and communicates to its neighbors via
an hypertransport network. We used g++ 4.3.4 as C++ compiler and the Linux
kernel was the 2.6.32 Debian distribution.

All timings are in seconds. In the following, we denote by Tseq the time of
the sequential execution and by Tp the time of the parallel execution for p = 8
or p = 16 cores. All the matrices are from “Sparse Integer Matrix Collection”
(SIMC)6.

Table 3 gives the performance of the parallel computation of the determinant
for small invertible matrices (less than a second) and larger ones (an hour CPU)
of the SIMC/SPG and SIMC/Trefethen collections.

Matrix d, r Tseq[k] Tp=8[k] Tp=16[k]

ex− 1 560, 8736 0.336[4] 0.386[60] 0.533[124]
ex− 3 2600, 71760 914.28[183] 247.75[303] 102.75[263]

t− 150 150, 2040 0.26[59] 0.14[135] 0.13[263]
t− 300 300, 4678 2.90[138] 0.88[143] 0.48[255]
t− 500 500, 8478 17.65[249] 3.05[319] 1.57[255]
t− 700 700, 12654 58.25[367] 11.45[386] 7.56[376]
t− 2000 2000, 41907 3208.59[1274] 708.506[1295] 434.31[1286]

Table 3: Timings for the computation of the determinant. d is the dimension
of the matrix, r the number of non-zero coefficients, [k] is the minimal number
of primes observed for the Chinese remaindering using p cores.

The small instance (ex-1) needed very few primes to reconstruct integer the
solution. There, we can see the overhead of parallelism: this is due to some
extra synchronizations and also to the large number of unnecessary modular
computations before realizing that early termination was need. Despite this
(124 modular computations with 16 cores against 4 modular applications in
sequential) the overhead was less than 0.2 second. Now, for matrix ex-3, the
speed up for 16 cores was a little bit more than 8: with the large amount of

6http://ljk.imag.fr/CASYS/SIMC
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memory, we assume that the memory bandwidth is the bottleneck when two
cores on the same processor share the memory interconnection.

Matrix d Tseq[k] Tp=4[k] Tp=8[k]

ch88.b5 564480 × 376320 73.78[5] 40.53[6] 47.58[5]

n4c5.b5 4340× 2852 5.62[16] 2.09[17] 3.09[35]
n4c5.b6 4735× 4340 25.15[32] 10.07[33] 9.12[35]
n4c5.b7 3635× 4735 29.87[38] 12.17[42] 9.07[40]
n4c6.b5 51813 × 20058 92.29[18] 34.16[22] 35.45[29]

Table 4: Times for the computation of the valence. d is the dimension of the ma-
trix, [k] is the minimal number of primes observed for the Chinese remaindering
using p cores.

Table 4 shows the performance of the parallel computation of the valence of
A tA. Matrices in this table come from the SIMC/Homology collection and were
used in [12], where the parallelism was ad-hoc.

Further analysis is required to identify hot spots in the executions in order
to improve the efficiency at this computational grain. First at all, we need
to increase the size of the critical section between kaapi_stealbegin kaapi_

stealend: e.g. by generating in parallel random primes. We already found
some bottlenecks due to memory allocation that may be removed. Besides, it
remains difficult on such architecture to control the computational affinity with
the mapping of data in memory.

6 Conclusion

We have proposed a new data structure, the radix ladder, capable of managing
several kinds of Chinese reconstructions.

Then, we have defined a new generic design for Chinese remaindering schemes.
It is summarized on figure 3. Its main feature is the definition of a builder
interface in charge of the reconstruction. This interface is such that any of ter-
mination (deterministic, early terminated, distributed, etc.) can be handled by
a CRA controller. It enables to define and test remaindering strategies while
being transparent to the higher level routines. Indeed we show that the Chinese
remaindering can just be a plug-in in any integer computation.

We also provide in LinBox-1.1.7 an implementation of the ladder, several
implementations for different builders and a sequential controller. Then we
tested the introduction of a parallel controller, written with Kaapi, without
any modification of the LinBox library. The latter handles the difficult issue of
distributed early termination and shows good performance on a SMP machine.

In parallel, some improvement could be made to the early termination strat-
egy in particular when the BlackBox is fast compared to the reconstruction and
when balanced and amortized techniques are required. Also, output sensitive
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Figure 3: Generic Chinese remaindering scheme

early termination is very useful for rational reconstruction, see e.g. [20] and
thus the latter should benefit from this kind of design.

References

[1] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’01), Puerto
Vallarta, pages 119–129, 2001.

[2] O. Beaumont, E. M. Daoudi, N. Maillard, P. Manneback, and J.-L. Roch.
Tradeoff to minimize extra-computations and stopping criterion tests for
parallel iterative schemes. In 3rd International Workshop on Parallel Ma-
trix Algorithms and Applications (PMAA04), CIRM, Marseille, France,
Oct. 2004.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69, 1996.

[4] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In P. B.
Gibbons and P. G. Spirakis, editors, Proceedings of the 17th Annual ACM
Symposium on Parallel Algorithms (SPAA’05), Las Vegas, Nevada, USA,
pages 21–28. ACM, July 2005.

[5] V. D. C. Cung, V. Danjean, J.-G. Dumas, T. Gautier, G. Huard, B. Raffin,
C. Rapine, J.-L. Roch, and D. Trystram. Adaptive and hybrid algorithms:
classification and illustration on triangular system solving. In Dumas [7],
pages 131–148.

[6] V. Danjean, R. Gillard, S. Guelton, J.-L. Roch, and T. Roche. Adaptive
loops with kaapi on multicore and grid: Applications in symmetric cryp-
tography. In Watt [24], pages 33–42.

[7] J.-G. Dumas, editor. TC’2006. Proceedings of Transgressive Computing
2006, Granada, España. Universidad de Granada, Spain, Apr. 2006.

16



[8] J.-G. Dumas. Bounds on the coefficients of the characteristic and minimal
polynomials. Journal of Inequalities in Pure and Applied Mathematics,
8(2):art. 31, 6 pp, Apr. 2007.

[9] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen,
E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A
generic library for exact linear algebra. In A. M. Cohen, X.-S. Gao, and
N. Takayama, editors, Proceedings of the 2002 International Congress of
Mathematical Software, Beijing, China, pages 40–50. World Scientific Pub.,
Aug. 2002.

[10] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over prime
fields. ACM Transactions on Mathematical Software, 35(3):1–42, Nov.
2008.

[11] J.-G. Dumas, C. Pernet, and Z. Wan. Efficient computation of the char-
acteristic polynomial. In M. Kauers, editor, Proceedings of the 2005 ACM
International Symposium on Symbolic and Algebraic Computation, Beijing,
China, pages 140–147. ACM Press, New York, July 2005.

[12] J.-G. Dumas, B. D. Saunders, and G. Villard. On efficient sparse integer
matrix Smith normal form computations. Journal of Symbolic Computa-
tion, 32(1/2):71–99, July–Aug. 2001.
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