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THE PUNCTUAL HILBERT SCHEME: AN INTRODUCTION

JOSÉ BERTIN

Abstract. The punctual Hilbert scheme has been known since the early days of algebraic
geometry in EGA style. Indeed it is a very particular case of the Grothendieck’s Hilbert
scheme which classifies the subschemes of projective space. The general Hilbert scheme is a
key object in many geometric constructions, especially in moduli problems. The punctual
Hilbert scheme which classifies the 0-dimensional subschemes of fixed degree, roughly finite
sets of fat points, while being pathological in most settings, enjoys many interesting proper-
ties especially in dimensions at most three. Most interestingly it has been observed in this
last decade that the punctual Hilbert scheme, or one of its relatives, the G-Hilbert scheme
of Ito-Nakamura, is a convenient tool in many hot topics, as singularities of algebraic vari-
eties, e.g McKay correspondence, enumerative geometry versus Gromov-Witten invariants,
combinatorics and symmetric polynomials as in Haiman’s work, geometric representation
theory (the subject of this school) and many others topics.

The goal of these lectures is to give a self-contained and elementary study of the founda-
tional aspects around the punctual Hilbert scheme, and then to focus on a selected choice
of applications motivated by the subject of the summer school, the punctual Hilbert scheme
of the affine plane, and an equivariant version of the punctual Hilbert scheme in connection
with the A-D-E singularities. As a consequence of our choice some important aspects are
not treated in these notes, mainly the cohomology theory, or Nakajima’s theory. for which
beautiful surveys are already available in the current litterature [24], [43], [47].

Papers with title something an introduction are often more difficult to read than Lectures
on something. One can hope this paper is an exception. I would like to thank M. Brion for
discussions and his generous help while preparing these notes.
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1. Preliminary tools

The prototype of problems we are interested in is to describe in some sense the set
of ideals of fixed codimension n in the polynomial ring in r variables k[X1, · · · , Xr]
over a field k assumed algebraically closed to simplify.

In the one variable case, k[X] being a principal ideal domain, an ideal I with
dim k[X]/I = n is of the form I = (P (X)) with P monic and degP = n. These
ideals are then parameterized by n parameters, the coefficients of P . In this case the
punctual n-Hilbert scheme is an affine space An

k . In a different direction, basic linear
algebra tells us there is a precise relationship between on one hand the structure of the
algebra A = k[X]/(P ) and on the other hand properties of the linear map F 7→ XF
from A to A, summarized as follows

P (X) A

without multiple factor semi-simple

One root ∈ k with multiplicity > 1 local, nilpotent

non zero discriminant separable

One of our main goals in these lectures is to extend such a relationship to more
general algebras than polynomials in one variable. One of our main theorems, in the
two variables case, states that the set of all ideals with codimension n has a natural
structure of a smooth algebraic variety of dimension 2n. So to describe an ideal
of codimension n in the polynomial ring k[X, Y ], we need exactly 2n parameters.
Moreover the subset of ideals I with k[X,Y ]/I semi-simple is open and dense. The
situation dramatically changes if the number of indeterminates is 3 or more. In any
case the punctual Hilbert scheme appears to be a very amazing object.

Likewise, if A is a k-algebra (commutative throughout these notes, not necessarily
of finite dimension as k-vector space) we can ask about the structure of the set of
ideals of A. We shall see in case the dimension of A is finite, that the set of ideals
I ⊂ A with dimA/I = n is a projective variety, but infortunately in general, a very
complicated one.

Throughout this text we fix an arbitrary base field k, not necessarily algebraically
closed. In some cases however it will be convenient to assume k = k, and sometimes
the assumption of characteristic zero will be necessary. So in a first lecture the reader
may assume k = k is a field of characteristic zero.
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In this set of lectures, a scheme, or variety, will be mostly a k-scheme, that is
a finite type scheme over k. Let us denote Schk the category of k-schemes, and
correspondingly Affk the subcategory of affine k-schemes. One knows that Affk

is the category opposite to the category Algk of commutative k-algebras of finite
type. More generally Sch (resp. Aff) stands for the category of (locally) noetherian
schemes (resp. the category of affine noetherian schemes). If X is a scheme, AffX

denotes the category of schemes over X, i.e. of schemes together with a morphism
to X. For any R ∈ Aff , SpecR stands for the spectrum of A, viewed as usual as a
scheme. When R = k[X1, · · · , Xn]/(F1, · · · , Fm) and k = k, then SpecR ∈ Affk can
be thought of as the set {x ∈ kn, F1(x) = · · · = Fm(x) = 0} equipped with the ring of
functions R. If X is a scheme, OX stands for the sheaf of regular functions on open
subsets of X. The stalk of OX at a point x will be denoted OX,x or Ox if X is fixed.
By a point we always mean a closed point.

By an OX-module (resp. coherent module) we shall mean a quasi-coherent (resp.
coherent) sheaf of OX-modules [34]. Finally a vector bundle, is a coherent OX-module
which is locally free of rank n, i.e. at all x ∈ X the stalk is a free OX,x- module of
rank n. If X = SpecA the category of OX-modules is equivalent to the category of
A-modules. A locally free module of rank n is a projective module of constant rank
n.

We want to point out that the concept of flatness is essential to handle correctly
families of objects in algebra or algebraic geometry, for us families of 0-dimensional
subschemes, or ideals. We refer to [16], or [45] for the first definitions, and basic
results.

Punctual Hilbert schemes will be obtained by glueing together affine schemes. This
explains why the first section starts with some comments about this glueing process.
Another basic operation that will be used in the sequel is the quotient of a scheme
by a finite group action. This operation will be studied in detail in section 1.4.

1.1. Schemes versus representable functors.

1.1.1. Glueing affine schemes. One lesson of algebraic geometry in EGA style is that
it is often better to think of a schemeX ∈ Sch as a contravariant functor, the so-called
functor of points

(1.1) X : Sch → Ens (or, Aff → Ens)

where X(S) = HomSch(S,X). Essentially all the information about the scheme X
can be read off the functor of points. It doesn’t matter to choose either Sch or Aff ,
indeed to reconstruct X from its functor of points, it is sufficient to know X on the
subcategory Aff . In this functorial setting a morphism f : Y → X can be thought of
as a section f ∈ X(Y ) or using Yoneda’s lemma as a functorial morphism Y → X. In
the sequel we shall use the same letter to denote a scheme and its associated functor.

The functorial view-point as advocated before suggests that to construct a scheme,
one has to identify first its functor of points X , and then try to show that this functor
is indeed the functors of points of a scheme. This last part which amounts to check
X is representable, is in general not totally obvious. We must list the conditions
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about the functor X = X expressing that X is the glueing of affine pieces. The first
condition comes from restricting X to the category OpenS of open sets U ⊂ S ∈ Sch,
the morphisms being the inclusions U ⊂ V . The local character of morphisms implies
that X : OpenS → Ens is not only a presheaf but a Zariski sheaf. We say ”Zariski”
to keep in mind that the topology used to define the sheaf property is the Zariski
topology. In other words if S = ∪iUi is an open cover of S ∈ Aff , the following
diagram with obvious arrows is exact

(1.2) hX(S) //
∏

i hX(Ui)
//
//
∏

i,j hX(Ui ∩ Uj)

Let X be a Zariski sheaf on Aff . We say that X is representable if for some scheme X
we have an isomorphism ξ : X

∼→ X . As said before the Yoneda lemma asserts that
such a morphism is determined by the single object ξ(1X) ∈ X (X). It is convenient
to identify ξ with this object and write ξ : X → X . In the same way let F : X → Y
be a morphism. One says that F is representable if for all ξ : S → Y the fiber product
X ×Y S, which is a sheaf, is representable.

If this is the case, F is said to be an open immersion (resp. closed immersion, a
surjection) if for all ξ as above the projection X ×Y S → S is an open immersion
(resp. closed immersion, surjection). The following is the most näıve way to try to
represent a functor, but it is sufficient for what follows.

Proposition 1.1. A Zariski sheaf X is representable, i.e a scheme X, if and only if:
there exist a family morphisms ui : Ui → X such that the following conditions are

satisfied

i) for any i, ui : Ui → X is an open immersion, in particular
∐

i Ui → X is
representable

ii) u : U :=
∐

i Ui → X is surjective
iii) Finally X is separated (so really a scheme), if and only if the graph of the

equivalence relation U ×X U ↪→ U × U is a closed immersion.

Proof:
First perform the fiber product

Ui
ui // X

Ui ×X Uj

vi

OO

vj // Uj

uj

OO

so that condition ii) says Ui ×X Uj is a scheme. Furthermore the arrows vi, vj are
both open immersions. Let us denote Ui,j ⊂ Ui and Uj,i ⊂ Uj the corresponding open

sets. The isomorphism Ui ×X Uj
∼−→ Ui,j together with the corresponding one with

Uji, yields an isomorphism θj,i, viz.

(1.3) Ui ×X Uj
∼

zzuuuuuuuuu
∼

$$I
IIIIIIII

Ui,j
θj,i

∼
// Uj,i
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The associativity of the fiber product quickly yields the following cocycle condition

(1.4) θk,j |Uj,i∩Uj,k
θj,i|Ui,j∩Ui,k

= θk,i|Uk,j∩Uk,i
, θi,jθj,i = 1Ui,j

Now the scheme X is obtained by glueing the U ′is along the common open sets U ′i,js
by means of the glueing isomorphisms θi,j.

We now see ui as section of X over Ui (Yoneda’s lemma). Then if one uses the
same notation for Ui and its image into X, it is easily seen that ui and uj are equal
on Ui ∩ Uj. Since X is a Zariski sheaf, this defines a global section u ∈ X (X), thus a
morphism u : X → X . The result is that u is an isomorphism of sheaves. One must
check that for all S ∈ Sch, one has

u(S) : Hom(S,X)
∼−→ X (S)

Keep in mind that u(S) is the map f : (S → X) 7→ f ∗(u) ∈ X (S). First, let us
check the injectivity, that is if f, g ∈ Hom(S,X), then f ∗(u) = g∗(u) ⇐⇒ f = g.
We have the equality in a set-theoretical sense. Indeed, it suffices to check this when
S = Speck = {s}. Suppose that f(s) ∈ Ui, g(s) ∈ Uj. Then the hypothesis means
that we have a commutative diagram

(1.5) Ui // X

S

::vvvvvvvvvvv //

g

44UI ×X Uj

OO

// Uj

OO

therefore we can fill in the dotted arrow, meaning f(s) ∈ Uij, g(s) ∈ Uji, and g(s) =
θji(f(s)). Thus f(s) = g(s). But now the equality f = g is also true in a scheme
sense. Indeed restricting to Si = f−1(Ui) = g−1(Ui), since Ui is a subfunctor of F ,
this yields f = g on Si. In turn we get finally f = g.

Now let’s check the surjectivity. Let f : S → X be an S-section of X . We must
check this section locally (in the Zariski sense) lifts to X. This immediately follows
from the cartesian square

Ui // X

Si = Ui ×F S

OO

// S

f

OO

whichs says that the restriction to Si lifts.
To complete the proof that X is a scheme X, we need to check that X is separated,

meaning the diagonal X ↪→ X × X is closed, therefore a closed immersion. Let us
write the cartesian diagram

U × U // X ×X

U ×X U

OO

// X

OO
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where the right vertical arrow is the diagonal map. If X is separated, then its diagonal
is closed, thus the immersion U ×X U ↪→ U × U is closed. Conversely, denoting
∆ ⊂ X×X the diagonal, the previous construction shows that Ui×Uj ∩∆ is exactly
the graph of the glueing morphism θji that is, the image of Ui ×X Uj. Then ∆ being
closed means that for all (i, j) the graph of θji is closed, equivalently U×X U is closed
in U × U .

�
It is known that the functor of points X of a scheme remains a sheaf for finer

topologies of Sch than the Zariski topology. Descent theory shows the functor X is
a sheaf not only for the etale topology, but also for the fppf topology, the faithfully
flat and finite presentation topology. We have no need for this in what follows.

To end this section, let us remind the so-called valuative criterion of separatedness
(resp. of properness) ([34], Theorem 4.7). In the setting of Proposition 1.1 condition
iii) holds true if and only if for any discrete valuation ring A with fraction field K,
and any pair of morphisms f, g : SpecR −→ X, if f = g at the generic point, then
f = g. In other terms the map

(1.6) Hom(SpecA,X) −→ Hom(SpecK,X)

is injective. Furthermore (1.6) is surjective if and only if X is proper. This will be
used to check the Hilbert scheme is separated and complete.

1.2. Affine spaces, Projective spaces and Grassmanianns. A first example of
scheme given by its functor of points is the affine space An = Speck[X1, · · · , Xn],
namely

(1.7) Hom(SpecA,An) = Homk−alg (k[X1, · · · , Xn], A) = An

More generally let E be a quasi coherent sheaf overX, with dual E∗ = HomOX
(E ,OX).

The functor over SchX given by

(1.8) (f : S → X) 7→ HomOS
(f ∗(E),OS)

is represented by the scheme Spec(Sym(E)) which is natively a scheme over X [34].
Another very familiar example for the sequel is the functor of points of the pro-

jective space Pn. This is the contravariant functor (see for example [34])

(1.9) Pn(S) = {(L, ϕ : On+1
S → L)} /∼=

where L is a line bundle, and ϕ is onto. Here ϕ, ϕ′ are identified if there is an
isomorphism ψ : L ∼→ L′ with ϕ′ = ψϕ. In this definition the closed points of Pn are
the hyperplanes of kn+1. The set of lines is the dual projective space Pn∨.

If e0, · · · , en stands for the canonical basis of the free OS-module On+1
S , then the

subfunctor given by imposing the condition that ϕ(ei) generates L is readily seen
to be open and representable by an affine space An. Furthermore these subfunctors
yield a covering of Pn. The resulting geometric space Pn can be built by means of the
operation Proj [34].
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More generally the Grassmann scheme Gn,r classifying the vector subspaces of
rank r ∈ [1, n− 1] of kn is the scheme representing the functor

(1.10) S 7→ {ϕ : On
S → E}/∼=

where E is a locally free sheaf of rank n− r, ϕ is onto, and the equivalence relation is
as before. The punctual Hilbert functor to be defined is as we shall see a refinement of
the Grassmann functor. The construction of the Hilbert scheme below incidently will
give a proof of the existence of the Grassmann scheme. More precisely if we choose
W ⊂ kn a subspace of dimension n−r, then the subfunctor of the Grassmann functor
whose objects are the complementary subspaces of W is open, and easily shown to
be representable by an affine space. These open subfunctors yield a cover. If we take
the determinant of E e.g the top exterior power, namely

(1.11) ∧n−rϕ : ∧n−r(On
S) = O(n

r)
S → ∧n−rE

we get a point of P( n
n−r). It can be shown this yields a closed embedding, the so-called

Plücker embedding Gn,r ↪→ P(n
r). The equations that describe the image are the

so-called Plücker equations [45].
It will be useful for us to generalize slightly this construction. Let F be a quasi-

coherent sheaf on a scheme X. For a fixed integer r ≥ 1, let us define a contravariant
functor Gr(F) over SchX as follows

(1.12) Gr(F)(f : S → X) = {f ∗(F)
α onto−→ E} / ∼=

where E is a locally free sheaf over S of rank r, and ∼= means up to isomorphism of
the target.

Proposition 1.2. The functor Gr(F) is representable i.e. is a scheme Gr(F) over
X.

Proof:
If U is an open subset of X, then the functor Gr(F|U) = Gr(F)×XU is clearly an open
subfunctor of Gr(F). We can assume from now that X = SpecR is affine, and we
may work entirely in the category of R-algebras not necessarily of finite type, indeed
even not noetherian. Then F is given by a R-module F (of finite type or not). Let
β : Rr → F be any linear map. We define a subfunctor Gr,β(F ) of Gr(F ) be requiring
that α ◦ (β ⊗ 1) is an isomorphism. Equivalently the sections over the R-algebra B
of this subfunctor are the B-linear maps

α : F ⊗R B → Br

such that α ◦ (β ⊗ 1) = id. If non empty, this subfunctor is readily seen to be repre-
sentable by an affine scheme. Let us assume the module F is given by a presentation

(1.13) R(I) Φ−→ R(J) → F → 0

where Φ can be seen as a matrix (aij) with entries in R. We can lift β to R(J),
and identify this map with a matrix (βkj) with entries in R. Then the scheme that
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represents the previous subfunctor is

(1.14) SpecR[(T kj )j∈J,1≤k≤r]/(· · · ,
∑
j

aijT
k
j ,
∑
j

βljT
k
j − δkl, · · · )

the spectrum of the quotient of a polynomial ring with perhaps infinitely many vari-
ables, by the ideal generated by the obvious relations. Now it is very easy to check
the subfunctor Gr,β(F ) where β runs over the linear maps Rr → F is a covering family
by open subfunctors. In turn, the conclusion follows from the general recipe (1.1).

�

1.3. Quotient by a finite group.

1.3.1. The construction. It is very important in algebraic geometry to be able to
perform a quotient of a scheme by a group action. The case of interest for us is a
quotient X/G of a scheme X endowed with an action of a finite group G of order
denoted by |G|. Say G is reductive if |G| 6= 0 in k. Despite our general philosophy,
the functor of points of the quotient X/G being rather complicated?, our construction
of X/G will be purely geometric, relying on classical invariant theory. It should be
noted the scheme X/G can have an eccentric behaviour if G is non reductive. For this
reason in the next two sections G will be assumed to be reductive i.e any G-module
is semi-simple. Presently G is arbitrary.

Let us start with some comments and definitions about actions of groups. Assume
G acts on X. A G-stable subscheme is a subscheme Y ⊂ X such that for all g ∈ G
the morphism gı : Y → X (ı = inclusion) factors through Y . If this is the case there

is a well-defined isomorphism g : Y
∼→ Y , induced by g ∈ G, defining an action of G

on Y . If G acts on X, there is an obvious induced action of G on the set Hom(X, Y ),
viz. g.f = gf−1 (g ∈ G, f ∈ Hom(X, Y )). We say that f is G-invariant if g.f = f for
all g ∈ G. An important case is when X = SpecR, where R is a finitely generated
k-algebra, then an action of G on X translates into a left action of G on R. Let us
write the action of g ∈ G on R as ga instead of (g−1)∗(a).

In order to ensure X/G is really a scheme, one must assume the action of G on X
is admissible, meaning there is a cover of X by affine G-invariant open subsets. This
condition is fulfilled under a mild restriction.

Lemma 1.3. Let the finite group G acts on a quasi-projective scheme X. Then the
action is admissible.

Proof:
For any point x ∈ X, the finite set Gx must be contained in an affine open set,
say U . This is readily seen from the quasi-projectivity assumption. Now the scheme
is separated, so the finite intersection

⋂
g∈G gU must be affine, contains x, and is

obviously G-invariant.
�

Recall G is arbitrary e.g not necessarily reductive. The result below sumarizes the
key facts about the quotient scheme X/G.

?what is natural is the functor of points of the quotient stack [X/G].
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Proposition 1.4. Assume the finite group G act admissibly on a scheme X.

i) There exists a scheme X/G together with a G-invariant morphism π : X →
X/G such that any G-invariant morphism f : X → Y (Y ∈ Sch) factors
(uniquely) through π. More precisely h 7→ hπ defines a functorial isomorphism
Hom(X/G, Y ) ∼= Hom(X, Y )G. As a consequence (X/G, π) is unique up to a
unique isomorphism.

ii) The morphism π : X → X/G is finite and surjective. Furthermore π induces
a bijection between the points of X/G and the G-orbits of points of X.

iii) For any open set V ⊂ X/G we have V = π−1(V )/G, in particular the topology

of X/G is the quotient topology. Furthermore the natural map π∗ : OX/G
∼−→

OG
X is an isomorphism; we say (X/G, π) is a geometric quotient.

iv) Let S → X/G be a flat morphism, then under the natural action (on the left)
of G on X×X/GS, we have the base change property (X×X/GS)/G = S. The
result holds true for any base change S → X/G assuming G to be reductive,
for instance k of characteristic zero.

v) If X is a normal variety (integral with integrally closed local rings [34]), then
so is X/G.

Proof:
i) Suppose first X = SpecR, the spectrum of a finitely generated algebra. The claim is
that X/G = SpecRG, where RG denote the subring of invariant elements of R. It is a
classical and important result going back to Gordan, Hilbert and Emmy Noether, that
RG is a finitely generated k-algebra [14]. Now let us denote π : SpecR→ SpecRG the
morphism dual to the inclusion RG ↪→ R. It is easy to check the equality RG

f = (RG)f
for any f ∈ RG, more generally (R ⊗R A)G = A whenever A is a flat RG-algebra.
Indeed if we see RG as the kernel of the RG-linear map

0 → RG → R

Q
g∈G g∗

−→ R|G|

then tensoring over RG this sequence with A yields the exact sequence

0 → A→ R⊗RG A

Q
g∈G g∗⊗1
−→ (R⊗RG A)|G|

showing A = (R⊗RG A)G.
Let now f : SpecR → Y be a morphism. If Y = SpecA is affine, then f ∈

HomG(X, Y ) means that the comorphism f ∗ : A → R maps A into RG, leading to
h : SpecRG → SpecA. Thus i) becomes obvious in this case. Note the result is also
clear for any Y if the image of f lies in an affine open subset of Y . In the general
case it is readily seen using iii), to be proved below, that we can choose a covering

SpecRG =
m⋃
i=1

Spec(RG)fi

i.e. a partition of unity
∑

iR
Gfi = RG, such that f(Spec(RG)fi

) is contained in an
affine open set of Y . This yields a well-defined morphism

(1.15) hi : Vi = Spec(RG)fi
−→ Y

- 9 -
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such that f|Ui
= hiπ|Ui

where Ui = SpecRfi
= π−1(Vi). On the intersection Vi∩Vj the

two morphisms fi and fj coincide as a consequence of the unicity as shown in the first
part of the proof. Then we can glue together the morphisms hi to get h : SpecRG → Y
with hπ = f . The proof of i) is complete.

Under the same hypothesis, that is X affine, it is not difficult to check ii) and iii).
For any a ∈ R the polynomial

(1.16) P (T ) =
∏
g∈G

(T − ga) = T |G| − (
∑
g∈G

ga)T |G|−1 + · · ·+ (−1)|G|
∏
g∈G

ga

has its coefficients in RG, thus a is integral over RG, and since R is a finitely generated
k-algebra, a standard argument shows R is a finitely generated RG-module. This
shows π : X → X/G is finite. To check the surjectivity notice a finite morphism is
closed [34], but π is clearly dominant, so onto. Let now Q ∈ SpecRG be a prime
ideal. Let us choose P ∈ SpecR over Q. The claim is that π−1(Q) is the orbit GP.
Let P = P1, · · · ,Pd denote the distinct points of GP. It is a standard consequence
of the finiteness of R as RG-module that if i 6= j then Pi * Pj. Take a ∈ Pi (i > 1)
so that the norm

∏
g∈G ga is in RG∩Pi = Q. Therefore

∏
g∈G ga ∈ P1, thus for some

g ∈ G, ga ∈ P1. This yields the inclusion

Pi ⊂ ∪g∈GgP1

The prime avoidance lemma [16] then shows Pi ⊂ gP1 for some g ∈ G, and this
implies the equality Pi = gP1 as expected.

Let Z ⊂ SpecR be a G-stable closed subset. The previous discussion yields the
equality Z = π−1(π(Z). As a consequence if U ⊂ SpecR is a G-invariant open
subset, since π is closed we have that π(U) is open and U = π−1π(U). The fact that

π∗ : OX/G
∼−→ OG

X is an isomorphism is clear from the construction.

Let us pass to the general case where X is no longer assumed to be affine. From our
hypothesis, there is a cover of X by (finitely many) affine open G-invariant subsets
X = ∪iUi. Thus the quotient Vi = Ui/G exists as shown by the previous part, with
quotient map π : Ui → Vi. The intersection Ui∩Uj is a G-invariant open affine subset
of Ui, thus Vi,j = πi(Ui ∩ Uj) is open in Vi and as shown before Vi,j ∼= (Ui ∩ Uj)/G.
Similarly we get an open set Vj,i ⊂ Vj and an isomorphism Vj,i ∼= (Ui ∩ Uj)/G.
Finally this yields a uniquely defined isomorphism θj,i : Vi,j ∼= Vj,i making the diagram
commutative

(1.17) Vi ∩ Vj
πi

{{www
ww

ww
ww πj

##G
GG

GG
GG

GG

Vi,j
θj,i

∼
// Vj,i

We can glue together the affine schemes Vi along the open subsets Ui,j by means of
the θ′i,js to get a scheme Y together with a morphism π : X → Y . The construction

shows that Vi is an open subset of Y , and π−1(Vi) = Ui. It is readily seen that (Y, π)
is a categorical quotient of X by G in the sense of i).

- 10 -
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The assertions ii) and iii) are also clear from the previous step, in particular π∗ :

OX/G
∼−→ OG

X is an isomorphism, since it is so on an affine open cover.
iv) The fact that performing a quotient X/G commutes with a flat base change

S → X/G is immediately reduced to the affine case. Property i) gives us a canonical
morphism (X ×X/G S)G → S. Over an affine open subset V ⊂ S such that its image
in X/G lies in an affine open subset, we know this morphism is an isomorphism, the
conclusion follows. The proof is completed.

v) It is an elementary fact that RG is a normal ring whenever R is normal [16].
�

Without further assumption assertion iv) can be wrong. As an example take X =
Speck[X, Y ] the affine plane over a field of characteristic two. Let G = {1, σ} be the
group of order two where σ(X) = Y, σ(Y ) = X. Then k[X, Y ]G = k[XY,X + Y ] is a
polynomial ring. As base change we take

k[XY,X + Y ] → k[XY,X + Y ]/(X + Y ) = k[X2]

then k[X, Y ]/(X+Y ) = k[X]. But now G acts trivially on k[X], so k[X]G 6= k[X2]. It
can be proved that in any case the morphism (X×X/GS)/G→ S is purely inseparable
(universally bijective) [5]. However under the reductivity assumption things work
better.

Proposition 1.5. Suppose G is a reductive finite group acting effectively on X ∈ Sch.
For any base change S → X/G (S ∈ Sch), the canonical morphism (X×X/GS)G → S
is an isomorphism.

Proof:
Under the reductivity assumption, the embedding OX/G ↪→ π∗(OX) admits a nice
retraction, the average operator (or Reynolds operator)

(1.18) RG(a) =
1

|G|
∑
g∈G

g.a

This is standard and easy to see. More precisely a section a of π∗(OX) is G-invariant
iff RG(a) = a. As in the proof before it is sufficient to check the base change property
in the affine case, so assume X = SpecR, S = SpecA, with a base change morphism
RG → A. Since, via to the operator RG, RG is a direct summand of R, the morphism
A → R ⊗RG A is into. Now RG extends to R ⊗RG A, viz. RG(x ⊗ a) = aRG(x) as a
projector onto A. Thus A = (R⊗RG A)G.

�

Example 1.1. (ADE singularities)

The following example is very popular, and a cornerstone of many subjects. Let G
be a finite subgroup of SU2(C), equivalently of SL2(C). As it is known, such G is
one of the so-called binary polyedral groups, i.e. fits into one of the conjugacy classes

- 11 -
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name group order type

cyclic Cn (n ≥ 2) n An−1

binary diedral D̃n (n ≥ 2) 2n Dn+2

binary tetraedral T̃ 24 E6

binary octaedral Õ 48 E7

binary icosaedral Ĩ 120 E8

One can show that the corresponding quotient surface C2/G is embedded in the
3-dimensional affine space, thus described by an equation f(x, y, z) = 0, see below
(for a proof see: [15], [48], [59])

An x2 + y2 + zn+1

Dn+2 x2 + y2z + zn+1

E6 x2 + y3 + z4

E7 x2 + y3 + yz3

E8 x2 + y3 + z5

From now on G is a reductive group, and k = k Let us return to our general setting

π : X → Y = X/G. There is no loss of generality to assume that G acts faithfully.
We want to understand the local structure of Y at some closed point y. Let us choose
x ∈ π−1(y) = {x = x1, · · · , xm}. If H stands for the stabilizer group of x, then
m = |G/H| (1.4, ii)). Since the object we are interested in is the local ring OY,y,

or even the complete local ring ÔY,y [16], it is useful to perform the flat base change

SpecÔY,y → Y . Then the scheme X ×Y SpecÔY,y is finite over SpecÔY,y, thus of the
form

X ×Y SpecÔY,y = SpecB

where B is an ÔY,y algebra finitely generated as a module, thus a complete semi-local
ring. A classical structure theorem [16] yields for A

(1.19) A =
∏

g∈G/H

ÔX,gx =
m∏
i=1

ÔX,xi
= IndGHÔX,x

where IndGH(W ) stands for the induced G-module of the H-module W , in the sense
of representation theory of finite groups. From this we get the following result:

Proposition 1.6. We have ÔY,y
∼= ÔH

X,x. The morphism π is etale over y iff H = 1.
- 12 -
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Proof:
The first point follows easily from the structure of A as a G-module (1.19). For the

second point it is known that π is etale over y iff π is etale at x iff π∗x : ÔY,y −→ ÔX,x

is an isomorphism. But clearly this precisely means that H = 1.
�

Let x ∈ X be a closed point with stabilizer H. Assuming x is a smooth point, if we
choose a parameter system (x1, · · · , xn) at x, then ÔX,x = k[[X1, · · · , Xn]] a ring of
formal power series. It is not difficult to check that the action of G can be linearized,
as G is reductive. This means there is no loss of generality to assume H ⊂ GLn(k),
with the obvious action on the coordinates. In general the precise description of the
ring ÔY,y = k[[X1, · · · , Xn]]

H can be a difficult task.
The group G acts faithfully on X, this implies that the stabilizer of a general point

x ∈ X is trivial, so π : X → Y is generically etale. Denoting Rπ ⊂ X the locus of
point with non trivial stabilizer, then clearly Rπ is closed, it is called the ramification
locus of π. Its image Bπ = π(Rπ) is called the branch locus.

Corollary 1.7. Under the previous hypothesis assume G acts freely on X, then π :
X → X/G is etale. Furthermore X smooth ⇐⇒ X/G smooth.

Beside the quotient X/G previously studied, we are also interested in the fixed
point subset. This subset needs to be defined in a schematic sense. To this end, we
define a contravariant functor Sch → Ens by

(1.20) S 7→ HomG(S,X)

where HomG(S,X) denotes the set of G-invariants morphisms, the action of G on S
being the trivial one. This functor is representable, in other words:

Proposition 1.8. Let us assume the action of G on X is admissible (i.e. X quasi-
projective). Then, there is is a closed subscheme XG ⊂ X, such that

(1) The action of G on XG is trivial,
(2) If f : S → X is any G-invariant morphism, then f factors uniquely through

XG.

In particular the closed points of XG are the fixed (closed) points of X.

Proof:
(sketch) Due to our assumption, we may assume X = SpecA affine. The coaction
of G on A will be denoted (g, a) 7→ ga. It is readily seen that the answer to our
representability problem is

(1.21) XG = SpecAG, AG = A/〈ga− a〉g∈G,a∈A
where 〈ga− a〉 stands for the ideal generated by the elements of the indicated form.

�
We now assume that the action of G on X is faithful, and X is connected. Let

x ∈ X be a closed point. The stabilizer H = Gx of x acts in an obvious way on
the local ring OX,x, therefore on the cotangent vector space T ∗X,x = Mx/M2

x. This
defines a linear representation of H in T ∗X,x. Recall G is reductive.

- 13 -
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Lemma 1.9. The representation Gx −→ GL(T ∗X,x) is faithful.

Proof:
Since G is reductive, the surjection Mx → V = Mx/M2

x splits in the category of
G-modules, therefore we can find a G-invariant subspace V ⊂ Mx, suth that the
restriction map V ⊂ Mx → V = Mx/M2

x is bijective. Thus if g ∈ G acts trivially
on V , it is easy to see that then g acts trivially on A/Mk+1

x for any k ≥ 1. Since A
is separated for the M-adic-topology, this in turn yields g = 1.

�

Exercise 1.1. Let x ∈ XG. Under the previous assumptions, show that (T ∗X,x)
G is the

cotangent space of XG at x.

The setting we are interested in is the case X smooth. Then we have the interesting
wellknown result?:

Theorem 1.10. The fixed point subscheme XG is smooth (perhaps not connected),
and if x ∈ XG, we have TXG,x = TGX,x.

Proof:
The problem is local at x, it amounts to check that OG

X,x is a regular local ring. Via
the same argument as in lemma 1.9, we can find a G-invariant subspace V ⊂ Mx,
suth that the restriction map V ⊂ Mx → Mx/M2

x is bijective. If we set VG :=
V/〈ga − a〉g∈G,a∈V , then it well known and easy to see that V = V G ⊕ VG. Now a
short calculation yields OXG,x = OX,x/〈VG〉. Therefore OXG,x is the quotient of OX,x

by a subset of a system of parameters, which in turn means that OXG,x it is regular
[16]. �

Assuming X smooth, we can investigate more precisely the structure of the rami-
fication locus of the quotient π : X → X/G. Let H ⊂ G be a subgroup. Denote XH

the subset of points fixed by H, and let ∆H be the subset of points with stabilizer
exactly H. Then

(1.22) ∆H = XH −
⋃

H⊂K,H 6=K

XK

As shown by 1.10 XH is a smooth closed subscheme, and R = t1 6=H∆H is a stratifi-
cation of R by locally closed smooth subvarieties.

Proposition 1.11. Let ∆ be an irreducible component of codimension one of the
ramification locus Rπ. Define I∆ = {g ∈ G, g = 1 on∆}. Then I∆ is cyclic and 6= 1.

Proof:
We have ∆ ⊂

⋃
1 6=H X

H , which in turn implies ∆ ⊂ XH for some H. Clearly H ⊂ I∆,

thus I∆ 6= 1. Notice ∆ is a connected component of XI∆ , in particular ∆ is smooth.
Let P be the generic point of ∆. The local ring O = OX,P is a discrete valuation
ring. Let M = (t) be the maximal ideal. The residue field k(O) is the function field

?A more general result with G an affine reductive group, due to Fogarty, is true
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of ∆, in particular I∆ acts trivially on k(O). For σ ∈ I∆ we can write σ(t) = aσt for
aσ ∈ O − (t). It is elementary to check that

aτσ = aττ(aσ)

Denoting aσ the residue class of aσ in k(P ), we see that σ ∈ I∆ 7→ aσ is a group
morphism, thus its image is cyclic. We must check this morphism is injective. This
can be deduced from Proposition 1.8, but we prefer to give an adhoc argument. Let
J the kernel of this morphism, and assume J 6= 1. If σ ∈ J , then aσ = t+ bσt

k where
k ≥ 2 can be choosen such that for some σ ∈ J, bσ 6∈ (t). It is easily seen that for
τ, σ ∈ J ,

bτσ = bτ + τ(bσ)

As a consequence σ 7→ bσ ∈ k(P ) is a morphism from J to the additive group k(P )
which in turn yields ebσ if e = |I∆|. But e 6= 0 in k(P ), so we get a contradiction,
and finally J = 1. �The subgroup I∆ (also denoted IP ) is called the

inertia subgroup along the divisor ∆. The order e(∆) of I∆ is the inertia index at ∆.
The notations being as before, let us denote ∆′ (resp. P ′) the image of ∆ (resp. P )
in X/G. In some cases it is convenient to write e(∆) = e(∆/∆′) to refer precisely in
which setting the inertia index is defined. The following result is standard:

Proposition 1.12. Under the previous assumptions the order of the stabilizer of ∆
(or P ) in G is

(1.23) |GP | = e(∆)[k(P ) : k(P ′)]

equivalently the extension k(P )/k(P ′) is galois with group GP/I∆. Furthermore if MP

(resp. MP ′) denote the maximal ideal of OP (resp. OP ′), then MP ′OP = Me(∆)
P .

Proof:
The problem is purely local at P ′, so after base change we may assume that X =
SpecOP ′ the normalisation of OP ′ in k(X). We may even by base change from OP ′

to the complete local ring ÔP ′ assume A′ = OP ′ is complete, which in turn yields

(1.24) OP ′ ⊗OP ′
A′ =

∏
g∈G/GP

Ôg(p)

Furthermore if A = ÔP with maximal ideal M, then AGP = A′. By the assumption
of reductivity, we also have (A⊗A′ k(P

′))GP = k(P ′) which in turn yields k(P )GP =
k(P ′). As a consequence k(P )/k(P ′) is galois with group GP/IP . Define the integer
ν by M′A = Mν , then using the filtration

Mν ⊂Mν−1 ⊂ · · · ⊂ M ⊂ A

we get
(1.25)

|GP | = dimk(P ′)A⊗A′ k(P
′) =

ν∑
j=1

dimk(P ′)Mj−1/Mj = ν[k(P ) : k(P ′)] = ν[GP : IP ]

Thus e = ν as required. v �
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Let us assume that G acts freely on X, and that as before X is smooth. Recall
a rational p-form of X is an object which in terms of a given system of parameters
(U ;x1, · · · , xn) of X has an expression

ω =
∑

1≤i1<···<ip≤n

fi1,··· ,indxi1 ∧ · · · ∧ dxip (fi1,··· ,ip ∈ k(X))

If (V ; y1, · · · , yn) is another system of local coordinates, and if

ω =
∑

j1<···<jp

gj1,··· ,jpdyj1 ∧ · · · ∧ dyjp

then the local expressions for ω are related on U ∩ V by

(1.26) gj1,··· ,jpdyj1 =
∑

i1<···<ip

fi1,··· ,indxi1
∂(xi1 · · ·xip)
∂(yj1 · · · yjp)

The p-form is regular if all fi1,··· ,ip are regular on their open sets of definition. If f :
X → Y is a morphism, and if X and Y are smooth, the pull-back of a regular p-form ω
of Y is defined as usual. Choose (U ;x1, · · · , xn) and (V ; y1, · · · , yn) local coordinates
systems on X respectively Y , with f(U) ⊂ V . Let ω =

∑
j1<···<jp gj1,··· ,jpdyj1 ∧ · · · ∧

dyjp , then the local expression of f ∗(ω) is

(1.27) f ∗(ω) =
∑

i1<···<ip

f ∗(gj1,··· ,jp)
∂(yj1 · · · yjp)
∂(xi1 · · ·xip)

Let Ωp
X/k (resp. (Ωp

X/k)
G) be the vector space of regular p-forms o(resp. G-invariant

regular p-forms) on X. Let π : X → Y be the quotient morphism. Then π is etale
and hence:

Proposition 1.13. The map η 7→ π∗(η) yields an isomorphism Ωp
Y/k

∼−→ (Ωp
X/k)

G.

Proof:
Since π is etale, a coordinate system for Y lifts to a coordinate system forX. Therefore
we can write locally an invariant p-form on X, as

(1.28) ω =
∑

j1<···<jp

gj1,··· ,jpdπ
∗(yj1) ∧ · · · ∧ dπ∗(yjp)

where (y1, · · · , yn) is a coordinate system on Y . The G-invariance of ω amounts to
the invariance of the coefficients gj1,··· ,jp . Then we can write gj1,··· ,jp = π∗(fj1,··· ,jp)
with fj1,··· ,jp a unique rational function on Y , regular on a suitable open chart. This

shows that ω = π(η), with η =
∑

j1<···<jp fj1,··· ,jpdyj1 ∧ · · · ∧ dyjp . �
The result that follows is a weak form of the important purity of the branch locus:

Proposition 1.14. Let π : X → Y be a finite surjective morphism between two
smooth varieties of dimension n. Then either π is etale, or the branch locus if purely
of dimension n− 1.
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Proof:
In this proof it is necessary to understand the ramification locus not as subset, but as
a closed subcheme locally of the form {f = 0}, i.e. a divisor. To see this, let π(p) = q,
and let us choose a system of local parameters x1, · · · , xn near p, and y1, · · · , yn near
q. Then the local equation of Rπ at p is

(1.29)
∂(y1 · · · yn)
∂(x1 · · ·xn)

It is easy to check this is a consistent definition. Since π etale at p is equivalent to f
being a unit at p, the conclusion follows. �

1.3.2. Groups generated by pseudo-reflections. In general if a finite group G acts on
a smooth scheme X ∈ Schk, the quotient X/G will be singular, due to the existence
of fixed points. It is useful to understand precisely when X/G is singular at a point
y = π(x). The problem is local, see (1.19), thus we may assume that X = SpecOX,x,
and that G is a finite group which acts faithfully on X, i.e. on A = OX,x. Then
X/G = SpecAG. Let A′ = AG be the invariant subring. This is a local ring with
maximal ideal M′, furthermore A is finitely generated over A′. Clearly the action of
G on A yields a representation of G on the cotangent space V = M/M2 of A. Since
regularity is preserved if we pass to the associated complete local ring, finally we may
assume that A, and then A′, is local and complete.

Recall a pseudo-reflection σ of V is a diagonalizable automorphism of finite order
such that rk(σ−1) = 1. The main result of this subsection due to Chevalley-Shephard-
Todd, is:

Theorem 1.15. Under the previous assumptions, the following conditions are
equivalent:

The image of G in GL(V ) is generated by pseudo-reflections.
i)ii) The invariant ring A′ = AG is regular.

iii) The ring A is flat over A′.

Proof:
We are going to prove that i) =⇒ iii) =⇒ ii) =⇒ i). Starting with the assumption

i), we must check that TorA
′

1 (k,A) = 0, or equivalently from the Nakayama’s lemma

that Σ := TorA
′

1 (k,A)/MTorA
′

1 (k,A) = 0. Clearly G acts on the vector space Σ. We
check this action is indeed trivial. Due to our hypothesis, it suffices to check that
any pseudo-reflection σ ∈ G acts trivially. Suppose σ ∈ G acts as a pseudo-reflection
on V . Then as in lemma 1.9 we can choose v ∈ M −M2 such that σ(v) = ζv for
some root of unity ζ, and σ = Id on A/Av. Thus we can write σ − 1 = ϕ.v where
ϕ : A→ A is A′-linear. From this decomposition it is clear that σ = Id on Σ, which
in turn yields that G acts trivially on Σ. The group G being reductive, the map

(TorA
′

1 (k,A))G −→ (TorA
′

1 (k,A)/MTorA
′

1 (k,A))G = TorA
′

1 (k,A)/MTorA
′

1 (k,A)

is surjective. But (TorA
′

1 (k,A))G = TorA
′

1 (k,AG) = TorA
′

1 (k,A′) = 0, thus finally

TorA
′

1 (k,A) = 0, and A is a flat A′-module.
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Suppose now that A is a regular local ring faithfully flat over A′, with dimA =
dimA′ = n, then A′ is also regular. Indeed let M ′ be a finitely generated A′-module.
We can choose a resolution of M ′

0 → N ′ → Ln−1 → · · · → L0 →M ′ → 0

where L0, · · · , Ln−1 are finitely generated and free. By the flatness hypothesis we get
a resolution of the A-module M ′ ⊗A′ A

0 → N ′ ⊗A′ A→ Ln−1 ⊗A′ A→ · · · → L0 ⊗A′ A→M ′ ⊗A′ A→ 0

Since A is regular of dimension n, the A-module N ′⊗A′A must be free, which in turn
implies that N ′ is free. This shows that A′ is of finite homological dimension, thus
regular [16].

We now check ii) =⇒ i). Let G0 be the normal subgroup generated by the pseudo-
reflections of G. We know from the first part that A0 = AG0 is regular. From the
weak form of the purity of the branch locus (Proposition 1.14) we know the quotient
X → X/G must be ramified along a divisor through x, equivalently , there must
exist a height one prime ideal P of A with inertia index e > 1. We saw that P
must be generated by an element t = x1, part of system of local coordinates of A
(Proposition 1.11), and that the inertia subgroup IP is cyclic with generator acting
as a pseudo-reflection on V . Thus unless G = GP = 1, we have G0 6= 1. The same
remark also shows that the inertia index of P in both extensions A/A0 and A/A′ are
the same. The inertia index being multiplicative under composite extensions (this is
readily seen from Proposition 1.11) we see the extension A0/A

′ is non ramified, i.e.
etale, in codimension one. The purity of the branch locus (1.14) forces the equality
A′ = A0, which in turn yields G = G0.

�
The previous result has a well known equivalent in the graded case. Let G be

a subgroup of GL(V ), for some vector space over an algebraically closed field of
characteristic prime to |G| with dimV = r. Let S = S(V ) be the symmetric algebra
of V , i.e. a polynomial algebra, and let R = SG be the graded subalgebra of invariant
polynomials. Then the following are equivalent:

i) G is generated by pseudo reflections
ii) R is regular, i.e. a graded polynomial algebra
iii) S is a free R-module

Then under one of these conditions we have R = k[z1, · · · , zr] for some homogeneous
elements z1, · · · , zr ∈ S, and if deg zi = di, we have |G| = d1 · · · dr and

∑r
i=1(di − 1)

is the number of pseudo reflections contained in G.

1.3.3. Symmetric powers. Throughout this section k = k. LetX be a quasi-projective
scheme. For any integer n ≥ 2, the symmetric group Sn acts in an obvious way on
Xn, viz.

(1.30) σ(x1, · · · , xn) = (xσ−1(1), · · · , xσ−1(n))

Definition 1.16. The n-symmetric power of X, denoted X(n) is the quotient scheme
Xn/Sn.
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Let πn : Xn → X(n) denote the canonical morphism. Notice the quotient exists
due the quasi-projectivity assumption. The closed points of X(n) correspond to the
Sn orbits in Xn, that is, to unordered set of points (x1, · · · , xn), xi ∈ X. Such a set
of n unordered points of X is called a 0-cycle of degree n of X. Recall the group of
0-cycles on X, denoted Z0(X) is the free abelian group on all (closed) points of X.
Thus a 0-cycle is a formal finite sum z =

∑r
i=1 nixi where the xi are points of X, and

ni ∈ Z. The sum
∑

i ni is the degree of z, and z is effective if for all i, we have ni ≥ 0.
Therefore the points of X(n) can be identified with the effective 0-cycles of degree

n on X.
It is easy to detect the ramification locus of πn. Indeed let x = (x1, · · · , xn) ∈ Xn

be a sequence of n points of X. Since we are viewing x as a 0-cycle, we may label the
x′is such that

(1.31) x1 = · · · = xk1 6= xk1+1 = · · · = xk1+k2 6= · · · 6= xk1+···+kr−1+1 = · · · = xn

This means the x′is take r distinct values x1, xk1+1, · · · , xk1+···+kr−1+1 with multiplici-
ties k1, · · · , kr ≥ 1, where k1 + · · ·+ kr = n. A slightly different, but convenient nota-
tion will be x =

∑r
i=1 kixi where the r points xi are pairwise distinct. Since we may

further permute the x′is, there is no loss of generality to assume k1 ≥ k2 ≥ · · · ≥ kr,
i.e. (k1, · · · , kr) is a partition of n. It is classical to denote a partition by a greek
letter, say

λ = (λ1 ≥ λ2 ≥ · · · ),
∑
i

λi = n

The length of λ is the greatest integer r such that λr > 0. Let us denote X
(n)
λ ⊂ X(n)

the locus of 0-cycles of type λ, i.e. the λ-stratum. Finally let ∆ ⊂ Xn be the big
diagonal, i.e the locus of (x1, · · · , xn) ∈ Xn such that for some i 6= j we have xi = xj.
With these notations in mind, we have two elementary facts:

Lemma 1.17. i) The stabilizer of x =
∑r

i=1 kixi of type λ = (k1 ≥ · · · ≥ kr) is
H = Sλ := Sk1 × · · · × Skr ⊂ Sn.
ii) The morphism Xr

∗ = Xr−∆ ↪→ X(n), (x1, · · · , xr) 7→
∑r

i=1 kixi is an isomorphism

onto the locally closed subset X
(n)
λ .

Proof:
i) is clear. For ii) it is readily seen that the λ-stratum is a locally closed subset. Indeed
one may view the morphism (x1, · · · , xr) ∈ Xr

∗ →
∑

i kixi ∈ X(n) as πnıλ where

ıλ(x1, · · · , xr) = (

k1︷ ︸︸ ︷
x1, · · · , x1, · · · ,

kr︷ ︸︸ ︷
xr · · · , xr)

But clearly Xr
∗ embeds into Xn via ıλ. Now the subgroup Sλ acts trivially on this

subscheme, thus proving the restiction of πn is an embedding. The result follows. �
In particular the ramification locus of πn is ∆ the big diagonal. The branch locus

is the set of 0-cycles with at least one k1 > 1, i.e. ∪λ,k1>1X
(n)
λ .

Example 1.2. (Viete’s morphism)
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Take X = A1 the affine line. Then Xn = An. We identify a point of An, say
(λ1, · · · , λn) with the polynomial

(1.32) P (T ) =
n∏
i=1

(T − λi) = T n + a1T
n−1 + · · ·+ an

where ai = (−1)iσi(λ1, · · · , λn), σi being the elementary symmetric functions. The
Viete morphism is V : An −→ An, V (λ1, · · · , λn) = (a1, · · · , an). By the main
theorem on symmetric polynomials V is the same as πn, i.e. (A1)(n) ∼= An.

Returning to the general setting, our aim is to give a complete description of
the complete local ring ÔX(n),x at any 0-cycle x ∈ X(n). Let x =

∑r
i=1 kixi =

πn(x1, · · · , x1, x2, · · · , xr) as before. Lemma 1.6 yields

(1.33) ÔX(n),x
∼= ÔH

Xn,(x1,··· ,x1,x2,··· ,xr)

But now using Lemma 1.17, the right hand-side can be identified with the completed
tensor product

(1.34) ÔSk1

Xk1 ,(x1,··· ,x1)
⊗̂ · · · ⊗̂ ÔSkr

Xkr ,(xr,··· ,xr)

Thus the knowledge of the ring ÔX(n),x amounts to understand this ring in the special
case where r = 1. That is, for a totally degenerated 0-cycle

∑n
i=1 x (x ∈ X). Let

d = dimX be the dimension of X. There is a classical answer to this last question in
the case, X smooth. Indeed, let us choose uniformizing parameters? (t1, · · · , td) for X
at the point x. Working with n copies of X, we shall denote by (ti,j)1≤i≤n the previous
local coordinates but on the i-th copy of X. Thus we can view the entries of the n×d
matrix |ti,j| as a system of local coordinates for Xn at the point (x, x, · · · , x). The
symmetric group Sn permutes the factors, and acts on the local coordinates according
to the rule

(1.35) σti,j = tσ−1(i),j

Finally, we are going to describe the ring on simultaneous, or vector invariants, of Sn
acting diagonally on the polynomial ring (or ring of formal power series)

k[T1, · · · , Td]⊗n = k[Ti,j]1≤i≤n;1≤j≤d

which can be seen as the coordinate ring k[V ⊕n], dimV = d.
To generate invariant polynomials, choose independent variables U1, · · · , Ud and

expand the product
∏n

i=1(1 +
∑d

j=1 TijUj). This yields

(1.36)
n∏
i=1

(1 +
d∑
j=1

TijUj) =
∑
j1,··· ,jq

 ∑
i1<···<iq

Ti1j1 · · ·Tiqjq

Uj1 · · ·Ujq =
∑
γ

σγ(T )Uγ

where Uγ = Uγ1
1 · · ·Uγd

d . Clearly the coefficients σγ(T ) are symmetric. To be more
precise, and to state the classical result which goes back to H. Weyl [62], we need some

?generators of the maximal ideal
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notations. Assume first T1, · · · , Td are d independent variables, and let us denote for
1 ≤ q ≤ d

σq(T1, · · · , Td) =
∑

1≤i1<i2<···<iq≤d

Ti1Ti2 · · ·Tiq

the q-th elementary symmetric polynomial in the T ′is. One classically defines the total
polarization of σq as the polynomial σ̂q ∈ k[Ui,j]1≤i≤N ;1≤j≤q given by

(1.37) σ̂q(Ti,j) =
′∑

1≤i1,··· ,iq≤d

Ui1,1Ui2,2 · · ·Uiq ,q

where the prime means that we sum over all pairwise distinct indices i1, · · · , iq ∈ [1, n].
The main theorem about the simultaneous invariants of Sn as stated in [62], see also
[11] for some comments:

Theorem 1.18. With the previous notations, the ring of diagonal invariants k[Ti,j]
Sn

is generated by the total polarizations of the σ′qs, i.e by the polynomials

(1.38) σ̂q(Ti,αj
) =

′∑
1≤i1,··· ,iq≤n

Ti1,α1Ti2,α2 · · ·Tiq ,αq

for any choice of α1, · · · , αq ∈ [1, d] including repeated indices.

In the book [62] the base field k has characteristic zero. Indeed, the result can be
false in positive characteristic, unless d = 1, see for example [11] for a more complete
discussion of this question. As an immediate corollary of this local result, true without
restriction on k, the scheme X(n) behaves well if dimX = 1, e.g X is a smooth curve.
This is essentially the content of Viete’s classical theory revisited (see [45]).

Corollary 1.19. For a smooth curve X the n-fold symmetric power X(n) is smooth
of dimension n. This scheme parameterizes the effective divisors of degree n, i.e.
X(n) = Divn(X).

Assuming again X smooth, if d = dimX ≥ 2 and n ≥ 2, the scheme X(n) is always
singular. The punctual Hilbert scheme that is the main subject of this set of notes is
intended at least partially to rub out this defect.

Proposition 1.20. Suppose X is a smooth variety of dimension d ≥ 2. Then for

any n ≥ 2 the singular locus X
(n)
sing of X(n) is the closure X

(n)

2,1n−2 = ∪λ6=(1n)X
(n)
λ , where

the notation 1n stands for the trivial partition (1, 1, · · · , 1) on n.

Proof:
It is easy to see ∪λ6=(1n)X

(n)
λ is the closure of the stratum X

(n)

2,1n−2 . This strata has

codimension d ≥ 2 in X(n) and is irreducible. The claim is X
(n)
sing = X(n)

2,1n−2 . Since

the singular locus is closed, it suffices to check X
(n)

2,1n−2 ⊂ X
(n)
sing. We can present

two arguments for that. First assume the contrary, so X(n) is smooth along X
(n)

2,1n−2 .

Notice the galois cover induced by πn over X(n) −X
(n)

2,1n−2 has branch locus X
(n)

2,1n−2 , a
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subset of codimension d ≥ 2. The theorem of purity of the branch locus (Prop. 1.14)
yields a contradiction.

We can also argue more directly, and more elementary, as follows. Let x = 2x1 +

x2 + · · ·+ xn−1 be a point of the stratum X
(n)

2,1n−2 . The complete local ring of X(n) at

x is described by (1.34) together with Weyl’s theorem 1.18. This yields with slightly
modified notations

(1.39) ÔX(n),x = k[[x1, · · · , xd, y1, · · · , yd]]Z/2Z⊗̂k[[z1, · · · , zd(n−1)]]

where the group S2 = Z/2Z acts through the involution σ(xi) = yi (1 ≤ i ≤ d). Let
us choose the more convenient indeterminates (assuming the characteristic 6= 2)

ui =
xi + yi

2
, vi =

xi − yi
2

Then σ(ui) = ui, σ(vi) = −vi. The ring of invariants is now easy to describe:

(1.40) k[[x1, · · · , xd, y1, · · · , yd]]Z/2Z = k[[u1, · · · , ud, {vivj}i≤j]]

If we set vij = vivj(= vji) then the ideal of relations between these d(d+3)
2

generators
is spanned by the quadratic relations

vijvkl = vikvjl (∀i, j, k, l ∈ [1, d])

It is now readily seen, denoting M the maximal ideal of the local ring ÔX(n),x, that

(1.41) dimM/M2 =
d(d+ 3)

2

showing the local ring ÔX(n),x is regular iff d = 1.
�

We refer to the book ([11], Chapter 7) for a more thorough discussion of the n-fold
symmetric products.

Example 1.3.

As an example we are going to describe the local ring of A(2) at the point 2[0] (0 =
(0, 0) ∈ A2), and then to show the blow-up of the singular locus desingularizes (A2)(2)

(char k 6= 2). This example will be useful in the sequel of these notes.
As shown in the proof of Proposition 1.20, it is convenient to work with new coordi-
nates u1, u2, v1, v2 such that the S2 action reads

(u1, u2, v1, v2) 7→ (u1, u2,−v1,−v2)

Then the ring of invariants is k[u1, u2, v
2
1, v

2
2, v1v2] = k[u1, u2, x, y, z]/(xz − y2) with

x = v2
1, y = v1v2, z = v2

2. Thus (A2)(2) is simply the product A2 ×Q where Q denotes
the quadric cone {(x, y, z) ∈ k3, xz = y2}, in other words the A1-singularity (see
section 5). The singular locus is A2 × (0, 0, 0). For a general description of the blow-
up of a point, more generally a closed subscheme, we refer to the book [34]. In our
example the description is as follows. The blow-up plane is covered by two coordinate
patchs U, V ∼= A2, where

U = Speck[u1, u2, x,
y

x
], V = Speck[u1, u2, y,

x

y
]
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and U = V = A2. The corresponding morphisms U → (A2)(2) (resp. V → (A2)(2))
are given in term of these coordinates by the obvious morphisms

k[u1, u2, x, y, z]/(xz − y2) −→ k[u1, u2, x,
y

x
]

(resp. k[u1, u2, x, y, z]/(xz−y2) −→ k[u1, u2,
x
y
, y]). The exceptional locus E , a divisor,

is given in U by {x = 0}, and in V by {y = 0}.

Exercise 1.2. Show (P1)(n) ∼= Pn.

Exercise 1.3. Let E be an elliptic curve over k = k with chark= 0. (a smooth complete
curve of genus one, together with a distinguished point O ∈ E [34]). Let n ≥ 2.

• i) Use the abelian group law on E with neutral element O to check that En ∼−→
E ×W , where W = {(x1, · · · , xn) ∈ En,

∑
i xi = 0}.

• ii) Show W/Sn
∼−→ Pn−1 (hint: use Abel’s theorem [34] to identify W/Sn with the

linear system |nO|). Then show E(n) ∼−→ E × Pn−1.

Exercise 1.4. Let as before X be a quasi-projective scheme, and let n1, · · · , nr ≥ 1. If we
set n = n1 + · · ·+ nr, show there is a sum morphism

∏r
i=1X

(ni) −→ X(n).

Exercise 1.5. Let X = X1 t X2 be a disjoint sum of two schemes. Prove that X(n) =
tp+q=nX(p)

1 ×X
(q)
2 .

1.4. Grassmann blow-up. The Chevalley-Shephard-Todd theorem 1.15 emphazises
the flatness property of X over X/G. If this condition is not fulfilled, it is of interest
to explain how to recover it universally by mean of a suitable birational modification
of X/G. This will be used in the construction of the equivariant Hilbert scheme. The
set-up is as follows. Let X be a scheme, and let F be a coherent OX-module. We are
going to figure out how to make F flat i.e locally free by a suitable modification of
X and F . This problem has been studied in a very general setting by Raynaud [51].
Our concern here is much more modest. We need some additional assumptions:

(1) Assume there is an open subset U of X such that F is locally free of rank
d ≥ 1 on U ,

(2) U is schematically dense?.

In our examples X will be integral and hence (1) and (2) simply mean F is generi-
cally of rank d. Let us introduce a general definition. Let f : X ′ → X be a birational
morphism, precisely it will be assumed that

• f : U ′ = f−1(U) → U is an isomorphism,
• 1) holds for U ′, i.e Ass(X ′) ⊂ U ′.

Denote ı : U ′ ↪→ X ′ the canonical injection. There is a natural map coming from the
adjonction property of ı∗ and ı∗

(1.42) f ∗(F) −→ ı∗ı
∗(f ∗(F))

Call the image of this map the strict transform of F under f , and denote it as f \(F).
Under our hypothesis f \(F) is coherent, indeed it is the quotient of f ∗(F) by the

?This means the morphism OX → ı∗(OU ) is injective, where ı : U ↪→ X denotes the canonical
injection
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sub-sheaf T whose sections are the sections of f ∗(F) with support in X ′ − U ′. It is
not difficult to check the definition is independent of the choice of U , that is, if the
strict transform is defined relatively to an open set V with V ⊂ U , then this yields the
same result. Before going further we must recall some basic facts about the Fitting
ideals ([16], 20.2). Suppose first X = SpecA, the spectrum of a noetherian ring, then
F is identified with an A-module of finite type M . Let us choose a presentation of
M

(1.43) Am
ϕ−→ An →M → 0

Then it is well known that the ideal spanned by the n− k-minors of the matrix ϕ is
independent of the choice of the presentation. This ideal Fk(M) is the k-th Fitting
ideal of M , or of F . We have Fk(M) ⊂ Fl(M) if k ≤ l, and Fk(M) = A when k ≥ n.
It is likely clear that for a general X we can glue together the local Fitting ideals and
thus speak of the ideal Fk(F). If F is locally free of rank r ≥ 1, then Fk(F) = 0 for
k < r, and Fr(F) = OX . It is worth noting that the closed subset Sk(F) defined by
Fk(F) is

(1.44) Sk(F) = {x ∈ X, dimFx ⊗ k(x) > k}
For instance Z0 is the support of F . Assuming always that F is locally free of rank
r ≥ 1, the situation we are interersted in is when there is a surjective map F → L
onto a locally free sheaf of rank r.

Lemma 1.21. Let as before F be a sheaf, locally free of rank r on a schematically
dense open subset U ⊂ X. Assume there is a quotient F/T locally free of rank r ≥ 1.
Then T is the subsheaf whose sections are the sections of F annihilated by Fr(F).
We can take for U the open subset X − Z where Z is the support of OX/Fr(F).

Proof:
The problem is local so we can assume? X = SpecA, and F = M̃, L = L̃. In that
case if L = M/N , then M = L⊕N , which in turn yields, see exercice 1.7 below.

(1.45) Fr(M) = Fr(L⊕N) = F0(N)

It follows that the support of N is the closed subset V (Fr(M)). Then the restriction
of M on the open set SpecA− V (Fr(M)) is locally free of rank r, and this open set
contains U . �

The following lemma ensures that under certain conditions the previous hypothesis
holds.

Lemma 1.22. Let M be a finitely generated module over A. Assume Fr(M) is a
principal ideal, and condition (1) above holds for U = SpecA−V (Fr(M)). That is U
is schematically dense, and the restriction of M̃ on U is locally free of rank r. Then
if T = {m ∈M, Fr(M)m = 0}, the quotient M/T is locally free of rank r.

Proof:
Let us choose a presentation of M as (1.43). Let |aij| denotes the matrix of ϕ. On
a suitable affine open subset, and after a suitable permutation, we can assume that

?As usual M̃ denotes the quasi-coherent sheaf associated to M .
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Fr(A) = Aδ where δ the n− r-minor of δ = det |aij|i,j≤n−r. All other minors of order
n − r are multiples of δ. Denote (ei)1≤i≤n the images in M of the canonical basis of
An. The Cramer rule yields

(1.46) δ(ei −
n∑

j=n−r+1

bijej) = 0 i = 1, · · · , n− r

for some bij ∈ A, showing ei −
∑n

j=n−r+1 bijej ∈ N the submodule killed by Fr(M).

Thus M/N is generated by the r elements en−r+1, · · · , en. We can find a presentation

(1.47) 0 → Q→ Ar →M/N

Since M is locally free of rank r on SpecA − V (δ), the support of Q is a subset of
V (δ), which in turn says that Q is killed by a power of δ. But we know that δ is a
not a zero divisor which in turn implies Q = 0. �

The Grassmann blow-up can be described as follow:

Proposition 1.23. There is a projective morphism p : X ′ → X such that p : U ′ =
p−1(U)

∼→ U is an isomorphism, and

i) U ′ is schematically dense into X ′

ii) The strict transform p\(F) is locally free of rank d.
iii) (X ′, p) is universal with respect to i) end ii).

Proof:
The construction of X ′ goes as follows. First let g : Gr(F) → X be the Grassmann
scheme associated to F (proposition 1.2). The X-points of Gr(F) correspond to the
locally free quotients of F of rank r. Over U , the sheaf F is locally free of rank r,
thus providing a section of g over U :

Gr(F)
g // X

U

s

ccFFFFFFFFF
?�

OO

Then we define X ′ as the schematic image of s in Gr(F). Let π denote the restriction

of g to X ′. Clearly π induces an isomorphism U ′ = π−1(U)
∼→ U . Furthermore U ′

is schematically dense in X ′. The restriction of the universal quotient to X ′ yields a
canonical surjection

(1.48) π∗(F) −→ L

which is an isomorphism on U ′. Due to i), the kernel is precisely the subsheaf of
sections with support on X ′ − U ′, thus L = π′\(F). We now are going to check that
(X ′, π) satisfies the universal property iii). Suppose a morphism f : Y → X is given
and i) and ii) holds. The quotient f ∗(F) → f \(F) gives us a section f ′ of g over Y ,
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that is

(1.49) X ′ ⊂ Gr(F)
g // X

Y

eeLLLLLLLLLLL
f ′

OO

Clearly f ′ factors through Gr(F) and taking into account i) f even factors through
X ′.

�
Lemma 1.22 shows the blow up of X with center the ideal Fr(F) must factors

through the Grassmann blow-up X ′, but it is not necessarily isomorphic to X ′.

Example 1.4.

Let R be a finitely generated integral k-algebra with fraction field K. Let M be
the module given by the presentation

(1.50) R
ϕ−→ Rr+1 →M → 0

where ϕ(1) = (a0, · · · , ar). We set J = (a0, · · · , ar) ⊂ A, and denoting J−1 = {x ∈
K, xJ ⊂ R}, assume that J−1 = R. The module M is torsion free of rank r. To
describe the scheme Gr(M), let us consider the relative projective space PrR. A point
of PrR is locally given by a matrix λ = |λα,β| of size r × (r + 1) with entries in a
R-algebra A, such that if zj denotes (−1)j times the minor obtained by omitting the
jth column, then

∑r
j=0Azj = A. We use the z′js as coordinates of PrR. Then Gr(M)

is the closed subscheme given by the equations

(1.51) aizj = ajzi (1 ≤ i, j ≤ r)

On the open subset U = SpecR−V (J) there is a canonical point zj = aj. The closure
of this point is the Grassmann blow-up X ′. One can ask if in any case the result is

X ′ = Gr(M)

Over the affine open set zi 6= 0, the subscheme Gr(M) is given by the set of equations
(1.51), which reduce to ai

zj

zi
− aj = 0. It is an elementary fact that the ideal (aX + b)

in A[X] is prime if A is integral and if (a, b) is a regular sequence. Thus if for any
i 6= j, (ai, aj) is a regular sequence, then Gr(M) is integral, which in turn yields
X ′ = Gr(M). If furthermore the whole sequence (a0, · · · , ar) is regular, then it is
known that X ′ = Gr(M) is the blow-up of SpecR along the center V (J) ([17], exercise
IV-26). In any way the fiber π−1(x) over a point x ∈ V (J) is a projective space Pr.

Example 1.5.

Let X be an integral scheme, with function field k(X), i.e. k(X) = OX,ξ, ξ being
the generic point. Recall that a OX coherent sheaf F is torsion free if the canonical
map F → F ⊗ k(X) = Fξ in injective. It is torsion free of rank r ≥ 1, if furthermore
dimk(X)F ⊗ k(X) = r.

It will be convenient for the sequel to say x ∈ X is a singular point of F if the
fiber Jx is not a free OX,x-module. Since for a coherent module freeness is an open
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condition, we see that the singular locus of J is closed. For a general F , the torsion
subsheaf is Ftors = ker(F → F ⊗K).

Suppose now F is a torsion free sheaf of rank one. Let Sym•(F) be the symmetric
algebra of the module F , namely

(1.52) Sym•(F) =
⊕
d≥0

F⊗d/〈(x⊗ y − y ⊗ x)〉

the quotient of the tensor algebra of F by the two-sided ideal spanned by the com-
mutators x ⊗ y − y ⊗ x. This graded algebra need not be integral. For this reason
we replace it by its image S in Sym•(F) ⊗A K. Therefore S is an integral graded
A-algebra generated by its elements of degree one. We set PF := Proj(S) [34]. This
scheme equipped with a canonical (projective) morphism π : PF → X is exactly the
Grassmann blow-up associated to F . Notice there is a canonical line bundle O(1) on
PF . Let us record the basic features of this construction.

i) The sheaf π∗(F)/(tors) is locally free of rank one, indeed π∗(F)/(tors) =
O(1),

ii) Universal property: if f : Y → X is a dominant morphism, with Y integral,
such that f ∗(F)/(tors) is locally free of rank one, then f factors uniquely
through PF ,

iii) PF is an integral scheme, and π is an isomorphism over the regular locus of
J .

Property ii) is better explained by a commutative diagram

PcJ
π // X

Pf∗(J )/(tors)

F

OO

∼ // Y

f

OO

where F is the morphism induced by f .

Exercise 1.6. Let M be a finitely generated module over a noetherian ring A. Prove that
M is locally generated by r elements if and only if Fs(M) = A for all s ≥ r. If furthermore
Fk(M) = 0 when k < r, then M is locally free of rank r.

Exercise 1.7. Let M = P ⊕Q. Prove that Fk(M) =
∑k

j=0 Fj(P )Fk−j(Q).

2. Welcome to the punctual Hilbert scheme

In this section the punctual Hilbert functor is defined, and shown to be repre-
sentable.

2.1. The punctual Hilbert scheme: definition and construction.

2.1.1. The definition. Let X be an arbitrary scheme, and let us fix an integer n ≥ 1.
The punctual Hilbert scheme is defined by means of its functor of points:
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Definition 2.1. The functor HX,n : Sch → Ens, called the punctual Hilbert functor
of degree n of X, is the contravariant functor such that

(2.1) HX,n(S) = {Z ⊂ X × S, Z is finite flat and surjective of degree n over S}
If f : T → S is a morphism, the map HX,n(S) → HX,n(T ) is the pull-back i.e. the
fiber product Z 7→ (1× f)−1(Z) = Z ×S T .

Let p : X × S → S denote the projection. A closed subscheme Z ⊂ X × S
is flat (resp. finite) over S if the restriction pZ : Z → S is a flat (resp. finite)
morphism. Thus under the assumptions of Definition 2.1 the morphism p : Z → S
is finite flat surjective, equivalently, the OS coherent sheaf p∗(OZ) is locally free of
constant rank n. The definition makes sense since both properties, finiteness and
flatness, are preserved by base change. Notice that a finite morphism is affine [34], so
if S = SpecA, then Z = SpecB, where B is a finitely generated projective module of
constant rank n.

The main result of this section is:

Theorem 2.2. The Hilbert functor HX,n is a scheme HX,n, the degree n punctual
Hilbert scheme.

The proof will be given below. Assuming Theorem 2.2, the identity map 1HX,n

corresponds to a subscheme Z ⊂ X ×HX,n finite and flat over HX,n, the so-called
universal subscheme, i.e.

(2.2) Z � � //

$$I
IIIIIIIII X ×HX,n

p

��
HX,n

As explained in the previous section, this means that any Z ∈ HX,n(S) comes from
Z by pullback: Z = (1 × f)∗(Z) for a unique morphism f : S → HX,n. We may

call f the classifying map of the subscheme Z. Assuming k = k, there is a natural
bijection between the closed points of HX,n and the finite subschemes Z ⊂ X with
dimOZ = n. The bijection is

(2.3) q ∈ HX,n 7→ Zq = Z ∩ (X × {q})
Such a subscheme can be non-reduced, and clearly its reduced subscheme Zred has no
more than n distinct points, strictly less than n if non-reduced. It will be convenient
to call a finite subscheme of degree n of X a cluster of degree n of X, or in short
an n-cluster. Let |Z| = {x1, · · · , xd} the support of the subscheme Z. Since Z is
the spectrum of a finite dimensional k-algebra we have Γ(Z,OZ) = ⊕d

i=1OZ,xi
, and

n = dimk Γ(Z,OZ) =
∑

i dimkOZ,xi
. Call the dimension `Z,xi

= dimkOZ,xi
the length

of Z at xi.

Definition 2.3. The 0-cycle associated to the n-cluster Z is

(2.4) [Z] =
∑
x∈|Z|

`Z,xx
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Assume k = k, and X quasi-projective. The most natural examples of n-clusters,
are obviously the reduced subschemes of degree n, that is, the collections of n un-
ordered distinct points. If x1, · · · , xn are n distinct points, the associated cluster will
be denoted Z =

∑n
i=1 xi. In this case

OZ =
n∏
i=1

k(xi) = kn

is a reduced algebra. It is not difficult to parameterize this set of reduced n-clusters.
Indeed let Xn

∗ the open subset of Xn locus of points x = (x1, · · · , xn) with xi 6= xj
if i 6= j i.e. the open stratum of the symmetric product. Then Xn

∗ /Sn parameterizes
the reduced n-clusters of X. The corresponding universal object Z∗ ⊂ X×Xn

∗ /Sn as
previously explained is obtained as follows. Let ∆ ⊂ X ×Xn the closed subscheme
whose closed points are (x, x1, · · · , xn), such that for some i, x = xi. Denote π the
projection on Xn. Clearly the group Sn acts on ∆, then we set Z∗ = ∆/Sn. This is
a closed subscheme of Xn

∗ /Sn. The morphism π induces a morphism p∗ : Z∗ → Xn
∗ .

We have a commutative diagram

∆
π //

��

Xn
∗

��

Z∗ p∗ // Xn
∗ /Sn

with vertical arrows being the quotient morphisms. Since Sn acts freely on both sides,
the vertical maps are etale. The morphism π is certainly etale surjective, so p∗ is etale
surjective.

Proposition 2.4. The scheme X
(n)
∗ := Xn

∗ /Sn (the open stratum of X(n)) param-
eterizes the reduced n-clusters. In other words, for any Z ⊂ X × S, such that

p : Z → S is etale surjective of degree n, there exists a unique morphism S → X
(n)
∗

with Z = (1× f)∗(Z∗).

Proof:
Let W ↪→ X × S → S a reduced n-cluster over S. Then W is finite etale of degree n
onto S. Assume first the covering W → S is trivial, that is, one can find n disjoint

sections Pi : S 7→ W . Define a map f : S → X
(n)
∗ as f =

∑n
i=1 Pi. Notice this map

is independent of the labelling of the P ′is. The claim is W = f ∗(Z∗). Denote by
g : W → X the projection on the first factor. Then we have a commutative diagram

Z∗ � � // X ×X
(n)
∗

W

(g,f)

OO

� � // X × S

(1,f)

OO

It is easy to see this diagram is cartesian. Indeed it defines a morphism W −→
(1, f)∗(Z∗) which is both etale and a closed immersion, so an isomorphism. Now in
the general case we can choose a finite etale morphism ϕ : S∗ → S such that pulling
back to S∗, the covering W → S is trivialized. This gives us a well-defined classifying
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morphism f ∗ : S∗ → X
(n)
∗ . It suffices to check that f ∗ descents to S. This is a typical

question of etale descent? for which we refer to [58]. One must prove the following

fact. Let h : S̃ → S∗ be an etale surjective morphism, then if f̃ denote the classifying
map associated to ϕh, then f̃ = f ∗h. But this follows from the uniqueness of the
classifying map. �

The property to be reduced is open, so X
(n)
∗ embeds as an open subset H0

X,n in
HX,n. This is the easy part of HX,n.

2.1.2. Construction: reduction to the affine case. Let us start the construction of the
punctual Hilbert scheme. The construction splits in two parts. We first reduce the
problem to the affine case, and then contruct by hand the punctual Hilbert scheme
of an affine scheme. As we shall see in some special cases, e.g. the affine plane, there
are nice relationship between the punctual Hilbert scheme and some quiver moduli
varieties as introduced in Brion’s lectures [11].

Proposition 1.1 tells us that HX,n is representable iff we can find a covering of this
functor by a family of representable open subfunctors. Let U ⊂ X be an open subset.
For any Z ∈ Hn,U , since Z is finite over S, hence proper, it follows that the immersion
Z ↪→ X × S is proper and hence closed ([34], corollary 4.8).

Z
� � //

))SSSSSSSSSSSSSSSSSSSS U × S ⊂ X × S

p

��
S

showing Z ∈ Hn,X . This defines a morphism of functors

(2.5) Hn,U ↪→ Hn,X

Lemma 2.5. The functorial morphism (2.5) is an open immersion.

Proof:
Let F = X − U . Let Z be an S-point of Hn,X . Since p : Z → S is finite, the subset
B = p(Z ∩ F × S) ⊂ S is closed. Let f : S ′ → S be a morphism. Then the pull-back
f ∗(Z) is a subscheme of U × S ′ if and only if f(S ′) is disjoint from the closed set B,
that is, f factors through the open subset S −B.

�
Let (Ui)i∈I be the family of affine open subsets of X.

Lemma 2.6. The functors Hn,Ui
↪→ Hn,X define a covering of Hn,X , i.e. the repre-

sentable morphism
∐

i∈I Hn,Ui
−→ Hn,X is surjective.

Proof:
This amounts to check that any Z ∈ Hn,X(S) comes from some Hn,Ui

(S) locally on
S. Let s ∈ S be an arbitrary point. The quasi-projectivity of X tells us there is an
affine open subset Ui such that the fiber Zs of p : Z → S at s is included in Ui × S,

? Alternatively, one can choose the etale cover to be galois, say with group Γ, and then factors
out by Γ
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i.e is a subscheme of Ui × S. The projection p(Z ∩ ((X −Ui)× S)) is a closed subset
of S. Denoting V the complementary open subset, it is readily seen that

Z ∩ (X × V ) ⊂ Ui × V

The lemma is proved. �

Exercise 2.1. Using the fact that X is quasi-projective, use noetherian induction to show
that we can find a covering of X by finitely many affine open subsets Ui, such that any
n-uple of points of X is contained in one of the U ′is.

2.1.3. The affine case. In this subsection we prove the main theorem in the affine
case. In the remaining part of this subsection the hypotheses are as follows. Let A be
a base ring, not necessarily an algebra of finite type over a field, even not noetherian.
Let R be a commutative algebra over A with unit 1. It is convenient to assume R is
a free A-module (with arbitrary rank, finite or not), a mild restriction. With more
care it is possible to drop the freeness assumption [28]. The (local) Hilbert functor
Hn,R/A is the following. Let A− Alg be the category of (commutative) A-algebras.

Definition 2.7. The functor Hn,R/A is the covariant functor on the category A− Alg
such that

(2.6) Hn,R/A(B) = {α : R⊗A B → E}/ ∼=
that is the set of isomorphism classes of surjective B-algebra morphisms from R⊗AB
to an algebra E which as a B-module is locally free of rank n.

In the remaining of this subsection we shall fix a basis ((νµ)µ∈L) of the A-module
R. We shall assume the unit 1 is a distinguished element ν1 of the basis. The proof
uses once more the criterion 1.1. What we need to do amounts to find a covering of
Hn,R/A by representable open subfunctors. If we remove the algebra structure on E
then we obtain the functor Qn,R/A of Grothendieck classifying the locally free quotient
A-modules of R of rank n, a kind of Grassmann functor. The Hilbert functor will
appear as a closed subfunctor of Qn,R/A. This suggests that to find a cover by affine
open subschemes one has to fix a linear map of A-modules β : F = An → R and to
consider the subfunctor Hβ

n,R/A parameterizing the quotient A-algebras α : R → E

such that kerα ⊕ Imβ = R. More precisely, let F = An be a free module of rank n,
with fixed basis (ei)1≤i≤n. For any A-linear map β : F → R, with β(e1) = 1, let us
define a subset of Hn,R/A(B)

(2.7) Hβ
n,R/A(B) = {α : R⊗A B → E, α(β ⊗ 1) = isomorphism}/ ∼=

that is

F ⊗A B
β⊗1 //

∼=

44R⊗A B
α // E

If [R ⊗A B
α−→ E] represents an object of Hβ

n,R/A, then E must be free. Notice we

get a functor isomorphic to the previous one by requiring E = Bn and α(β ⊗ 1) = 1.
In the remaining of this subsection this restriction will be assumed.

The main result is:
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Theorem 2.8. The subfunctor Hβ
n,R/A is open in Hn,R/A, and representable by an

affine scheme. If β runs over the linear maps F = An → R with β(e1) = 1, the

(Hβ
n,R/A)β:F→R define an open cover of Hn,R/A. Finally Hn,R/A is representable.

Proof:
Let the linear map β be defined by the matrix (aiµ) with entries in A such that

β(ei) =
∑
µ

aiµνµ, (β(e1) = 1 = ν1)

To define the map α amounts to defining a matrix (νµi) with entries in B such that

α(νµ ⊗ 1) =
∑
i

νµiei, ν1i = δ1,i

The equality α(β ⊗ 1) = 1 then translates as

(2.8)
∑
µ

aiµνµj = δi,j

This shows the data (νµi) defines a B- valued point of the affine scheme

(2.9) SpecA[Tµi]/(J )

where J denotes the ideal generated by the equations 2.8. The last condition that
we must implement is that kerα is an ideal of R ⊗A B. It is readily seen that the
elements νµ − (β ⊗ 1)α(νµ) generate the B-module kerα. As a consequence kerα is
an ideal if and only if for all λ ∈ L one has

(2.10) α (νλ(νµ − (β ⊗ 1)α(νµ))) = 0

This will translate into a system of equations between the coordinates νµi, for this we
need the structure constants of the algebra structure of R. We set

νλνµ =
∑
δ∈L

bδλµνδ (bδλµ ∈ A)

Then the equations (2.10) are equivalent to the system of quadratic equations

(2.11) (∀j ∈ [1, n])
∑
δ

cδλµxδj −
∑
i,j,γ

aiγc
δ
λγxµixδj = 0

We then see thatHβ
n,R/A is represented by the closed subschemeHβ

n,R/A ⊂ SpecA[{Tµi}]
defined by the equations (2.8, 2.11). This conclude the proof of representability of
the punctual Hilbert functor.

�
The exercises below suggest some variant of the punctual Hilbert scheme?.

Exercise 2.2. (The punctual Quot scheme). With the same hypothesis as before, let
X be a quasi-projective scheme. Prove there is a scheme Quotn,d,X whose closed points are
the quotients (up to isomorphism) Od

X → F , where F is a coherent scheme of finite length
n.

?For a non-commutative version, see the paper by Vaccarino, at this school [60]
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Exercise 2.3. (The moduli space of based commutative algebras) Let n ∈ N. Define
a functor Aln : Sch → Ens as follows: if S ∈ Sch, an element of Aln(S) is an isomorphism
class of pairs (A, ϕ) where A is an OS-algebra (commutative with unit), and ϕ : On

S
∼→ A

is an OS-module isomophism. Two pairs (A, ϕ) and (A′, ϕ′) are isomorphic if there is an
algebra isomorphism α : A ∼→ A′ such that αϕ = ϕ′. At the level of morphisms, the functor
Aln is the pull-back. Then show Aln is representable by an affine scheme of finite type over
Z.
Derive in a different way this result by finding a relationship with a suitable punctual Hilbert
scheme (for details see Poonen [49]).

We can draw two immediate corollaries from the previous proof.

Corollary 2.9. Let Y ⊂ X be a closed (resp. open) subscheme, then Hn,Y ⊂ Hn,X

is a closed (resp. open) subscheme.

Proof:
For an open subscheme this was part on the previous proof. Let us assume Y is
closed in X. Since an open cover of X yields an open cover of Hn,X , we may assume
without loss of generality that X is affine. Indeed with the notations of step 2 (2.1.3),
if J ⊂ R is an ideal such that R := R/J is free over A, then Hn,R/A is a closed

subscheme of Hn,R/A. Using the affine cover Hβ
n,R/A (2.1.3), this amounts to check

that Hn,R/A∩Hβ
n,R/A is a closed subscheme of Hβ

n,R/A. Keeping the same notations as

in section (2.1.3), it is readily seen that if α : R⊗A B → Bn yields a point of Hn,R/A

if and only if α(J) = 0. Taking a system of generators (fk =
∑

λ yk,λνλ)k of J , this
condition can be translated in a system of linear equations

(2.12)
∑
λ

fk,λνλ,i = 0 (∀k, i)

The conclusion is clear.
�

It is useful to extend somewhat the basic construction, and try to classify the pairs
(Z1, Z2) of clusters such that Z2 ⊂ Z1, i.e Z2 is a subscheme of Z1.

Proposition 2.10. Let n1, n2 ≥ 1. The subset of points (Z1, Z2) ∈ Hn1,X ×Hn2,X

such that Z2 is a closed subscheme of Z1, is a closed subscheme Hn1,n2,X , the so-called
incidence subscheme.

Proof:
As in our construction of Hn,X , we may reduce toX being affine. Then the description

of Hn,X given before show we can reduce further to the open affine pieces Hβ
n,R/A. The

notations being the same as in (2.7), the conditions that Z2 is a subscheme of Z1 then
reads α2(ker(α1)) = 0. With the coordinates introduced in the proof of Theorem 2.8,
for both α1 and α2, we easily see that this last condition yields a system of equations
between these coordinates.

�
We can give a slightly different proof using the exercice below.

- 33 -



Summer school - Grenoble, June 16 - July 12, 2008

Exercise 2.4. Let p : Z → Y be a finite flat morphism of degree n1. If n2 < n1, show
there is a Y -scheme Hn2,Z which parameterises the closed subschemes of Z which are flat
of degree n2 over Y .

The exercise below shows Hn,X is separated, so really a scheme.

Exercise 2.5. Show that the valuative criterion of separatedness holds for Hn,X .

2.1.4. The affine plane A2. We now want to apply the general method previously
explained to describe charts on the punctual Hilbert scheme, and then explicit coor-
dinates, in a non trivial example. The choice of R = k[X, Y ] the polynomial algebra
in two indeterminates, is very important both for the applications, as we shall see,
but also as a toy model. To start with, the natural choice of a k-basis of R is the
set of monomials XpY q, (p, q) ∈ N2. In order to simplify the notations, let us denote
for a moment Hn what is called Hn,k[X,Y ]/k. We see Hn either as the set of ideals of
codimension n, or as the set of subschemes of length n. The previous construction
gives a method to get a covering of Hn by affine open subsets. Let M ⊂ N2 be a
subset with cardinal n. Then set

(2.13) UM = {I ⊂ k[X, Y ], ⊕(p,q)∈MkX
pY q ∼→ k[X, Y ]/I}

Denote xpyq the image of XpY q in k[X, Y ]/I. Then for all (r, s) 6∈M and (p, q) ∈M ,
we have a set of well-defined constants crspq ∈ k, such that

(2.14) XrY s =
∑

(p,q)∈M

cr,sp,qX
pY q (mod I)

It is convenient to assume that cr,sp,q exists for all (r, s), but if (r, s) ∈M then cr,sp,q = 0
if (p, q) 6= (r, s) and cr,sr,s = 1. The fact that I must be an ideal amounts to the two

conditions XI ⊂ I, and Y I ⊂ I. Indeed for any (α, β) ∈ N2 making the product of
both members of 2.14 by XαY β yields first the relation

(2.15) Xr+αY s+β =
∑
(k,l)

cr,sp,qc
p+α,q+β
k,l XkY l (mod I)

and then expanding the left-hand side, we get the system of quadratic equations

(2.16) (∀(r, s), (α, β) ∈ N2)
∑

(p,q)∈M

cr,sp,qc
p+α,q+β
k,l = cr+α,s+βk,l

Specializing (α, β) to (1, 0), or (0, 1), 2.16 becomes equivalent to

(2.17)

{
cr+1,s
k,l =

∑
(p,q)∈M cr,sp,qc

p+1,q
k,l

cr,s+1
k,l =

∑
(p,q)∈M cr,sp,qc

p,q+1
k,l

Conversely it is easily seen that the equations (2.17) ensure that the vector space I
spanned by the elements XrY s −

∑
(p,q)∈M crspqX

pY s is an ideal. Thus we get a very
explicit affine open covering of Hn,A2 , which will be used later.
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2.1.5. Local structure of the Hilbert scheme. Once the scheme Hn,X constructed, it is
natural to ask about its structure, either in global terms, or local terms. The most
natural question would be to describe the local ring OHn,X ,Z at the point Z. This is
not easy. We are able to answer a weaker question, viz. describe the tangent space
at a point Z. I want to remind you that the tangent space of a scheme X ∈ Sch at
a point x ∈ X with residue field k(x), not necessarily k-rational, is

(2.18) TX,x = Homk(x)(Mx/M2
x)
∗

Let A be a ring. We set A[ε] = A[X]/(X2) (ε = X) the A-algebra of dual numbers.
Thus A[ε] = A⊕ Aε since ε2 = 0. Assuming k(x) = k, e.g. x is rational, the tangent
space admits an alternative description

(2.19) TX,x = Homk−alg(Ox, k[ε]) = Xx(k[ε])

the set of k[ε]-points of X over x. Now X = Hn,X and Z ⊂ X is an n-cluster. We
denote by IZ the ideal sheaf of the closed subscheme Z, that is OZ = OX/IZ .

Proposition 2.11. The tangent space TZ to Hx,X at Z is

(2.20) TZ = HomOX
(IZ ,OZ)

Proof:
We saw the Hilbert scheme Hn,X can be covered by open subsets Hn,U with U ⊂ X
open, then if Z ∈ Hn,U we can restrict ourselves to X affine, i.e. to the local setting
R/A of section (2.1.3). The problem translates more generally as follows: to describe
the clusters Z ⊂ R[ε] which reduce modulo ε to Z ⊂ SpecR. Let Z be given by the
ideal I ⊂ R. Recall R/I is flat over A, this implies that I is flat.

Proposition 2.12. There is a one-to-one correspondance between the set of liftings
to Z in Hn,R/A(A[ε]), and HomR(I, R/I).

Proof:
We have to describe all ideals I ⊂ R[ε] such that i) I is flat over A[ε] and ii) I +
εR[ε]/εR[ε] = I.

Notice if i) holds then it is easy to see that

(2.21) I ∩ εR[ε] = εI ∼= εR[ε]⊗A[ε] I,
in this way ii) translates as I/εI ∼= I. It is an interesting fact, that conversely (2.21)
implies the flatness of I. This is the content of (a very particular case) of the local
criterion of flatness? ([16], Theorem 6.8, cor 6.9). In our setting the criterion is as
follows:
• I is flat over A[ε] ⇐⇒ I/εI is flat over A, and the canonical surjective map

εA[ε]⊗A[ε] I → εI
is bijective, i.e injective. Coming back to our problem, given I we define a map

(2.22) ϕ : I −→ R/I

?In Eisenbud’s book the local criterion of flatness is stated in the local case, but the same proof,
even simpler, shows the result holds true with a nilpotent ideal instead of the maximal ideal.
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as follows. If a ∈ I, we can lift a to x = a + bε ∈ I. Then we set ϕ(a) = b ∈ R/I.
This is well-defined because a = 0 =⇒ b ∈ I, so b = 0. It is readily seen that ϕ is
R-linear. We can reconstruct I from ϕ as follows

(2.23) I = {x = a+ bε, a ∈ I, b = ϕ(a)}

2.1.6. Global structure. A punctual Hilbert scheme is in general a dramatically com-
plicated object. It is even in simple examples, highly singular, even not irreducible,
nor equidimensional. Such example has been provided by A. Iarrobino ([36]). How-
ever they share some basic global properties. A feedback of our construction of Hn,X is
the projectivity property. Recall [34] a scheme is projective if it is a closed subscheme
of some projective space.

Proposition 2.13. Let us assume X is projective, then Hn,X is projective.

Proof:
If X ⊂ PN then Hn,X is a closed subscheme of Hn,PN , thus we may assume X =
PN . Let O(1) be the tautological line bundle on PN with global sections of O(k) =
O(1)⊗k identified to Γ(PN ,O(k)) = k[X0, · · · , XN ]k, the vector space of homogeneous
polynomials of degree k [34]. Let Z ⊂ PN be a cluster of degree n.

Lemma 2.14. There is an integer d depending only on n,N such that for all n-
clusters Z, the restriction map

(2.24) Γ(PN ,O(n)) −→ Γ(Z,OZ(n)) = Γ(Z,OZ)

is onto.

Proof:
We may obviously assume that the support of Z lies in the open affine subset X0 6= 0.
The above map amounts to

R = k[x1, · · · , xN ]≤d −→ OZ,0 = R/I

where the left hand side means the vector space of polynomials of degree least or
equal to d, and I = IZ . We proceed by induction on n and N . There is no loss of
generality to assume that Z ∩ {XN = 0} 6= ∅. We have an exact sequence

(2.25) 0 → I + (XN)

I
→ R

I
→ R

I + (XN)
→ 0

There is an ideal I ′ such that

R

I + (XN)
=
k[X1, · · · , XN−1]

I ′

then 1 ≤ dim R
I′
< n = dim R

I
. Likewise

dim
I + (XN)

I
= dim

R

X−1
N (I ∩ (XN))

< n

The conclusion follows from our inductive assuption.
�
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As a consequence any n-cluster Z ⊂ PN yields a well-defined surjective map V =
Γ(PN ,O(n)) −→ Γ(Z,OZ), that is a point of the Grassmannian Gd,n where d =
dimV . It not difficult to check that this defines a closed embedding of Hn,X into the
Grassmannian. Since the Grassmannian is naturally embedded in a projective space,
via the Plücker embedding, this shows Hn,X is a projective scheme.

�
One problem concerning clusters is the lack of a well-defined addition, contrary to

0-cycles. Indeed if n = n1 + n2 (ni ≥ 1), there is an obvious sum morphism

X(n1 ×X(n2) → X(n), (ξ1, ξ2) 7→ ξ1 + ξ2

Such an operation only exists at the Hilbert scheme level under a strong restriction.
Namely, let (Z1, Z2) ∈ Hn1,X × Hn2,X . We may assume both clusters living in an
open affine subset U = SpecR ⊂ X. Let Ii (i = 1, 2) be the ideal of Zi. The natural
counterpart of the sum of 0-cycles, should be either I1.I2 or I1 ∩ I2. The difficulty
is even if any of these two ideals leads to a subscheme with support |Z1| ∪ |Z2|, the
length may be wrong. If one imposes that Z1 and Z2 are disjoint, i.e. I1 + I2 = R,
then I1.I2 = I1∩ I2 defines the subscheme Z1 +Z2, and the difficulty disappears. The
reason is the Chinese Remainder Theorem which yields the isomorphism

R/I1 ∩ I2
∼→ R/I1 ⊕R/I2

The result of this construction is the partially defined sum morphism

(2.26) + : (Hn1,X ×Hn2,X)0 −→ Hn,X , (Z1, Z2) 7→ Z1 + Z2

where the subscript means the domain of the morphism is the subset of pairs (Z1, Z2)
with |Z1| ∩ |Z2| = ∅. This morphism plays an important role in the work of Nakajima
about the cohomology of the punctual Hilbert scheme.

Let Z ⊂ X ×Hn,X be the universal n-cluster. It provides us with a rank-n vector
bundle (locally free sheaf of rank n) on Hn,X , namely the direct image

(2.27) E := p∗(OZ)

as OHn,X
-module.

Definition 2.15. We will refer to the bundle E as the universal bundle on Hn,X .

Exercise 2.6. Show independently of Proposition 2.13 that if X is projective, then the
valuative criterion of properness holds true for Hn,X .

2.2. The Hilbert-Chow morphism. We keep the same hypothesis as in the previ-
ous section, in particular k = k. We saw (proposition 2.4) that the reduced clusters
of degree n of a quasi-projective scheme are parameterized by the open stratum of the
symmetric product X(n). It is of fundamental importance to be able to extend this
correspondence to a full morphism ϕn,X : Hn,X → X(n), the so called Hilbert-Chow
morphism.

The construction is somewhat intricate due to the difficulty to give a simple defi-
nition of the functor of points of the symmetric product ([23],[46]), namely to define
flat families of 0-cycles. It should be noted that the restriction on the base field is un-
necessary to construct the Hilbert-Chow morphism. Recall that the cycle of a cluster
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Z with support |Z| = {x1, · · · , xr} is [Z] =
∑r

i=1 nixi, where ni is the length of OZ

at xi, i.e. ni = dimOZ,xi
. The result we are going to prove is:

Theorem 2.16. Let X be a quasi-projective scheme. Then there is a morphism

(2.28) ϕn,X : Hn,X −→ X(n)

such that set-theoretically ϕn,X(Z) = [Z] (the cycle of Z). The morphism ϕX is an
isomorphism over the open subset of reduced clusters.

Proof:
To simplify our notations, we can drop the subscripts n,X. The construction of the
Hilbert-Chow morphism amounts to build from a cluster Z ⊂ X ×S a 0-dimensional
relative cycle ? [Z] functorially in S. Let us sketch an idea which goes back to Mumford
[46], and further developed by Fogarty in [23], and makes use of a lot of homological
algebra. Let us assume to start with that X = PN with homogeneous coordinates
(x0, · · · , xN). The space of hyperplanes of PN , the so-called dual projective space is
denoted P̌N , with homogeneous coordinates (λ0, · · · , λN). To λ ∈ P̌n is associated

the hyperplane
∑N

i=0 λixi = 0. The incidence correspondance

(2.29) Σ = {(x,H) ∈ PN × P̌N , x ∈ H}

is the subvariety defined by the equation
∑N

i=0 λixi = 0. Note the diagram

(2.30) Σ
p

~~}}
}}

}}
}} q

  A
AA

AA
AA

A

PN P̌N

where p and q are the projectors on the two factors. If x ∈ PN then Hx := qp−1(x) ⊂
P̌N is the hyperplane with equation

∑
i λixi = 0. We can extend this and associate

to a cluster Z ⊂ PN a hypersurface HZ (of a very special type). Let us consider
the coherent sheaf FZ = q∗p

∗(OZ) clearly supported in codimension one. Namely
if {p1, · · · , pr} is the support of Z, then the support of FZ is

⋃r
j=1Hpj

. Therefore,
using a finite resolution of FZ by locally free sheaves of finite rank we may associate
a divisor HZ := Div(FZ) ⊂ P̌N ([46]). We don’t give the precise definition of the
divisor Div(F) attached to a torsion coherent sheaf F , details are in [46], [23], but just
explain the plausability of this construction. Since the restriction of q to the support
of p∗(OZ) is finite, then Riq∗(p

∗(OZ) = 0 if i > 0. This is the reason why we work with
the sheaf q∗p

∗(OZ) instead of the complex of sheaves R•(p∗OZ). Furthermore this
construction works well in a family Z ⊂ PN ×S over S ∈ Sch. Assuming S = Speck,
if Z is reduced with support at the points p1 = (x1

0, · · · , x1
N), · · · , pr = (xr0, · · · , xrN),

so that OZ = ⊕r
j=1k(pj), then our previous remark yields

(2.31) Div(FZ) := {
r∏
j=1

N∑
i=0

xjiλi = 0}

?This is a vaguely defined concept
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In the general case, we can find a filtration H0 = 0 ⊂ H1 ⊂ · · · ⊂ Hs = OZ such that
for any k > 0

Hk/Hk−1
∼=

r⊕
j=1

k(pj)
ej (ej = 0, 1)

The functor Div being additive on exact sequences (loc.cit) it follows

(2.32) Div(FZ) = {
r∏
j=1

(
N∑
i=0

xjiλi)
nj = 0}

where nj is the length of Z at pj, namely nj = dimk(OZ)pj
. In a sense previously

explained, this divisor is attached to the 0-cycle [Z] =
∑r

j=1 njpj (
∑

j nj = n). The

form of the equation (2.32) makes plausible that the result of this construction goes
into the n- fold symmetric product (PN)(n). As a consequence we get the Hilbert-
Chow morphism, but defined only on the reduced Hilbert scheme

ϕ : (Hn,PN )red −→ (PN)(n)

We are to use now a different and more elementary path to validate the existence
of the Hilbert-Chow map ϕ. It is worth to note this construction is valid in any
characteristic. The basic idea is as follows. Let Z ⊂ X × S a cluster of degree n over
S. The relative n-fold symmetric product

(2.33) (Z/S)(n) :=

n︷ ︸︸ ︷
Z ×S Z ×S · · · ×S Z /Sn

makes sense. If we can build a canonical, i.e. functorial S-point ıZ : S → (Z/S)(n),
then this will yield a morphism S −→ X(n), namely

(2.34) S
ıZ−→ (Z/S)(n) → (X × S)(n) = X(n) × S

pr→ S

Applying this to the universal cluster Z ⊂ X × Hn,X , we will get a morphism
Hn,X → X(n). This morphism is precisely the Hilbert-Chow morphism. Notice this
construction is implicit in [27].

Our final task is to prove the existence of the alluded canonical point, and clearly
it suffices to check this in the affine case. Indeed, if we cover S by affine open subsets
Si, and if we denote π : Z → S the projection onto S, then Zi = π−1(Si) is affine.
Let denote ϕi : Si → (Zi/Si)

(n) the expected canonical point. Then ϕi and ϕj both
restrict to the canonical point on Si ∩ Sj, thus are equal on Si ∩ Sj. Glueing them
we get ϕ : S → (Z/S)n). Therefore we may assume S, and hence Z, affine. We set
Z = SpecR, S = SpecA. Localizing further we may assume R is a free A-algebra of
rank n. Let hx : R→ R be the map y 7→ xy. This yields an A-algebra morphism

h : R→ EndA(R) ∼= Mn(A)

As is well known det(hx) is called the Norm of x over A, and denoted NmR/A(x). The
key technical tool we are using is the linearized norm, a by-product of the linearized
determinant [41].
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Proposition 2.17. Let A be a commutative ring, and let n ≥ 1 be an integer. The
symmetric group acts naturally on the tensor product algebra Mn(A)⊗n by permutation
of the factors, namely

(2.35) σ(M1 ⊗ · · · ⊗Mn) = Mσ−1(1) ⊗ · · · ⊗Mσ−1(n)

Let (Mn(A)⊗n)Sn be the subring of symmetric elements. Then there exists a unique
A-algebra morphism

(2.36) Ldet : (Mn(A)⊗n)Sn −→ A

such that Ldet(M ⊗ · · · ⊗M) = detM . This morphism (the ”the linearized determi-
nant”) commutes with an arbitrary base change.

Proof:
The proof is easy if we assume n! invertible in A. In that case we have the standard
projector onto the invariant subring (Mn(A)⊗n)Sn , viz.

S : Mn(A)⊗n → (Mn(A)⊗n)Sn , S(a1 ⊗ · · · ⊗ an) =
1

n!

∑
σ∈Sn

aσ(1) ⊗ · · · aσ(n)

Let us denote M j
i the j-th column of Mi ∈Mn(A). Define a linear map Mn(A)⊗n −→

A by
M1 ⊗ · · · ⊗Mn 7→ det(M1

1 , · · · ,Mn
n )

Call Ldet its restriction to (Mn(A)⊗n)Sn . Namely

(2.37) Ldet(S(M1 ⊗ · · · ⊗Mn)) =
1

n!

∑
σ∈Sn

det
(
M1

σ(1), · · · ,Mn
σ(n)

)
Clearly Ldet(M ⊗· · ·⊗M) = detM . We only need to check Ldet is a ring homomor-
phism. This amounts to prove the identity

Ldet(S(a1 ⊗ · · · an).S(b1 ⊗ · · · ⊗ bn)) = Ldet(S(a1 ⊗ · · · an))Ldet(S(b1 ⊗ · · · ⊗ bn))

We can check this by direct computation. The resulting morphism Ldet is uniquely
characterized by Ldet(M⊗n) = detM . Indeed, we know the pure tensors M⊗n gen-
erate the A-module (Mn(A)⊗n)Sn . For example, we can deduce this from the general
identity making sense in any associative algebra

(2.38)
∑
σ∈Sn

aσ(1) · · · aσ(n) =
∑
I⊂[1,n]

(−1)n−|I|

(∑
i∈I

ai

)n

It should be instructive to give a proof valid in any characteristic. We refer to exercises
at the end of this subsection for such a proof, see also [41].

�
A direct corollary of the existence and uniqueness of Ldet is what we may call the

linearized norm:

Corollary 2.18. Let R be a free A-algebra of finite rank n. There is a uniquely defined

ring morphism LNm : (

n︷ ︸︸ ︷
R⊗A · · · ⊗A R)Sn −→ A such that LNm(

n︷ ︸︸ ︷
a⊗ · · · ⊗ a) =

NmR/A(a).
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Proof:
Let us fix a basis of the A-module R. The morphism h : R → Mn(A) = EndA(R)
extends to h⊗n : R⊗n → Mn(A)⊗n. This morphism commutes with the action of Sn
and hence maps (R⊗)Sn into (Mn(A)⊗n)Sn . Define LNm as the product

(2.39) LNm : (R⊗n)Sn h⊗n

−→ (Mn(A)⊗n)Sn Ldet−→ A

�
As a consequence, the previous construction together with an obvious gleing process

yields for any finite and flat morphism Z → S of constant rank n, a canonical section
LNm : S → Z(n) of

(2.40) Z(n) =

n︷ ︸︸ ︷
Z ×S · · · ×S Z −→ S

Finally, the Hilbert-Chow morphism is obtained as follows. Let Z ⊂ X×Hn,X . The

morphism Z ↪→ X×Hn,X
p2−→ Hn,X is locally free of rank n. Let LNm : Hn,X → Z(n)

be the corresponding canonical section. Then define ϕX as the product

(2.41) ϕX : Hn,X
LNm−→ Z(n) −→ X(n) ×Hn,X

pr1−→ X(n)

Notice the relative symmetric product (X×Hn,X/Hn,X)(n) is nothing butX(n)×Hn,X .
To complete the proof, we need to check that for any Z ∈ Hn,X we have ϕ(Z) = [Z]
the cycle defined by Z. But the morphism ϕ commutes with an arbitrary base change,
so making the base change Z : Speck → Hn,X we see the result amounts to the fact
that ϕ evaluated at Z is the same as the point

Speck
LNm−→ Z(n) −→ Xn)

If the support of Z is reduced to one point x, this is obvious since the image is the cycle
nx, the only n-cycle with support x. In the general case, writing Z = tri=1Zi with
pairwise disjoint Z ′is, the conclusion will follows from the fact that our construction
of ϕX(Z) commutes in an obvious sense with the sum morphism (2.26), i.e.

ϕ(Z) =
∑
i

ϕ(Zi)

To prove this fact it suffices to treat the case r = 2. Moreover, one may assume
X = SpecR affine. The disjointness of Z1 and Z2 yields for B = OZ , and the
associated algebras Bi = R/Ii, that B = B1 × B2. Then it is readily seen (Exercise
2.10) that the linearized norm of B factors through the product of the linearized norm
of B1 and B2, viz.

(B⊗n)Sn
LNmn //

))RRRRRRRRRRRRR
A

(B⊗n1
1 )Sn1 ⊗ (B⊗n2

2 )Sn2

LNmn1⊗LNmn2

OO
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As a consequence of the construction, we see that the Hilbert-Chow morphism
commutes with the sum of two disjoint clusters, thus making the diagram below
commutative

(Hn1,X ×Hn2,X)0
+ //

ϕn1×ϕn2

��

Hn,X

ϕn

��
X(n1) ×X(n2)

+ // X(n)

Remark 2.19.

Let Y ⊂ X be a closed (resp. open) subscheme. Then the following diagram, the
vertical arrows being induced from Y ↪→ X, is commutative, even cartesian for an
open immersion Y ⊂ X.

Hn,X
ϕX // X(n)

Hn,Y

i

OO

ϕY // Y (n)

j

OO

As a consequence one can show the Hilbert-Chow morphism is projective, in particular
proper. To check this, we embed X as a locally closed subscheme of a projective
scheme, and using the previous diagram we see that it suffices to check the result
for the closure X, that is, in the case where X a projective scheme. In that case
since Hn,X is a projective scheme, then (2.41) shows ϕX is projective. More specific
properties of ϕX will be shown if X is a smooth surface.

Exercise 2.7. Let X be a non singular variety (char. k 6= 2). Show the Hilbert-Chow
morphism identifies H2,X with the blow-up of X(2) along the singular locus (see exercice
1.3), or [10], p. 224).

Finally using similar ideas, we can extend without extra efforts the Hilbert-Chow
morphism to the Incidence scheme Hn1,n2,X (see proposition 2.10).

Proposition 2.20. There is an extended Hilbert-Chow morphism

(2.42) ϕn1,n2 : Hn1,n2,X −→ X(n1−n2)

which maps the point (Z1, Z2) with Z2 ⊂ Z1 to the cycle [Z1]− [Z2].

Proof:
We proceed as in the proof of Theorem 2.16, so the proof will be more sketchy. Let
(Z1, Z2) be a closed point of Hn1,n2,X . Then since Z2 is a subscheme of Z1, we have
an exact sequence

0 → I −→ OZ1 −→ OZ2 −→ 0

for some ideal I of OZ1 . For a ∈ O1, let ha be the endomorphism x 7→ ax of I.
We get in this way an algebra morphism OZ1 → Endk(I), then O⊗n1−n2

Z1
→ I⊗n1−n2 ,
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the tensor product being taken over k. As before we can take the ”linearized norm”

LNm : (Endk(I)
⊗n1−n2)

Sn1−n2
Ldet−→ k, and then the product morphism

(2.43)
(
O⊗(n1−n2)
Z1

)Sn1−n2 −→
(
Endk(I)

⊗(n1−n2)
)Sn1−n2 Ldet−→ k

In other words, we get a canonical point of Z
(n1−n2)
1 . Now we must see that the image

of this point in X(n1−n2) is the cycle [Z1][Z2]. It is easy using the result of exercice
(2.10,2) to reduce this check to the case where Z1 has support consisting of one point
x. In that case, the construction above yields a point of X(n1−n2) of the form

Speck → Z
(n1−n2)
1 → X(n1−n2)

Thus this point must necessarily be the cycle (n1 − n2)x. To complete the proof,
notice the previous construction works well in families, then working applying this
to the universal family ZZ1 , with base Hn1,n2,X , this yields the expected morphism
ϕn1,n2 .

�
A very useful particular case is n1 = n + 1, n2 = n. Then the Hilbert-Chow

morphism is a morphism

(2.44) ϕ : Hn+1,n,X −→ X

The induction scheme Hn+1,n,X fits into a diagram

(2.45) Hn,X Hn+1,n,Xp
oo

ϕ

��

q // Hn+1

X

Let (Z1, Z2) be a closed point of Hn+1,n,X . If x 6∈ |Z2|, then Z1 is just the sum
Z1 = Z2 + x (2.26), showing the morphism (p, ϕ) : Hn+1,n,X −→ Hn,X × X is an
isomorphism above the open subset Hn,X × X − Z2. To recover Z1 from the pair
(Z2, x) we must find the ideal IZ1 inside IZ2 such that IZ1/IZ2

∼= k(x) = k, the residue
field at x. In other words we must select a closed point of the projectivized scheme

(2.46) P(IZ2) −→ Hn,X ×X

This gives us the result:

Proposition 2.21. The morphism (p, ϕ) : Hn+1,n,X −→ Hn,X×X identifies Hn+1,n,X

with the projectivized scheme P(IZ2) −→ Hn,X ×X.

�
It is not difficult to prove by induction, thanks to proposition 2.21, that for any

quasi-projective scheme X, the Hilbert scheme Hn,X is connected. We leave this as
an exercise.

Exercise 2.8. Let X be a connected quasi-projective scheme. Prove by induction on n,
with the help of the incidence scheme that Hn,X is connected.
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Exercise 2.9. (The linearized determinant) Let A be a commutative ring. In the
following er,s stands for the elementary matrix with all entries equal to zero, excepted the
(r,s) entry equal to one. Let us denote Tn the set of maps [1, n] → [1, n]. If f ∈ Tn, then
ε(f) will mean the signature of f , i.e. zero if f is not bijective, otherwise its signature in
the usual sense. For any f, g ∈ Tn define Ef,g := ef(1),g(1) ⊗ · · · ⊗ ef(n),g(n). Recall that the
symmetric group Sn acts on Mn(A)⊗n according to the rule σEf,g = Efσ−1,gσ−1.

(1) i) Show the invariant subring is given by (Mn(A)⊗n)Sn = ⊕(f,g)∈T 2
n/Sn

A�Ef,g,
where �Ef,g :=

∑
(f ′,g′)∈Sn(f,g)Ef ′,g′.

(2) ii) Show there is a unique ring morphism Ldet : (Mn(A)⊗n)Sn −→ A such that
Ldet(�Ef,g) = ε(f)ε(g). Then show Ldet(M ⊗ · · · ⊗M) = detM .

Exercise 2.10. (The linearized norm ) Let B be a free A-algebra. The regular repre-
sentation yields an algebra morphism h : B → EndA(B).

(1) Deduce from this, and from the previous exercise, that there is a unique ring mor-
phism LNmn : (B⊗n)Sn → A such that LNmn(b⊗· · ·⊗b) = Ldet(h(b) := NmB/A(b).

(2) Suppose B = B1×B2 is a product, where Bi is free as module of rank ni (i = 1, 2).
Then show the morphism LNmn factorizes through the factor (B⊗n1

1 )Sn1⊗(B⊗n2
2 )Sn2

as follows

(B⊗n)Sn
LNmn //

))RRRRRRRRRRRRR
A

(B⊗n1
1 )Sn1 ⊗ (B⊗n2

2 )Sn2

LNmn1⊗LNmn2

OO

Exercise 2.11. Check that the subset (Hn1,X ×Hn2,X)0 ⊂ Hn1,X ×Hn2,X is open.

2.3. The local Punctual Hilbert scheme.

2.3.1. The local punctual Hilbert scheme. To get insight about the fibers of the Hilbert-
Chow morphism, we need further properties of totally degenerated clusters, i.e. those
supported at one point. Indeed, the fiber of ϕn,X at the point

∑r
i=1 nixi is, at least

set-theoretically, the locus of n-clusters Z ⊂ X such that Z = tri=1Zi where Zi is sup-
ported at xi. Let us denote Hn,X,x this fiber, i.e. the locus of n-clusters with support
x. To say something about Hn,X,x there is no loss of generality to assume X = SpecR
and x = M⊂ R a maximal ideal. Indeed if Z = SpecR/I is concentrated at x then
R/I is local with only prime ideal M/I, in particular R/I = OX,x/IOX,x, and con-
versely. This shows the fiber coincides set-theoretically with the local Hilbert scheme
Hn,OX,x

.
By a local punctual Hilbert scheme we mean the punctual Hilbert scheme Hn,R/k

of a local artinian k-algebra. To see this terminology is the correct one, note the
following fact: Let R be a local noetherian k-algebra with M its maximal ideal.

Lemma 2.22. If I ∈ Hn,R/K then Mn ⊂ I. In particular Hn,R/k = Hn,Rn/k where
Rn = R/Mn.

Proof:
Indeed, the algebra R/I is a finitely generated commutative local k-algebra, thus with
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M/I as its unique prime ideal. Therefore this ideal is nilpotent, and being finitely
generated, some power must be zero. To check that k ≤ n, let M be the image of M
in R/I. If for j > 0 we have Mj+1

= Mj
, then Nakayama’s lemma shows Mj

= 0.

Thus if k is the least integer such that Mk
= 0, then for 1 ≤ j < k we must have

Mj+1 * Mj
. Dimension counting yields k ≤ n. �

This lemma justifies why one may be interested by the Hilbert scheme Hn,R/k when
R is a finitely dimensional local k-algebra. This local Hilbert scheme describes the
fibers of the Hilbert-Chow morphism over totally degenerated points. It should be
noted the local Hilbert scheme at x ∈ X is really a local-etale invariant, depending
only on the local ring Ox, even on the completed local ring Ôx.

In the local setting, there are at least two main questions, the first, how to build
n-clusters, and then how to distinguish them ? Suppose O is a local noetherian ring
with maximal ideal M. Then Hn,SpecO/k = Hn,On/k where On = O/Mn. Let Z be
some point of Hn,SpecO/k with defining ideal I ⊂ O. The quotient algebra O/I has a
natural filtration

(2.47) 0 = (Mn + I)/I ⊂ · · · ⊂ (Mk+1 + I)/I ⊂ (Mk + I)/I ⊂ · · · ⊂ O/I
If k is the least integer with(Mk + I)/I 6= 0, e.g Mk * I, then for k ≤ j ≤ 0, the
inclusion (Mj+1 + I)/I ⊂ (Mj + I)/I is strict. Furthermore we have

(2.48)
∑
j

dim(Mj + I)/(Mj+1 + I) = n

The filtration (2.47) exhibits some properties of the cluster Z, as we will see below.
The rest of this section is devoted to the study of some examples. The first is

a trivial one, i.e. R = k[X]. Clearly Hn,k[X]/k = Speck, i.e one reduced point. A
non-trivial example, where ϕX is not an isomorphism, occurs when X is a singular
curve.

Example 2.1. The punctual Hilbert scheme of a nodal algebra [50]

Recall a node or an ordinary double point of a curve (a reduced one dimensional
scheme) is a point p ∈ X such that formally X looks near p like to the plane curve

{xy = 0} ⊂ A2 at (0, 0). Equivalently, the complete local ring ÔX,p is isomorphic to

(2.49) ÔX,p
∼= k[[x, y]]/(xy)

We are interested in the fiber of ϕX : Hn,X → X(n) at the 0-cycle n[0]. This fiber is the
locus of ideals I ⊂ OX,p of colength n, i.e dimOX,p/I = n. Let Mp be the maximal
ideal of OX,p. Notice Hn,OX,p

= Hn,ÔX,p
, so we may assume R = k[[X, Y ]]/(XY ).

It is not too difficult to describe explicitly the scheme Hn,R/k. Let x (resp. y) be
the residue classes of X (resp. Y ). An element of ξ ∈ R can be reduced to a (unique)
normal form

ξ = a+ f(x) + g(y), (a ∈ k, f(x) ∈ xk[[x]], g(y) ∈ yk[[y]])
The maximal ideal is M = (x, y) = {f(x) + g(y), f(0) = g(0) = 0}. The notation
val(f) stands for the valuation of the formal power series f . The result is as follows:
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Proposition 2.23. An ideal I ⊂ R of colength n ≥ 2 falls into one of the two families

i) I = (xa, yb) (a+ b = n+ 1)
ii) I = (xa + αyb), (α ∈ k∗, a+ b = n, a, b ≥ 1)

In particular Hn,R/k = ϕ−1
X (n[0]) is a string of n − 1 copies of P1. The i-th strand

minus the points 0 and ∞ is the locus of points of type ii) where a = i. The 0 point
is given by (xi, yn−i+1), and the ∞ point is given by (xi+1, yn−i).

Proof:
Let (f(x), g(y)) be an element of M. Notice the following equalities in R

x(f(x), g(y)) = xf(x), y(f(x), g(y)) = yg(y)

Let I ⊂M be an ideal of colength n. Define a as the smallest i ≥ 1 such that there
exists (f(x), g(y)) ∈ I with val(f) = i, and define similarly b. This means ∃(f, g)
with (xa + g(y)) ∈ I, (f(x), yb) ∈ I. If g = 0, then xa ∈ I. But val(f) ≥ a, so yb ∈ I.
In this case I = (xa, yb) and clearly dimR/I = a+ b− 1.

Assume now g 6= 0. The claim is the ideal I is principal with generator xa+αyb for
some α 6= 0. Notice xa+1 ∈ I, yb+1 ∈ I. Thus we may truncate g(y) and assume that
g(y) = αyb. Let us take ξ = p(x)+ q(y) ∈ I. If either val(p) ≥ a+1 or val(q) ≥ b+1
then val(p) ≥ a+ 1 and val(q) ≥ b+ 1, thus ξ ∈ R(xa + αyb).

The last case we need to consider is val(p) = a and val(q) = b. Then if β(x) ∈
k[[x]]is an invertible element is such that βf = xa, and likewise γg = yb, then

γβξ = (xa + α∗yb) ∈ I

This forces the equality α = α∗. Finally in this case I is generated by ξ. Obviously
dimR/(xa + αyb)R = a+ b.

Thus for any pair (a, b) ∈ (N∗)2 with a + b = n we found a one parameter family
A1 = Ca,b ⊂ Hn,R/k, viz.

(2.50) α ∈ k∗ 7→ Ia,b(α) = (xa + αyb)

To check this yields an open embedding into Hn,R/k, one has to compute the tangent
space of Hn,R/k at the corresponding point. An easy calculation shows the tangent
space is one dimensional and the differential of (2.50) is bijective.

Next, one can also show that the limit limα→0 Ia,b(α) exists in Hn,R/k, indeed this
limit is the non-principal ideal (xa, yb+1). Similarly

lim
α→∞

Ia,b(α) = (xa+1, yb)

The last assertion follows from these facts. �

The special fiber of the Hilbert scheme of a nodal algebra
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2.3.2. Curvilinear clusters. Let X be a smooth quasi-projective scheme. Let Y ⊂ X
be a closed subscheme. Recall Hn,Y ⊂ Hn,X is a closed subscheme (corollary 2.9).
Since the Hilbert scheme Hn,Y is easy to describe, if Y is a smooth curve, it is natural
to ask how these n-clusters fit into the whole Hn,X . The clusters that comes from
smooth curves germs will be called curvilinear. The notation Hcurv

n,X stands for the
subset of curvilinear clusters. Clearly to test if Z is curvilinear, we may restrict to
the case Z ∈ Hn,X is supported at one point x ∈ X. If Z is given by the ideal I ⊂ Ox

with dimOx/I = n, then

OZ = Ox/I ∼= k[t]/(tn)

With respect to the filtration (2.47) we see its length is n, and the corresponding

sequence is (

n︷ ︸︸ ︷
1, 1, · · · , 1)

Throughout the rest of this section it will be assumed that X is a smooth surface.
In this case a smooth curve is locally defined by one equation. More precisely:

Definition 2.24. By a germ of smooth curve (C, x) ⊂ X, we mean a subscheme
SpecOx/(f) ⊂ SpecOx where f ∈ Mx, f 6∈ M2

x. We say that the cluster Z given by
the ideal I ⊂ Ox lies on the curve (C, x) if f ∈ I. A n-cluster is called curvilinear if
it lies on a smooth curve germ through x.

Here is another way to think about a curvilinear cluster:

Proposition 2.25. A cluster is curvilinear if and only if the algebra OZ can be
generated by one element, i.e. OZ = k[f ] for some f ∈ OZ. Moreover Hcurv

n,X is open
in Hn,X .

Proof:
Notice the notation OZ = k[f ] makes sense since Z is affine, i.e. Z = SpecOZ . In
that case (1, f, · · · , fn−1) must be a k-basis of OZ , which in turn means there is a
monic polynomial P (T ) of degree n such that

(2.51) OZ = k[T ]/(P (T ))

This definition should be compared with the definition of a cyclic endomorphism
in linear algebra. The only thing to prove is if OZ is of the form k[f ], then Z is
curvilinear, and for this we may assume that |Z| = p. Then OZ = OX,p/I is local,
and there is no loss of generality to assume that f ∈ MX,p/I. Since Mn

X,p ⊂ I,

necessarily f 6∈ (I +M2
X,p)/I. Thus dim(I +M2

X,p)/M2
X,p = 1. This means we can

choose g ∈ I such that (I + M2
X,p)/M2

X,p = kg. Then Z is drawn on the smooth
germ {g = 0}.

To prove the openness of Hcurv
n,X , we may restrict to the case of an affine surface

SpecR. Then it suffices to note this subset is the union of all open charts of Hn,R/k

given by the choices (e1 = 1, e2 = f, · · · , en = fn−1) (see section 2.1.3). See also
Exercise 2.12.

�
To give a more concrete description of the subset Hcurv

n,X , let us denote Hcurv
n,X,x the

set of curvilinear n-clusters with support x. To describe this set there is no loss of
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generality to work with the artinian ring Ox/Mn
x (Lemma 2.22). Let C be a germ of

smooth curve drawn on X localized at some point p ∈ X. Let (x, y) be a system of
parameters at p, i.e Mp = (x, y). We can write

(2.52) f(x, y) = ax+ by +
∑

2≤i+j≤n−1

aijx
iyj (mod Mn

x)

The smoothness condition means ax + by 6= 0. The line ax + by = 0 yields the
tangential direction of the curve. Assume for example that b 6= 0. Changing y to αy
for some unit α ∈ O∗

p, we may reduce f to the normal form f(x, y) = y+a1x+a2x
2 +

· · ·+ an−1x
n−1 (mod Mn

p ) and

(2.53) OZ
∼→ k[x, y]/(xn, y + a1x+ a2x

2 + · · ·+ an−1x
n−1) = k[x]/(xn)

It is not difficult for a fixed system of coordinates (x, y), to check the a′is in (2.53)
are unique. Thus what we get for a fixed tangential direction, is a (n− 1)-parameter
family of n-clusters with support p, viz.

k[x, y, a2, · · · , an−1] → OZ = k[x, y, a2, · · · , an−1]/(x
n, y + a1x+ a2x

2 + · · ·+ an−1x
n−1)

∼→ k[x, a2, · · · , an−1]/(x
n)(2.54)

This yields a morphism An−2 −→ Hn,X,p. Obviously the previous family depends on
how C fits into X, for example it is sensitive to the tangential direction of C at p.
Furthermore Hcurv

n,X,p can be made into a smooth algebraic variety of dimension n− 1,

showing that dimϕ−1
X (np) ≥ n− 1. Below we shall prove the equality.

Remark 2.26.

If Z is a cluster with irreducible components Z1, · · · , Zr, then it is curvilinear if
and only if any component Zi is curvilinear. This show that any reduced cluster is
curvilinear. More generally if the length of Zi is one for i = 2, · · · , r, but the length
of Z1 is equal to 2, then Z is curvilinear. Indeed it suffices to check this when n = 2.
In this case this can be seen by direct inspection.

Exercise 2.12. Let R be a free A-algebra of rank n. Show the set of P ∈ SpecA such that
the k(P )-algebra R⊗A k(P ) is cyclic (generated by one element) is open.

Exercise 2.13. Let P(TX,p) be the projectivized tangent space of X at p. Show there is a
morphism

Hcurv
n,X,p −→ P(TX,p)

which is a locally trivial fibration with fibers An−1. In particular, Hcurv
n,X,p is smooth.

2.3.3. Connectedness theorem. We have already observed that if X is quasi-projective
and connected, then Hn,X is connected (exercise 2.27). The result below which shows
that a local Hilbert scheme is always connected is due to Fogarty [21]

Proposition 2.27. Let R/k be a local commutative k-algebra of finite dimension.
The Hilbert scheme Hn,R/k is connected.
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Proof:
For a different proof see ([21], prop. 2.2), or [10]. We proceed by induction on both
n and d = dimk R. The case d = dimR = 1 being trivial, we assume d = dimR ≥ 2.
Let M be the maximal ideal of R. There is an integer m ≥ 1 such that Mm = 0 and
Mm−1 6= 0 (2.22). The case m = 2 is very easy. Indeed any vector subspace I ⊂M is
an ideal. This identifies Hn,R/k with Gn(R) the Grassmann variety of n-dimensional
subspaces of R. The result in this case is stronger since we know Gn(R) is a smooth
irreducible variety of dimension n(d− n).

Assume now m ≥ 3. Choose 0 6= t ∈ Mm−1. Then Mt = 0. We set R = R/tR.
We know Hn,R ⊂ Hn,R is a closed subscheme. The proof amounts to understand the
structure of the open subscheme Ω = Hn,R − Hn,R. Let I be a point of Ω. This
means that t 6∈ I. Then I + tR = I ⊕ tR is readily seen to be a point of Hn−1,R. This
suggests we can define a morphism

(2.55) π : Ω −→ Hn−1,R, I 7→ I + tR

To properly check this claim, we need to validate the construction over a base S =
SpecA. Namely if I ⊂ R⊗k A is a point of Ω, meaning t 6∈ I ⊗ k(s) for any (closed)
point s ∈ S, we must check I + (t) = I ⊕ (t) defines an S-point of Hn−1,R. For this
purpose, let

I ⊕ tR⊗k A −→ R⊗k A

be the canonical morphism, i.e. the sum morphism. Notice the source and the target
of this map are flat modules. Our hypothesis says that this morphism is fibrewise
injective. Then it is necessarily injective with cokernel flat over A as follows from the
local flatness lemma [16].

Now to check our claim about Ω we must study the fibers of π. Namely let us fix
I ∈ Ω. The points belonging to the fiber π−1π(I) correspond to the ideals J ⊂ I⊕ (t)
with I ⊕ (t) = J ⊕ (t), t 6∈ J . This equality yields MI = MJ . Arguing as at the
beginning of the proof, we see that such ideals are in 1 : 1 correspondence with the
hyperplanes of the vector space I/MI ⊕ (t) not containing the line (t). The fiber is
then an affine space of dimension dim I/MI. This shows the fibers of the morphism
(2.55) are connected and not closed, since Hn,R is known to be a projective scheme.
To complete the proof, let us assume Hn,R is the disjoint union of the open subsets
Ui (i = 1, 2). Since Hn,R is connected, due to the induction hypothesis, we can assume
Hn,R ⊂ U1. Let F be a fiber of the morphism (2.55). If F ∩ U1 = ∅ then F = F ∩ U2

would be closed, contrary to our previous remark. This contradiction completes the
proof.

�
Let us describe H3,R/k where R = k[[x1, · · · , xr]] (r ≥ 2) is the ring of formal power

series in r ≥ 2 formal variables. Let M = (x1, · · · , xr) be the maximal ideal. Then
M3 ⊂ I for any I ∈ H3,R/k. We need to distinguish two cases:

i) I ⊂M2. As before there is a 1 : 1 correspondance between these ideals and the
vector subspaces V ⊂M2/M3, namely V = I/M3. If k = dimV , then

dimR/I = n = dimR/M3 − k = r + 1 +
r(r + 1)

2
− k
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ii) I * M2. Then W = (I + M2)/M2 ⊂ M/M2 is a vector subspace, say of
dimension l, the space of initial linear forms of elements of I. Writing a power series
f = f1+f2+ · · ·+fd+ · · · where fd is a homogeneous polynomial de degree d, then W
is the space of initial terms f1. Notice W.M/M2 = {PQ, P ∈ W,Q ∈M/M2} ⊂ I.
This shows to catch I it suffices to know the following data. Together with W we
need to know I ∩ M2/M3 a subspace of M2/M3 containing (MW + M3)/M3.
Equivalently we need to specify the subspace V = (I ∩M2 +M3)/M3. To recover
I starting from this data, notice if f = f1 + f2 (mod M3) ∈ I (fi homogeneous of
degree i), then the residue class f 2 ∈ (M2/M3)/V depends only of f1 ∈ V , yielding
a linear map

(2.56) ϕ : W −→ (M2/M3)/V

The ideal I is completely defined by the data (W,V, ϕ). Indeed

(2.57) f = f1 + f2 + · · · ∈ I ⇐⇒ f2 ∈ ϕ(f1) + V

It is readily seen that I as defined by (2.57) is an ideal. It is also not difficult to
compute dimR/I in terms of dimV, dimW . We get

n = dimR/I = 1 + r +
r(r + 1)

2
− dimV − dimW

Let now r = 2. In this case we see dimW = 1, dimV = 2, indeed V = M.W +
M3/M3. Suppose W is the line generated by ax + by 6= 0, and ϕ(ax + by) = φ a
degree two form. Then φ, x(ax+ by), y(ax+ by) must be a basis of M2/M3. Notice
the data (a, b, φ) and (a′, b′, φ′) define the same ideal if and only if ∃λ ∈ k∗ such that

(2.58) a′ = λa, b′ = λb, φ′ = λφ (mod x(ax+ by), y(ax+ by))

Inserting a parameter i.e. φ 7→ tφ (t ∈ k∗), we get a one-parameter family of ideals
It ∈ H3,R/k. Now if t→∞, we see

It →M2/M3

This show H3,R/k (if r = 2) is a two-dimensional smooth projective cone with vertex
M2.

�

Exercise 2.14. In the previous example (r = 2) find a description of Ω by two charts
Ω1 = {(y3, a1x + a2x

2)} and Ω2 = {(x, x + b1y + b2y
2)}, and give the glueing relations

between these coordinates.

3. Case of a smooth surface

From now on X is a smooth surface over k = k. It is known that X is quasi-
projective ([34], Chap II, Remark 4.10.2). In this setting the punctual Hilbert scheme
has a very interesting behavior, either local or global, as we are going to explain.
The first main result is Fogarty’s theorem below. During the last decade important
results have been obtained about the geometry of punctual Hilbert scheme of a smooth
surface, especially on its cohomology ring. The most prominent example is the affine
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plane X = A2. The Hilbert scheme Hn := Hn,A2 has a particularly rich structure,
sometimes unexpected. This explain why Hn is a ubiquitous object.

3.1. The theorems of Briançon and Fogarty.

3.1.1. Fogarty’s theorem. The main result of this section shows the case of smooth
surfaces is somewhat exceptional [21] :

Theorem 3.1. Let X be a smooth connected surface. Then the Hilbert scheme Hn,X

is connected and smooth of dimension 2n.

Proof:
The first point will be proven if we show that the fibers of the Hilbert-Chow morphism
ϕ : Hn,X → X(n) over the closed points are connected. Indeed if U ⊂ Hn,X is open
and closed, then for a fiber ϕ−1(x) either ϕ−1(x) ⊂ U or ϕ−1(x)∩U = ∅. This shows
U = ϕ−1(ϕ(U)). Now ϕ is projective (see remark 2.19), thus a closed morphism. This
yields that ϕ(U) is closed. For the same reason the complementary subset X(n)−ϕ(U)
is closed. The claim follows from the connectedness of X(n).

Let z =
∑r

i=1 nixi be a point of X(n) with the xi ∈ X distincts, and
∑

i ni = n.
Let Oxi

the local ring of X at xi with maximal ideal Mi. At least set theoretically
the fiber ϕ−1(z) is the product (see remark p 33)

(3.1)
r∏
i=1

Hni,Oxi
=

r∏
i=1

Hni,Oxi/M
ni
i

The connectedness of this fiber follows from proposition 2.27.
We now are going to prove the smoothness of Hn,X . Notice since k = k, smooth

is synonym to regular. This is a local problem around a given point Z ∈ Hn,X . Our
construction of Hn,X gives an open cover of this scheme, and each open piece is given
explicitly as a subscheme of an affine space by a set of relations. But these relations
are intractable, to check the smoothness by means of the jacobian criterion. We need a
different strategy. The proof that follows is Fogarty’s proof. It uses some homological
algebra of regular local rings. For background about regular local rings see ([16], Ch
19). A second proof will be given in the next subsection in the special but sufficient
case X = A2. Then we will identify Hn,A2 with a suitable quiver variety, yielding a
nice relationship with varieties of representations constructed in Brion’s lectures [10],
[24].

To help the reader we list below the necessary facts we are using. Let A be a
local noetherian ring with maximal ideal M. The (Krull) dimension of A is the
least d ∈ N such that we can find (x1, · · · , xd) ⊂ M, with A/(x1, · · · , xd) of finite
length, i.e. artinian. Then d ≤ dimM/M2. The ring A is regular if and only if this
inequality is an equality. A regular local ring is a domain.

There is an important homological characterization of regular local ring. Let M
be a finitely generated A-module. Recall a finite free resolution of M is an exact
sequence

(3.2) 0 → Lm → Lm−1 → · · · → L0 →M → 0
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with Li free of finite rank. In this case we say M is of finite homological dimension.
Indeed the homological dimension dhA(M) is the infimum of the length of the finite
free resolutions (3.2). Then ([16], thm 19.12)

Theorem 3.2. A noetherian local ring is regular if and only if for any finitely gen-
erated A-module M then dhA(M) < ∞. Then dimA = maxdhA(M). If this is the
case then for k = A/M, dhA(k) = dimA.

We can compute dhA(M) (finite or not) with the help of the Extk(−,−) modules
([16], Appendix 3). Namely dhA(M) = k ⇐⇒ Extj(M,N) = 0 for all j > k, and for
some N, Extk(M,N) 6= 0. If A is regular with dimA = 2, then Ext3(−,−) = 0. We
need one more fact about regular local rings. It says the dimension d of A is also the
greatest length of the regular sequences included in M. From a homological point
of view this says Extj(M,A) = 0 when j < d = dimA, and when M is a finitely
generated module of finite length, i.e annihilated by a power of M.

Let us go back to the theorem. The idea is to estimate the dimension of the tangent
space TZ at Z ∈ Hn,X , specifically

(3.3) dimTZ ≤ 2n

Assuming this claim let us see how to get the result. We know the points of Hn,X

defined by the sum of n distinct points of X are smooth points, then regular. If
Z is such a point then the dimension of the local ring of Hn,X at Z is 2n. This
follows from the fact that the Hilbert-Chow morphism is an isomorphism at this
point. Furthermore the locus Ω of these points is irreducible, and so is the closure
W = Ω. Since dimW = 2n, for any Z ∈ W we have dimOZ = 2n but (3.3) implies
OZ is regular. Then any point of the irreducible component W is smooth. Let W ′

be another irreducible component. Then W ′ ∩W = ∅ otherwise a point Z ∈ W ∩W ′

would be singular. The connectedness of Hn,X then shows W = Hn,X , and the
theorem is proved.

Proof of (3.3). This amounts to check for any 2-dimensional regular local ring A,
and any I ⊂ A with ` (A/I) = n that ` (HomA(I, A/I)) ≤ 2n. Here ` (−) means the
length, that is the dimension over k if k ⊂ A and A/M = k. Notice the homological
dimension of A/I must be 2. Otherwise from the exact sequence

(3.4) 0 → I → A→ A/I → 0

we would get dhI = 0, forcing I to be a principal ideal. But then dimA/I = 1, and
A/I would not be artinian, i.e 0-dimensional. Thus dhA/I = 2 and hence dh I = 1.
We can take a free resolution of the form

(3.5) 0 → Ar −→ Ar+1 −→ I → 0

To see the exponents are the correct ones one can tensor with K, the fraction field
of A, and notice I is of rank one. Now we have the Ext exact sequence which we
derive from the short exact sequence (3.5), taking into account the vanishing property
Ext1(Ar+1, A/I) = 0

0 → Hom(I, A/I) → Hom(Ar+1, A/I) → Hom(Ar, A/I) → Ext1(I, A/I) → 0
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This yields ` (Hom(I, A/I)) = n+ ` (Ext1(I, A/I)). It suffices to check

` (Ext1(I, A/I)) ≤ n

The exact sequence (3.4) yields on one hand

Ext1(I, A/I)
∼−→ Ext2(A/I,A/I)

and on the other hand a surjective map Ext2(A/I,A) −→ Ext2(A/I,A/I) → 0. The
conclusion will follows from the fact that

(3.6) `
(
Ext2(A/I,A)

)
= ` (A/I) = n

Since the support of the module A/I is the closed point, we know Ext1(A/I,A) = 0,
more generally Ext1(M,A) = 0 for any M with `(M) < ∞. Since A is a two
dimensional regular ring, Ext3(−,−) = 0. Therefore the functor M → Ext2(M,A)
is exact on the category of finite length modules. Then by an obvious devissage, it
suffices to check that `(Ext2(k,A)) = 1. But in this case we can use a Koszul type
resolution to compute this module. Let M = (x, y) where (x, y) are a regular system
of parameters [16]. This yields an exact sequence

0 → A = ∧2A2 ∂−→ A
ϕ−→ A→ k → 0

where ∂(1) = (y,−x) and ϕ(a, b) = ax+ yb. Dualizing yields

Ext2(k,A) = Coker(u, v) ∈ A2 7→ uy − vx ∈ A = A/M = k

The proof is now complete.
�

A different proof will be obtained below as a corollary of Haiman’s very explicit
description of the punctual Hilbert scheme of the affine plane.

We close this section with a remark about the sum morphism (2.26).

Proposition 3.3. The sum morphism + : (Hn1,X ×Hn2,X)0 −→ Hn,X is etale.

Proof:
Let me remind you the definition, in a special case, of an etale morphism. Let
f : X → Y be a morphism between schemes. Then f is etale at the closed point
x ∈ X if the induced ring morphism f ∗x : ÔY,f(x) → ÔX,x between complete local rings
is an isomorphism [34]. If moreover both schemes are smooth, then to check f is etale
at x, it is sufficient to prove the differential dfx : TX,x → TY,f(x) is bijective. Finally
an etale morphism is quasi-finite, i.e. with finite fibers.

Then to check the sim morphism is etale at a pair (Z1, Z2) of two disjoint clusters,
it suffices to compare both tangent spaces. We may assume X = SpecR. The tangent
space of Hn,X at Z1 +Z2 is Hom(I1 ∩ I2, R/I1 ∩ I2). Since Z1 and Z2 are disjoint, the
Chinese Remainder Theorem yields R/I1∩I2 = R/I1⊕R/I2, therefore by elementary
algebra

Hom(I1 ∩ I2, R/I1 ∩ I2) = Hom(I1 ∩ I2, R/I1)⊕ Hom(I1 ∩ I2, R/I2)
The hypothesis I1 + I2 = (1) ensures the result is the same as Hom(I1, R/I1) ⊕
Hom(I2, R/I2), that is the tangent space at (Z1, Z2). This is precisely what we want.

�
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3.1.2. The fibers of the Hilbert-Chow morphism: Briançon ’s theorem. The example of
the previous section is a particular case of an important result governing the structure
of the fibers of the Hilbert-Chow morphism (Briançon [8], see also [18], [37]). We shall
not give the proof of this result, refering to papers cited above, or to the survey by
Lehn [43] for a geometric proof based on the incidence scheme 2.10 plus an inductive
argument.

Theorem 3.4. Let X be a smooth surface, and let x ∈ X. The fiber Hn,X,x = ϕ−1
X (nx)

(at a totally degenerated cycle) is irreducible of dimension n− 1.

�
The theorem gives a good deal of information about the fibers of the morphism

ϕn : Hn,X → X(n), namely:

Corollary 3.5. Let X be a smooth surface. For any partition λ of weight n, length

`, and for any cycle ξ ∈ X(n)
λ , the fiber ϕ−1

n (ξ) is irreducible of dimension n− `.

Proof:
Write ξ =

∑`
i=1 nixi with pairwise distinct points xi. Any cluster in the fiber ϕ−1

X (ξ)
is a disjoint sum Z =

∑r
i=1 Zi for a r-tuple (Z1, · · · , Zr) ∈

∏r
i=1 Hni,X . The sum map

being etale, thus with finite fibers, we see the induced morphism

ϕ−1
n1

(ξ1)× · · ·ϕ−1
nr

(ξr) −→ ϕ−1
n (ξ)

is surjective with finite fibers. In turn this yields

dimϕ−1
n (ξ) =

r∑
i=1

dimϕ−1
ni

(ξi) =
r∑
i=1

(ni − 1) = n− `

�
We saw the symmetric product X(n) has singularities if n ≥ 2. The punctual

Hilbert scheme Hn,X solves this defect. We first record some definitions, to state
properly the next theorem.

Let X be a smooth variety of dimension n with function field k(X). Let me recall
that a rational differential n-form, ω, is an object that can be written in term of a
system of parameters? (U, x1, · · · , xn) of X as

(3.7) ωU = ϕUdx1 ∧ · · · ∧ dxn
If (V, y1, · · · , yn) is another system of local coordinates, then the condition ωU = ωV
on U ∩ V yields the following transformation rule

(3.8) ϕU = ϕV
∂(y1, · · · , yn)
∂(x1, · · · , xn)

(ϕU ∈ OX(U))

A rational n-form defines a divisor Div(ω) of X, where locally on (U, x1, · · · , xn) we
put Div(ω)|U = Div(ϕU), the divisor of the rational function ϕU . A canonical divisor
of X is a divisor of the form Div(ω), usually denoted KX . Clearly two canonical
divisors differ by a principal divisor (the divisor of a rational function). Likewise the

?Ω1
U/k = ⊕n

i=1OUdxi
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definition applies if X is only non singular in codimension one, for example X normal.
Then a canonical divisor (a Weil divisor) is the closure of a canonical divisor of the
smooth part.

Let Y be a normal variety of dimension n, a with smooth part Ysm. Then codim(Y −
Ysm) ≥ 2. Let π : X → Y be a resolution of singularities of Y . This means two things:

(1) X is a smooth variety with π a proper map which is an isomorphism over Ysm,
(2) the exceptional locus π−1(Ysg), the preimage of the singular part of Y , is purely

of codimension one.

Since k(X) = k(Y ), the vector spaces of rational differential n-forms for X and Y
are identical. If ω is such an n-form, we have two canonical divisors, namely DivY (ω)
and DivX(ω). Then pulling back DivY (ω) to X, yields a divisor

(3.9) DivX(ω)− π∗(DivY (ω))

which is readily seen to be independent of the choice of ω. It is not difficult to
see this divisor must be a linear combination of exceptional divisors, i.e. of those
prime divisors E ⊂ X such that codimπ(E) ≥ 2. We say the resolution is crepant if
DivX(ω) = π∗(DivY (ω)), equivalently KX ∼ π∗(KY ) where ∼ stands for the linear
equivalence. A stronger assumption will be KX ∼ 0 and KY ∼ 0.

Theorem 3.6. Let X be a smooth surface.

• i) The Hilbert-Chow morphism defines a crepant resolution of singularities of
the symmetric product X(n).

• ii) The exceptional divisor E ⊂ Hn,X is irreducible, precisely E is the closure

(3.10) E = ϕ−1
n,X(X

(n)

(2,1n−2))

Proof:
The first part of i) is a just a recollection of known facts. First Hn is a smooth
variety, and secondly, the Hilbert-Chow morphism is birational. The adjective semi-
small translates the fact that the fibers have small dimensions (corollary 3.5). The
only serious part of i) is that ϕn,X is crepant, i.e KHn,X

∼ ϕn,X(KX(n)). We don’t give
a complete proof of this fact here, for details see ([11], Chap 7). However a proof for
X = A2 will be given below.

ii) Recall we defined for any partition λ of weight n a stratum X
(n)
λ ⊂ X(n), with

dimension 2` where ` = `(λ) is the length. Since X
(n)
λ is irreducible, and the fibers of

the Hilbert-Chow morphism over the points of X
(n)
λ are irreducible of fixed dimension

n − ` (Theorem 3.4), then a known elementary result ([55], Theorem 8, Chap 1)

ensures the preimage Hn,X(λ) := ϕ−1
n,X(X

(n)
λ ) is also irreducible of dimension n + `.

The result amounts to check that E is the closure of the cell Hn,X(2, 1n−2). In other
words

Hn,X(2, 1n−2) =
⋃

λ,`(λ)<n

Hn,X(λ)
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Let λ = (n1 ≥ · · · , n`), with n1 ≥ 2. We proceed by induction on n, assuming the
result true for lower dimensions. Let us define the open cell

Ω =
(
Hn1,X(2, 1n1−2)×Hn1,X(1n2)× · · · ×Hn`,X(1n`)

)
0

where the subscript means the subset of (Z1, · · · , Z`) with pairwise disjoint supports.
The sum maps Ω into Hn,X(2, 1n−2). The closure of Ω is Ω = En1×Hn2,X×· · ·×Hn`,X ,
in particular is irreducible. Here we used the induction hypothesis. Since our initial
point Z lies in the image of Ω0 by the sum map, the conclusion follows.

�
It is known that for singular varieties of dimension ≥ 3, there is in general no

canonical way to select a desingularization. Thus for n ≥ 2, the symmetric product
X(n) looks very particular, since Hn appears as a preferred desingularization. Indeed,
it is known that Hn,X (X a smooth surface) is the only crepant desingularization of the
symmetric product X(n), even if chark = p > 0 (see [11], and references therein). We
will see in section 5 that the G-equivariant Hilbert scheme enjoys a similar property,
at least in some important cases. This is more or less the content of the McKay
correspondence ([25]).

It is very natural to ask if a given geometric property of the smooth surface X
transfers to Hn,X . There is an interesting result in this direction due to Beauville and
Fujiki (see [47], and the references therein). Recall that a symplectic structure on Z,
on a smooth variety Z of even dimension 2n, is given by a regular 2-form ω which is
non degenerate at any point, in other words ωn = ω ∧ · · · ∧ ω is a nowhere vanishing
section of the canonical line bundle.

Theorem 3.7. Suppose the smooth surface X has a symplectic structure, then likewise
Hn,X can be endowed with a sympletic structure.

Proof:
We only give the ideas, and omit some details. A detailed proof will follow forX = A2.
The idea is to work over an open subset Ω ⊂ Hn,X with codimension at least two.
Indeed if we have such regular 2-form on Ω, then it is standard to extend it to the
whole of Hn,X . The choice of Ω cannot be Hn,X(1n) since this cell is of codimension
one. Thus we must take

Ω = Hn,X(1n) ∪Hn,X(2, 1n−2)

i.e. the locus of clusters supported at no less than n − 1 distinct points. Likewise
we define the open subsets U ⊂ Xn and V ⊂ X(n). Notice that U/Sn = V , and
that ϕn,X(Ω) = V . The ramification locus of the Sn-action on U is the disjoint
union of the diagonals Hi,j = {x, xi = xj}. Let W be the blow-up of U along these
disjoint diagonals. Then the action of Sn lifts to W , and W/Sn = Ω. This yields a
commutative square

W
ψ //

q

��

U

π

��
Ω

ϕ // V
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where q is the quotient map by the Sn action. This very easy to see. Indeed everything
reduces to a local computation around a diagonal, that is to the case A2. Let ω be
the regular 2-form giving the symplectic structure of X. Let pi : Xn → X be the
projection on the i-th factor. Then α :=

∑n
i=1 p

∗
i (ω) is a regular 2-form on Xn, which

yields a symplectic structure. Notice this form is Sn-invariant, thus ψ∗(α) is also
Sn-invariant. Therefore we can find a regular 2-form η on Ω such that q∗(η) = ψ∗(α).
The conclusion will follows if we can check that η is non degenerate on Ω, i.e. ∧nη
is non zero anywhere on Ω. It suffices to check this claim for q∗(∧nη) on W . But
an easy and classical computation yields, if we denote by E ⊂ W the ramification
divisor, which is the same as the exceptional divisor

q∗(Div(∧nη) + E = Div(q∗(∧nη) = ψ∗(Div(∧n(α)) + E = R

Therefore Div(∧n(η) = 0 as expected.
�

3.2. The affine plane. We return to our toy model, the affine plane A2, see example
2.1.4. As shown by M. Haiman, it is possible to extract from a very explicit description
of Hn,A2 (2.1.4), especially 2.16, important informations about this punctual Hilbert
scheme. The first result is a direct proof of the smoothness of Hn,A2 , which in turn
gives also a different proof of Fogarty’s theorem (Theorem 3.1), i.e. without homolog-
ical algebra. The second result, which is the main goal of this section, is a very nice
interpretation of the Hilbert-Chow morphism as a blow-up of (A2)(n) along a suitable
closed subscheme. As a consequence of this precise understanding of the geometry of
Hn,A2 , and related schemes, Haiman was able to prove difficult combinatorial results,
see the notes of I. Gordon at this school [26] for a complete discussion and references.

3.2.1. Haiman’s local coordinates. The key point that distinguishes A2 among arbi-
trary surfaces, is the fact that T2 = (k∗)2 acts? on the plane A2, viz. (λ, µ).(x, y) =
(λx, µy). This translates algebraically into the fact that k[X, Y ] is a bigraded algebra

(3.11) k[X, Y ] = ⊕(p,q)∈N2kXpY q

It is readily seen that (0, 0) is the only fixed point, but more specifically, for any

(x, y) ∈ A2, the closure T2(x, y) contains (0, 0). Clearly there is an induced an
action of T2 on (A2)(n) and respectively Hn, making the Hilbert-Chow morphism T2-
equivariant. This action is rather explicit. Using the notation of example 2.1.4, we
see that each open set UM is invariant, and the induced action on this affine open set
reads

(3.12) (λ, µ).cr,sp,q = λp−rµq−scr,sp,q

in other words

(3.13) cr,sp,q((λ, µ).I) = λp−rµq−scr,sp,q

Particularly interesting are the fixed points of T2 on Hn.

?A toric surface has a similar action
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Lemma 3.8. The fixed points of T2 on Hn are the homogeneous ideals of colength
n, that is the ideals spanned by subsets of the set of monomials (XpY q).

Proof:
Clearly the T2-stable ideals are exactly the homogeneous ideals, making the lemma
clear.

�
It has been pointed out in example 2.1.4 that Hn can be covered by affine pieces

UM labelled by the subset M ⊂ N2 of cardinal n. Among these subsets, those looking
like stairs will play a prominent role. The definition is as follows:

Definition 3.9. Let µ = (µ1 ≥ µ2 ≥ · · · ≥ µl > 0) be a partition of length l, and of
weight |µ| :=

∑
i µi = n. We set

(3.14) Mµ = {(p, q) ∈ N2, 0 ≤ q < µp+1}
(the diagram of µ).

For example if µ = (6, 2, 2, 1) with weight 11, and length 4, the diagram Mµ is

The usefulness of these diagrams is justified by the Proposition below:

Proposition 3.10. i) The fixed points of T2 on Hn are labelled by the partitions
of weight n, namely Iµ =

⊕
(p,q) 6∈δµ k X

pY q. Moreover Iµ is the only fixed point
contained in Uµ := UMµ.

ii) For any I ∈ Hn there is a partition µ such that Iµ ∈ T2I.
iii) Hn = ∪µ, |µ|=nUµ.

Proof:
i) The first point is easy. Indeed, due to the fact that I is homogeneous, i.e. generated
by the monomials XpY q belonging to I, if we set ∆ = {(p, q), XpY q ∈ I}, then ∆
enjoys the property

(3.15) ∆ + N2 = ∆

from which follows easily the fact that N2 −∆ = Mµ for a well-defined partition µ of
weight n = dim k[X,Y ]/I. Call I = Iµ. Clearly the I ′µs exhaust all fixed points of
Hn.

ii) We can either use either the properness of the Hilbert-Chow morphism, or to
proceed by a direct reasoning. The only fixed point of T2 on (A2)(n) is n(0, 0) and

for any cycle ξ ∈ (A2)(n), one has n(0, 0) ∈ T2.ξ. Since ϕ : Hn → (A2)(n) is closed,

one has for any I ∈ Hn, ϕ(T2.I) = ϕ(T2.I). Thus

T2.I ∩ ϕ−1(n(0, 0)) 6= ∅
- 58 -



Summer school - Grenoble, June 16 - July 12, 2008

To show this closure contains a fixed point we can assume that I ∈ ϕ−1(n(0, 0)). But
then this closure is contained entirely in ϕ−1(n(0, 0)) which is complete, thus the only
closed orbit contained in this fiber is a fixed point.This proves that the closure of
every orbit contains a fixed point, not unique unless I is already a fixed point.

Once the fact that the closure of any T2 orbit contains a fixed point is proven,
assertion iii) readily follows. Indeed, let F be the closed subset Hn − ∪µ,|µ|Uµ. If

F 6= ∅, then taking I ∈ F = T2I, we see F must contains a fixed point, showing
necessarily F = ∅.

A direct and more illuminating proof of ii) goes as follows. It is convenient to use
a lexicographic order on the monomials, i.e on N2. Our choice is

(3.16) XpY q ≤ XrY s ⇐⇒ q < s or q = s, p < r

For any polynomials, define in(P ) as the greatest monomial which appears with a
non zero coefficient in P . Now for any ideal I ⊂ k[X,Y ] we put

(3.17) in(I) :=
⊕
P∈I

k in(P )

It is easy to check in(I) is indeed an ideal. Let M∗ be the set of monomials (a
monomial is identified with its exponents) not belonging to in(I). The claim is that
the set of monomials XrY s ∈ M∗ forms a basis of k[X, Y ]/I. First these elements
are independent. In the contrary, if

∑
(r,s)∈M∗ brsX

rY s ∈ I is a non trivial linear
relation, then the initial form of this polynomial yields a contradiction. Now set
V = ⊕(r,s)∈M∗kXrY s + I. Suppose V 6= k[X, Y ]. Choose a monomial XpY q 6∈ V
which is minimal for the lexicographic order for this property. Then XpY q 6∈ M∗,
thus this monomial is the initial form of an element of I. An obvious induction
hypothesis yields a contradiction. As a consequence we have |M∗| = n, so M∗ = Mµ

with respect to some partition µ. Furthermore I ∈Mµ.
To complete the proof of ii) we need to compute the limit

(3.18) lim
λ→∞

lim
µ→∞

(λ, µ).I = in(I)

Let XrY s 6∈Mµ. We have a relation

XrY s ≡
∑

(p,q)∈Mµ

cr,sp,qX
pY q (mod I)

thus the leading term of this element of I must be XrY s. Therefore invoking (3.13),
the action of (λ, µ) ∈ T2 reads cr,sp,q((λ, µ).I) = λp−rµq−scr,sp,q(I). In turn, if cr,sp,q(I) 6= 0,
noticing that either q < s, or q = s and p < r, we see that

lim
λ→∞

lim
µ→∞

cr,sp,q((λ, µ).I) → XrY s

This precisely means that limλ→∞ limµ→∞(λ, µ).I exists, and this limit must be Iµ =
in(I).

�
Proposition 3.10 opens the way to a completely elementary treatment of Hn.

Namely, we have a distinguished open affine covering Hn = ∪µ,|µ|=nUµ, and for each
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open piece the description

(3.19) Uµ = Speck[(cr,sp,q)(p,q)∈Mµ ]/(equations 2.17)

To see the efficiency of this description, we can now check the smoothness of Hn by a
direct reasoning, which in turn yields a new proof of Fogarty’s smoothness theorem,
compare with Nakajima gauge theoretic proof [47], [24].

Proposition 3.11. The punctual Hilbert scheme Hn is smooth.

Proof:
It suffices to check Hn is smooth at each fixed point Iµ. Indeed, the singular locus
being closed and invariant under the action of T2, if non empty, must contains a fixed
point (Proposition 3.10). We now focus on the fixed point Iµ, which in the presenta-
tion (3.19) is identified to the origin cr,sp,q = 0. Let M = (cr,sp,q)(p,q)∈Mµ be its ideal. The

claim will follows if we can prove that dimM/M2 = 2n. From the equations (2.17)
we can see two useful things. Let (h, k) ∈Mµ, (r, s) 6∈Mµ, then

(1) If for all (p, q) ∈Mµ we have (p+ 1, q) 6= (h, k) then cp+1,q
h,k ∈M2, likewise,

(2) If for all (p, q) ∈Mµ, (p, q + 1) 6= (h, k) =⇒ cr,s+1
h,k ∈M2.

This in turn yields the congruences
(3.20)
cr+1,s
h,k ≡ cr,sh−1,k (≡ 0 if h = 0) mod M2, cr,s+1

h,k ≡ cr,sh,k−1 (≡ 0 if k = 0) mod M2

To be able to exhibit a basis of M/M2, let B be the set of points (f, g) ∈ N2 −Mµ

for which the distance of (f, g) to Mµ is one, as pictured below

Here the lattice Z2 ⊂ R2 is the standard one, i.e. the unit length is one. For each
(h, k) ∈Mµ (the index k is on the horizontal axis), one can define two points of B, one
(f, k) on the vertical line (−, q), the other (p, g) on the horizontal line (p,−). In turn,
this define a set with 2n elements viz. {((h, k), (f, k)), ((h, k), (h, g)), (h, k) ∈Mµ}.

Taking into account conguences 1) and 2) leads to the following result:

Lemma 3.12. For any (h, k) ∈Mµ and (p, q) ∈ N2 −Mµ, we have either cr,sh,k ∈M2

or one of the congruence cr,sh,g ≡ cf,kh,k, or cr,sh,g ≡ ch,gh,k.

This lemma shows dimM/M2 ≤ 2n, and we know this is sufficient to prove the
smoothness, at least for X = A2. But as seen before this also yields the smoothness
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for any smooth surface.
�

With minor extra efforts we can show directly this set of 2n elements is a basis of
M/M2 (see exercice below) without appealing to the connectedness of Hn.

3.2.2. Curvilinear clusters revisited. Let us return to the open subset Hcurv
n of curvi-

linear clusters, (see Proposition 2.25). Recall we have previously shown that

Z ∈ Hcurv
n ⇐⇒ ∃f, OZ

∼→ k[f ]

When the surface is the affine plane, this can be made more precise. Suppose |Z| =
{p1, · · · , pr} is the support of Z. Recall that locally at pi the cluster Z is drawn on
the germ of a smooth curve Ci. Let us denote τi the tangential direction of Ci at pi.
If the linear form `(x, y) = ax+ by is sufficiently general, then clearly we may assume
that first, the values `(pi) are pairwise distinct, and also that ` 6∈ {τ1, · · · , τr}. Let
π : A2 → A1 be the linear projection π(x, y) = ax+by, then π induces an isomorphism

(3.21) Z ↪→ A2 π−→ {
r∏
i=1

(T − `(pi))
ni = 0} ⊂ A1

is an isomorphism. In particular if OZ = k[X,Y ]/I, then
∏r

i=1(` − `(pi))
ni ∈ I.

Let η be a line transversal to `, i.e. k[X, Y ] = k[η, `]. Then we can write in OZ ,
η =

∑n−1
i=0 ai`

i. Finally this yields

(3.22) I =

(
η − (

n−1∑
i=0

ai`
i) ,

r∏
j=1

(`− `(pi))
ni = `n + b1`

n−1 + · · ·+ bn

)
Let us denote U`,η the subset of Hcurv

n described by (3.22). Viewing the a′is and the
b′js as coordinates on U`,η, then U`,η ∼= A2n, and Hcurv

n =
⋃
`,η U`,η.

We can use these coordinates to refine Theorem 3.6.

Proposition 3.13. The Hilbert scheme Hn defines a crepant resolution of singular-
ities of (A2)(n).

Proof:
Indeed we are going to prove a stronger property, that is

(3.23) KHn ∼ 0

The reason for this enhancement is that (A2)(n) has a trivial dualizing sheaf, i.e. it
is Gorenstein. To check that (3.23) it is tempting to use once more the locus of
curvilinear clusters. Let Ux,y = A2n be the open set as defined above. On this open
set we have the coordinates (a, b) = (a1, · · · , an, b1, · · · , bn), and the universal cluster
reads (3.22)

I =

(
y − (

n−1∑
i=0

aix
i) , P (x) = xn + b1x

n−1 + · · ·+ bn

)
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Using the Viete morphism we can see Ux,y as the quotient An×(An/Sn), with quotient
morphism (a, x1, · · · , xn) 7→ (a, b1, · · · , bn), the b′js being the elementary symmetric
functions in the x′is. An elementary computation shows the Jacobian of this morphism
is the Vandermonde determinant ∆(x) =

∏
i<j(xi − xj). If we perform the wedge

product of the relations

P ′(xi)dxi + db1x
n−1
i + · · ·+ dbn = 0

we obtain db1 ∧ · · · ∧ dbn = ∆(x)dx1 ∧ · · · ∧ dxn. On the other hand, if we change the
coordinates a′is to y′is with yi =

∑n−1
j=0 ajx

j
i , then we see readily that

dy1 ∧ · · · ∧ dyn = ∆(x)da0 ∧ · · · ∧ dan−1 + F

where F means a sum of terms with at least one dxi inside. Putting together these
relations yields

(3.24) da0 ∧ · · · ∧ dan−1 ∧ db1 ∧ · · · ∧ dbn = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn
Let T be a matrix in SL2(k). Working with the frame (`, η) deduced from (x, y)
by means of T , we see the 2n-form dx ∧ dy is unchanged. This show the forms
da0 ∧ · · · ∧ dan−1 ∧ db1 ∧ · · · ∧ dbn glue together and in consequence we get a regular
2n-form without zero on the open set Hcurv

n = ∪`,ηU`,η. Since this open set has a
codimension greater than or equal to 2, this shows KHn ∼ 0 as expected. �

Remark 3.14.

Symplectic structure on Hn: The previous proof gives us more. Namely we can
exhibit explicitly the canonical symplectic structure on Hn, at least on the curvilinear
locus, i.e. on the open subset Ux,y. What is shown by our previous computation is
that

(3.25) η =
∑
j,k

(∑
i

xn+j−k
i

P ′(xi)

)
daj ∧ dbk

is expected to give this symplectic structure (see Theorem 3.7). It is interesting
however to check η is regular on Ux,y. This amounts to check that the functions∑

i
xn+j−k

i

P ′(xi)
belong to k[b1, · · · , bn]. This is a well-known exercise. Namely (Euler’s

formula)

(3.26)
∑
i

xn+j−k
i

P ′(xi)
=

{
0 if k > j + 1
1 if k = j + 1

It is therefore clear that ∧nη = da1 ∧ · · · ∧ dan ∧ db1 ∧ · · · ∧ dbn.
Exercise 3.1. Let (`, η) = (x, y). The universal cluster over Ux,y = A2 is

(3.27) Z = Speck[a0, · · · , an−1, b1, · · · , bn]/(y −
n−1∑
i=0

aix
i , xn +

n−1∑
j=0

bix
n−i)

Identify the polynomial
∑n−1

i=0 aix
i evaluated at Z ∈ Ux,y with a suitable Lagrange interpo-

lation polynomial.
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3.2.3. More on the Geometry of Hn. We are going to prove a result due to Haiman
[29], which provides a striking explicit form of the Hilbert-Chow morphism for the
affine plane. We need some algebra. Throughout k = k is a field of characater-
istic zero. Recall we have a diagonal action of Sn on the polynomial ring R =
k[x1, · · · , xn, y1, · · · , yn], coming from the diagonal action on the affine space A2n, i.e.

σ(xi) = xσ−1(i), σ(yi) = yσ−1(i)

This is a symplectic action, in the sense that the 2-form
∑n

i=1 dxi ∧ dyi is preserved.

The preimage in A2n of the subset (A2)
(n)

2,1n−2 is the union H = ∪i<jHi,j with

Hi,j = {(x, y) ∈ A2n, xi = xj, yi = yj}
the fixed point set of the transposition (i, j).

Previously our interest was the algebra of Sn-invariant polynomials. As Haiman
has pointed out, the space of alternating polynomials also plays a very interesting
role. We set A = k[x1, · · · , xn, y1, · · · , yn]ε, the space of alternating polynomials, i.e.
such that σ(P ) = ε(σ)P . Recall the determinants ∆r = det |xrji | where r runs over
the set of strictly decreasing sequences of non negative integers r1 > r2 > · · · > rn,
form a basis of the space of ordinary alternating polynomials k[x1, · · · , xn]ε. Likewise,
if for any subset M ⊂ N2, we set

(3.28) ∆M(X, Y ) := det |xpj

i y
qj
i |1≤i,j≤n

where M = {(p1, q1), · · · , (pn, qn)}, then it is not difficult to extend the previous
remark. Notice the definition has a sign ambiguity, in fact a different labeling of the
points of M of the elements of M changes ∆M by a sign. We may assume that to fix
this ambiguity, the labeling is fixed.

Lemma 3.15. The polynomials ∆M where M runs over the subsets of N2 with n
elements form a basis of the vector space k[x1, · · · , xn, y1, · · · , yn]ε of alternating poly-
nomials.

Proof:
Let A = 1

n!

∑
σ∈Sn

ε(σ)σ be the projector on k[X1, · · · , Xn, Y1, · · · , Yn]ε. Then

∆M = A(xp11 · · ·xpn
n y

q1
1 · · · yqnn )

showing these polynomials generates k[X1, · · · , Xn, Y1, · · · , Yn]ε. The fact that this
yields a basis is readily seen.

�
We set J = k[x1, · · · , yn]ε. Thus J is a rank one torsion free module over the

coordinate ring k[x1, · · · , yn]Sn = k[(A2)(n)]. For any ∆M it is clear that J ∼→ ∆MJ ⊂
k[x1, · · · , yn]Sn , the latter being an ideal of k[x1, · · · , yn]Sn . Since all rings are without
zero divisors, J is a torsion free module of rank one, but not a projective module. It
is instructive to make a comparison with the classical case, viz. the action of Sn over
k[x1, · · · , xn]. In this case the module of alternating polynomials k[x1, · · · , xn]ε is a
free module of rank one over k[x1, · · · , xn]. The quotient

det |xpj

i |
∆(x1, · · · , xn)
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is the well-known definition of a Schur polynomial.
Before we state the main result, we record some facts about the flatification pro-

cess of J , i.e. the process that makes J locally free of rank one (section 1.4). The
construction works over an arbitrary integral scheme X. Let Sym•(J ) be the sym-
metric algebra of the module J . This graded algebra need not be integral. For this
reason we replace it by its image S in Sym•(J )⊗A K. Therefore S = ⊕n

k=0Sk is an
integral graded OA2)(n)-algebra generated by its elements of degree one viz. J . The

graded part Sk ⊂ k[x1, · · · , yn] is the submodule generated by (k[x1, · · · , yn]ε)k. We
set PJ := Proj(S). This scheme is equipped with a canonical (projective) morphism
π : PJ → X, and also with a canonical line bundle O(1). The scheme (PJ , π) enjoys
a universal property (proposition 1.23).

After this preparation, the expected result is:

Theorem 3.16. We have Hn = Proj(S), furthermore there is a canonical identi-
fication between the Hilbert-Chow morphism ϕ : Hn → (A2)(n) and the morphism
π : Proj(S) → (A2)(n). In other words the Hilbert-Chow morphism identifies Hn with
the blow-up of (A2)(n) with center the subscheme defined by the ideal J 2.

Proof:
Thanks to the the universal property of Proposition 1.4, the proof amounts to first
check that ϕ∗(J )/(tors) is a locally free module of rank one on the Hilbert scheme
Hn. As a consequence, we will get a canonical factorization of ϕ through the blow-up

Proj(Sym•(J )/(tors)) = Proj(S)

Then we shall prove that the induced morphism Hn → Proj(S) is an isomorphism.
Recall that J is the module over O(A2)(n) generated by the skew-symmetric polyno-

mials ∆M(X,Y ) where ∆ runs over all subsets of N2 with cardinal n. The polynomial
∆M is only a regular function on (A2)n, not on (A2)(n). However a product ∆M1∆M2

of two such functions becomes a rational function (resp a regular function) on the
symmetric product (A2)(n). Likewise a quotient

∆M1

∆M2

=
∆M1∆M2

∆2
M2

is a rational function on (A2)(n).
To check that ϕ∗(J )/(tors) is locally free of rank one, it suffices to test this on

each open subset Uµ of Hn. Recall these special open subsets form a covering of Hn

(Proposition 3.2.1, iii)). Our goal will be achieved if we can prove that for any choice
of M then ϕ∗(∆M) ∈ OUµ∆µ. It is easy to see that the function ϕ∗(∆M

∆µ
), which is

a rational function on Hn, is regular on the complementary open set U∗µ := Uµ − E .
Indeed if I ∈ U∗µ with ϕ(I) =

∑n
i=1(xi, yi) is a reduced 0-cycle, then

ϕ∗(
∆M

∆µ

)(I) =
∆M

∆µ

(
n∑
i=1

(pi, qi)) =
∆M ((x1, y1, · · · , (xn, yn))
∆µ ((x1, y1), · · · , (xn, yn))
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makes sense, i.e. yields a regular function since the denominator is nonzero. It is
nonzero due to the hypothesis, i.e. that the monomials xpjyqj with

∆µ = {(h1, k1), · · · , (hn, kn)}
form a basis of k[X,Y ]/I = kn, therefore

∆µ((x1, y1), · · · , (xn, yn)) = det |xhj

i y
kj

i | 6= 0

The next step is to extend this function as a regular function on the whole of Uµ. Let
us record the identities (2.17) making sense in k[X,Y ]/I, with I as before:

xriy
s
i =

n∑
j=1

cr,shj ,kj
x
hj

i y
kj

i

Making the choice (r, s) ∈M = {(p1, q1), · · · , (pn, qn)}, we get the matrix identity

(3.29) |xpj

i y
qj
i | = |cpl,ql

hi,ki
|.|xhj

i y
kj

i |
Taking the determinant of both members, we get an identity of rational functions on
Hn

(3.30) ϕ∗(
∆M

∆µ

) = det |cpj ,qj
hi,ki

|

But the right hand side is regular on the whole of Uµ (see 3.19), thus we have fµ,M :=
∆M

∆µ
∈ OUµ , showing that ϕ∗(∆M) = fM,µϕ

∗(∆µ) in ϕ∗(J )/(tors). The first point is

then completely proved.
Let ϕ : Hn −→ Proj(S) be the factorization of ϕ obtained in the previous step.

We are going to prove that ϕ is a closed immersion. To this end it suffices to check
that the restriction Uµ ↪→ Speck[∆M

∆µ
] is a closed immersion, equivalently the ring

morphism

(3.31) k[
∆M

∆µ

] −→ OUµ = k[cp,qhi,ki
]

is surjective (see (3.19)). For any (p, q) 6∈ Mµ, and (hi, ki) ∈ Mµ, set M = (Mµ −
(hi, ki)) ∪ (p, q). Then it is easy to see that for this M :

∆M

∆µ

= cp,qhi,ki

therefore the surjectivity is verified. Since both schemes are integral, with a common
open subset, viz. the big cell of Hn, the conclusion follows. �

Remark 3.17.

In [31], [30] Haiman proved that the ideal J 2 ⊂ O(A2)(n) is precisely the ideal of
polynomial functions vanishing on the singular locus, i.e on the complementary of the
big cell. This amounts to check that J 2 =

√
J 2 is a radical ideal. This fact sounds

elementary but needs more work. As a consequence Hn is the blow-up of (A2)(n) with
center the singular locus, a codimension-two subset. This is actually true also for all
smooth surfaces.
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Example 3.1.

This example provides an answer to exercise (1.3). We set n = 2. It is not difficult
to check that J is generated by the pair of skew-polynomials (ξ = X2 − X1, η =
Y2−Y1). It is convenient to work with the new variables x = X1 +X2, y = Y1, Y2, z =
X2 −X1, t = Y2 − Y1. Then O(A2)(2) = k[x, y, ξ2, η2, ξη]. It is also not difficult to find
the relations between these generators which in turn gives the presentation

J = O2
(A2)(2)ξ ⊕O

2
(A2)(2)η/ (Aξ −Bη , Cξ −Bη)

where we set A = ξη, , B = ξ2, , C = η2.
Therefore Sym•(J ) = ⊕∞k=0Symk(J ) is the quotient algebra

(3.32) O2
(A2)(2) [ξ, η]/(Aξ −Bη,Cξ − Aη)

It is not difficult to check that Proj(S) is smooth and irreducible. Indeed this scheme
is covered by two charts isomorphic to the affine space A4. This is not exactly the
presentation of H2 as a blow-up, but Proj(⊕∞k=0Sym2k(J )) is exactly the blow-up of
(A2)(2) along its singular locus A = B = C = 0.

Exercise 3.2. The identification of Hn with Proj(Sym•(J )/(tors)) provides a tautological
invertible sheaf O(1) on Hn ([34]). Show O(1) can be identify with the top exterior power
of the rank n universal bundle E (see 2.27).

The punctual Hilbert scheme Hn of the affine plane enjoys many others interesting
geometric properties. For example one can says something about the geometry of
the universal subscheme Z ⊂ A2 ×Hn. We refer to the papers [29], [30] for precise
statements.

3.2.4. The Hilbert scheme Hn as a Quiver variety. It is interesting to point out a
natural and fruitful relationship between Hn and a certain quiver variety, the sub-
ject of Brion’s lectures ([10], see quivers with relations). The strategy to build the
scheme Hn was to consider the space of finite-dimensional quotients of the vector
space k[X, Y ], viz. ϕ : k[X, Y ] −→ V , i.e. an infinite-dimensional Grassmann variety,
and to add constraints that force the quotient vector space V to be a quotient algebra,
equivalently the kernel I to be an ideal. These constraints can be summarized as

(1) I is stable under the multiplication by X and Y ,
(2) The vector e = ϕ(1) is cyclic, meaning the images XpY q(e) form a generating

system of V .

Therefore we can see the quotient algebra (together with the quotient morphism) as a
collection of a pair of commuting linear operators U, V : kn → kn, the multiplication
by X or Y , and the choice of a cyclic vector e ∈ kn. In this dictionary, isomorphic
algebras correspond to equivalent collections, where

(3.33) (u, v, e) ∼ (u′, v′, e′) ⇐⇒ ∃P ∈ GLn(k), u
′ = PuP−1, v′ = PvP−1, e′ = Pe

We recognize the points of the representation variety of a quiver with two vertices,
one arrow and two loops, i.e.the eight figure, and dimension vector v = (1, n). We
must add the defining relation UV − V U = 0 [10],[24].
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U

V

e

Quiver description of Hn

The condition that e is a cyclic vector is a stability condition in the sense explained
in [24]. With the choice of θ = (−n, 1), then θ.v = 0, and the θ-stability of a
representation means that e is cyclic vector. Therefore the punctual Hilbert scheme
Hn can be identified with the quotient variety M/GLn(k) where

(3.34) M = {(U, V, e) ∈ Mn(k)
2 × kn, UV = V U, e cyclic}

where GLn(k) acts by simultaneous conjugation (U, V, e) 7→ (TUT−1, TV T−1, T e).
Note the easy observation:

Lemma 3.18. The action of GLn(k) on M is free.

Proof:
Assume T ∈ GLn(k) fixes (u, V, e). Then the kernel of T − 1 contains e, and is stable
by U and V . Therefore ker(T − 1) = kn, thus T = 1.

�
This is the point of view of Nakajima [47], it relies on ideas originated from gauge

theory, see also Ginzburg’s notes [24]. One should notice that many structural results
about Hn can be proved within this framework, for example, smoothness. It is an in-
structive exercise to describe the Hilbert-Chow morphism in term of the simultaneous
eigenvalues of the commuting matrices U, V [24]. It is straightforward to extend this
description to Hn(Ar) (r ≥ 2). We set R = kn. To make R a k[X1, · · · , Xr]-module
is the same as to give a linear map

Ω = ⊕r
i=1kXi −→ Hom(R,R)

We can identify Ω with a cotangent space of the affine space at the origin, therefore
we can understand this linear map as a map

(3.35) Φ : R −→ Ω∗ ⊗R = Hom(Ω, R)

If Bi denotes the operator f 7→ Φ(f)(dxi) then we must add to this construction the
commutativity condition [Bi, Bj] = 0. The map Φ2 = (1 ⊗ Φ)Φ : R −→ (Ω∗)⊗2 ⊗ R
is a sum of a symmetric piece with an skew-symmetric piece Φ ∧ Φ. Clearly the
commutativity condition amounts to Φ ∧ Φ = 0. To get a representation space of
the Hilbert scheme we must add to this picture a vector e : k → R. As before the
condition that e is a cyclic vector is equivalent to a stability condition.
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4. The G-Hilbert scheme

In this section our purpose is to revisit the punctual Hilbert scheme of a scheme
X, when X has an additional structure. Our main choice is to add a finite group
action on X. The first subsection is a recollection of standard facts of representation
theory of finite groups. In subsection two, the G-Hilbert scheme will be defined, here
G stands for a finite group. In the last subsection we will discuss briefly how the
G-Hilbert scheme is a cornerstone of the McKay correspondence.

Throughout this section, schemes are defined over a field k = k of characteristic
zero?. One may even assume that k = C. Let us fix a finite group G, of order n = |G|.
If G acts on a scheme X, the action will be denoted (g, x) 7→ gx. The stabilizer of
x ∈ X is Gx = {g ∈ G, gx = x}. We shall say the point x, or the G-orbit Gx is
free (or regular) if Gx = 1. If the action of G is faithful, then the set of free points
denoted Xreg is open and non empty. Thus Xreg/G parameterizes the free orbits.

4.1. Definition and construction of the G-Hilbert scheme.

4.1.1. Glossary of representation theory of finite groups. For background on repre-
sentation theory of finite groups, we refer to [57]. I start by recording some notations
and results useful for the treatment of the G-Hilbert scheme.

Let Irrep(G) be the set of irreducible representations, namely

Irrep(G) = {V1 = k, · · · , VN}
If V is a representation? of G, i.e. a left k[G]-module, χV stands for the character of
V . The degree of V , is dV = dimV = χV (1). The character of Vi is χi, and di =
χi(1) = dimVi. The characters group, or representations group, is R(G) = ⊕N

i=1Zχi.
If we are given two representations V,W , then HomG(V,W ) denoted the vector space
of intertwinning linear operators, i.e. those commuting with the G-action. We set
V G for the subspace of invariant vectors. We have

(4.1) dim HomG(V,W ) =
1

|G|
∑
g∈G

χV (g)χW (g)

The right-hand side defines the standard hermitian scalar product (χV , χW ). This
definition extends to the space R(G) ⊗ C. In this way the χ′is form an orthonormal
basis of R(G)⊗ C.

The notation RegG stands for regular representation. It is a classical fact that
RegG = ⊕N

i=1V
⊕di
i . Let V be any representation of G. Since G is reductive, V splits

as a direct sum of irreducible sub-representations. Another way to express this semi-
simplicity property is to write V as the direct sum of its isotypic summands. This
can be written in a canonical form

(4.2) V =
N⊕
i=1

HomG(Vi, V )⊗ Vi

?One needs the complete reductibility of the group algebra
?of finite dimension
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The map from the righthand side to V is (fi ⊗ yi)i 7→
∑N

i=1 fi(xi).
We need to extend the isotypic decomposition to a global setting i.e. to locally

free G-sheaves. Let the group G acts trivially on X. A coherent OX-module F is a
G-sheaf if we are given a group morphism G → AutOX

(F). When X = SpecR, and

F = F̃ , then this means that G acts R-linearly on F . The decomposition (4.2) can
be extended as follows:

Lemma 4.1. There is a canonical decomposition of a given G-sheaf F as direct sum
of its isotypic components

(4.3)
N⊕
i=1

Fi ⊗ Vi
∼−→ F

where Fi = HomOX ,G(Vi,F) is the sheaf on G-linear maps Vi ⊗OX → F .

Proof:
The map (4.3) from the right hand side to F is the same as in (4.2). To check this
is an isomorphism it suffices to argue fibrewise, but then this reduces to the previous
result.

�
Suppose now that F is locally free. It is well-known, and easy to check that the

rank of the fiber Fx⊗k(x) is locally constant, hence constant if X is connected ([45]).
We can say more in presence of a G-action. Indeed at every point x ∈ X, we can see
the vector space Fx ⊗ k(x) as a representation of G. The type of this representation,
i.e. its isomorphism class, is given in the representation ring by (4.3)

(4.4) Fx ⊗ k(x) =
N∑
i=1

dim(Fi ⊗ k(x))[Vi]

This yields the easy result:

Proposition 4.2. Let F be a G-sheaf on connected scheme X, where G acts trivially.
Let us assume that F is locally free. Then the representation of G on the fiber Fx⊗k(x)
is constant, i.e. does not depend of x.

Proof:
This follows readily from the isotypic decomposition 4.3. Indeed the fact that F is
locally free implies that for any i, the sheaf Fi = HomOX ,G(Vi,F) is alos locally free.
This is easy to check. Therefore the rank of Fi must be constant since X is connected.
The result follows. �

For the sequel we will need the following elementary result about induction. Let
H and K be two subgroups of the group G, and let W a representation of H. We
are interested in the subspace IndGH(W )K of K-fixed vectors in IndGH(W ). A very
particular case of the Mackey restriction theorem is:

Lemma 4.3. We have IndGH(W )K =
⊕

s∈H\G/KW
H∩sKs−1

where s runs over the

double classes modulo (H,K).

�
- 69 -



Summer school - Grenoble, June 16 - July 12, 2008

4.1.2. The G-Hilbert scheme. We keep the previous assumptions, in particular we
assume that X is a connected G-scheme, i.e. endowed with a G-action. Let Z be
an S-point of Hn,X . There is an obvious action of G on X × S, i.e. trivial on the
factor S. Then the subscheme g.Z ⊂ X × S is clearly a G-cluster. Therefore we
get a G-action on the functor of points of the scheme Hn,X which translates into a
G-action on Hn,X itself. At the level of closed points, this action is the obvious one
Z 7→ gZ. This defines a G-action on the universal cluster Z ⊂ X × Hn,X coming
from the product action of G on X ×Hn,X . Consider the cartesian square

(4.5) ZG //

ϕ

��

X ×Hn,X

p2

��
HG
n,X

// Hn,X

This defines ZG := Z ×X×Hn,X
Hn,X = Z ∩ (X ×HG

n,X) as the universal family of G-
invariant clusters. We want to focus on very specific G-invariant clusters, essentially
those which are limits of regular G-orbits.

Let HG
n,X be the fixed point subscheme (1.8). The group G clearly acts on the

cluster ZG as explained before (4.5), therefore the bundle E = p∗(OZ) over HG
n,X

is a G-bundle. Proposition 4.2 says that the representation type of G on the fibers
of this bundle is constant on each connected component of HG

n,X . Our preferred
representation is the regular representation. From now we drop the subscript n, since
it is implicitly understood as n = |G|.

Therefore a natural definition of the G-Hilbert scheme is as follows:

Definition 4.4. The G-Hilbert scheme, denoted G − HX , is the union of all con-
nected components

⋃
α(H

G
n,X)α of HG

n,X , such that when Z runs over (HG
n,X)α then

the representation of G in OZ is the regular representation. The points of G −HX

are called G-clusters.

The choice of the regular representation is natural since the representation that
comes from a reduced G-cluster is the regular representation. To get some control
about the representation provided by a G-invariant cluster Z ∈ G−Hn,X , notice the
elementary fact:

Lemma 4.5. Let Z be a G-cluster. The support |Z| is a G-orbit.

Proof:
Clearly |Z| must be a G-invariant subset, therefore a union of G-orbits. This yields a
splitting Z = tjZj into disjoint G-subschemes. For any G-cluster the invariant ring
OG
Z contains the constants, thus dimOG

Z ≥ 1. Since OZ is the regular representation,
then dimOG

Z = 1. This forces the support of Z to be a single G-orbit. �
From now on by a G-cluster we mean a G-invariant subscheme such that the rep-

resentation afforded by OZ is the regular representation. The G-Hilbert scheme of X
is therefore the scheme which parametrizes the G-clusters. The universal G-cluster
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ZG is simply deduced by base change from Z, see the diagram (4.5). The picture is

(4.6) ZG � � //

))RRRRRRRRRRRRRRRR X ×G−HX

p2
��

G−HX

As defined it is not clear whether the G-Hilbert scheme is smooth and even irre-
ducible, see for example [43]. In some important cases, smooth surfaces for instance,
see below, the G-Hilbert scheme will be smooth, but not necessarily irreducible.

Let x ∈ |Z|, with stabilizer H = Gx. It is readily seen that not only as representa-
tion, but as closed subscheme

OZ = IndGH(OZ,x)

the induced representation (subscheme) of OZ,x from H to G. Let x ∈ X be a point
with Gx = 1, and G-orbit Gx = {x1 = x, · · · , xn}. Then a reduced cluster Z with
support a free orbit Gx is a G-cluster. We see the reduced G-clusters correspond
bijectively with the regular (or free) G-orbits, those of lenght n. Precisely:

Lemma 4.6. The regular G-clusters are the points of an open subset of G − HX

naturally isomorphic to Xreg/G. In other words the G-cluster Zreg := {(x, z) ∈
X ×Xreg/G, x ∈ z} is the universal family of regular G-clusters.

Proof:
This is the equivariant counterpart of Lemma 2.4. The proof will not be reproduced.

�
Thus among the connected components of G−HX there is at least the component

containing the regular orbits, i.e. the closure of Xreg/G, as a consequence G −HX

is not empty. The scheme G − HX need not be irreducible, even connected. This
suggests that a more restrictive definition of the G-Hilbert scheme would be:

Definition 4.7. The reduced, or dynamical ? G-Hilbert scheme X//G is defined as
the closure in G−HX of the set Xred/G of reduced G-clusters ( i.e. regular G-orbits).
Therefore the scheme X//G is reduced and irreducible.

The universal property that leads to the G-Hilbert scheme is somewhat lost by
X//G. However we will see below a different construction of X//G that exhibits
some kind of a universal property.

Remark 4.8.

We wish to add one more remark about G-clusters. Assume Z ⊂ X is a G-cluster
with support |Z| = {x1, · · · , xr}. Denote H = Gx1 the stabilizer of x1, so that
|Z| = Gx1. The finite subscheme Z is a sum Z = tri=1Zi, where |Zi| = {xi}. Clearly
Z1 is an H-cluster

Some additional remarks are added as exercises.

Exercise 4.1. Let U ⊂ X be an open G-invariant subset. Then show that G −HU is an
open subset of G−HX , resp U//G is open in X//G.

? We hope this notation will not be confused with another meaning
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Exercise 4.2. Assume X = X1×X2, where G acts only on X2, and trivially on X1. Prove
that G−HX1×X2

∼= X1 ×G−HX2.

Exercise 4.3. (Induction) Let H be a subgroup of G. Assume H acts on Y . The induced
G-scheme is the quotient IndGH(Y ) = (G × Y )/H, where H acts by h(g, y) = (gh−1, hy).
Show there is a natural isomorphism G−HIndG

H(Y )
∼= H −HY .

4.1.3. The equivariant Hilbert-Chow morphism. Interestingly, the G-Hilbert scheme
is related to the quotient X/G in the same way Hn,X is related to the symmetric
product X(n) by means of the Hilbert-Chow morphism. Consider the universal G-
cluster ZG ⊂ X × G − HX (see (4.6). If we perform the quotient by G of both
members, this yields a closed subscheme ZG/G ⊂ X/G×G−HX .

Lemma 4.9. The projection G−HX yields an isomorphism ZG/G
∼−→ G−HX .

Proof:
The projection factors as ZG → ZG/G→ G−HX . Since the quotient by G commutes
with any base change, the fiber of ZG/G → G −HX at ξ is the quotient of the G-
cluster Zξ by G. But as previously observed, due to the fact that OZξ is the regular
representation, this quotient is Spec(OZξ

)G = Speck. The result follows.
�

As a consequence we get a morphism ϕX : G−HX → X/G such that

(4.7) G−HX

ϕX

%%JJJJJJJJJ

ZG/G

∼
99ssssssssss
p1 // X/G

commutes. It is not difficult to see the morphism ϕX if restricted to the open subset
of regular G-clusters is the previously observed isomorphism onto the subset Xreg/G
of regular G-orbit. The same remarks holds for the reduced G-Hilbert scheme.

Definition 4.10. We call the morphism ϕX : G − HX −→ X/G the equivariant
Hilbert-Chow morphism.

This morphism is closely related to the ordinary Hilbert-Chow morphism Hn,X →
X(n). Indeed we can define a morphism but in a set-theoretic sense, X/G→ X(n), by
Gx ∈ X/G 7→ (

∑
g∈G gx). We can defined it in a schematic sense in the following way.

Consider the morphism X → Xn → X(n), where the first morphism is x 7→ (gx)g∈G.
This morphism clearly factors through X/G. This leads to a commutative diagram,
where the arrows are those previously defined

(4.8) Hn,X

ϕn,X // X(n)

G−HX

OO

ϕX // X/G

OO

Therefore the equivariant Hilbert-Chow morphism is in some sense the ”restriction”
of the ordinary Hilbert-Chow morphism.
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Assume that X is smooth. The construction shows

(4.9) ϕX : G−HX −→ X/G

is an isomorphism above the open subset whose points are the regular G-orbits. This
is an open subset of the smooth part of X/G. If by chance G − HX is a smooth
irreducible scheme, then it defines a resolution of the singularities of X/G. The
McKay correspondance speculates about this fact and their consequences. We shall
comment on this hope in the section below.

4.1.4. The action of Sn on An. The Viete map which is the heart of classical sym-
metric polynomials, is very instructive. Let us consider the natural action of Sn on
An = Cn (or any algebraically closed field of charateristic zero). In this case we
are going to check that the Sn-Hilbert scheme of An is the same as the quotient
An/Sn ∼= An. This remark works more generally for G a finite subgroup of GLn(C)
generated by a set of pseudo-reflections. The key point is the fact that An/G is
smooth, see Sheppard-Todd-Chevalley’s theorem 1.15.

Theorem 4.11. Let G be a finite group acting on a smooth (connected) variety X
such that the quotient X/G is smooth (we don’t assume the action is free). Then the
equivariant Hilbert-Chow morphism is an isomorphism, i.e.

(4.10) G−HAn
∼−→ An/G

More generally if X/G is smooth then G−HX = X/G.

Proof:
Let π : X → Y = X/G the quotient morphism. The key point under this smoothness
assumption, is the fact that π∗(OX) is a locally free module over OX/G. This follows
from a general flatness property, see for example Eisenbud [16], corollary 18.17, for
details: let A be a regular local ring, and let A → B be a morphism between local
rings, with B Cohen-Macaulay, and finite as A-module; then B is A-flat.

With this very strong property in mind, the isotypic factors of the locally free sheaf
π∗(OX) are also locally free (4.3), namely

(4.11) π∗(OX) =
⊕

Vi∈Irrep(G)

Ei ⊗ Vi

for Ei a locally free module over OX/G of rank ni = deg Vi. Consider the graph of
π : X → X/G, that is

(4.12) X ↪→ X ×X/G

Our previous remark yields that X can be seen as a G-cluster over X/G. This is clear
since π is flat, and the fiber of π at any point y ∈ X/G is the spectrum of π∗(OX)y⊗k
which affords the regular representation⊕

i

((Ei)y ⊗ k)⊗ Vi

Now our claim amounts to check that this G-cluster is universal. Let Z ⊂ X ×
S

p2−→ S be a G-cluster. The morphism p : Z → S is flat of rank n = |G|, let
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p = Z/G → S denote the factorization. Then p is an isomorphism, see Lemma 4.9.
Thus the morphism Z → X → X/G induced by the second projection factors through
Z/G = S. This yields a commutative diagram

Z
ı//

p

$$I
IIIIIIIII S ×X/G X

π′

��

// X

π

��
S = Z/G

f // X/G

The morphism ı : Z → S ×X/G X is a G-equivariant morphism between two G-
clusters with a common basis S = X/G. It is not difficult to see that ı is indeed an
isomorphism. It suffices to check this fibrewise. But then we have a G-linear map
between two copies of the regular representation, i.e. k[G] → k[G], such that 1 7→ 1.
Clearly this must be an isomorphism. This completes the proof. �

4.1.5. Another view on the G-Hilbert scheme. What the G-Hilbert scheme really does
is to flatify the coherent sheaf π∗(Ox) over Y = X/G. As shown in theorem 4.11,
if π∗(OX) is a flat i.e locally free OY -module, then G −HX = Y . In section 1.4 we
described a way to make a torsion free coherent sheaf flat by mean of a Grassmann
blow-up. Let us denote Eχ the torsion free sheaves defined by the isotypic component
of π∗(OX) (4.3). Let for χ 6= 1, ρχ : Gχ → X/G the Grassmann blow-up that makes
Eχ locally free (theorem 1.4).

Proposition 4.12. The Hilbert-Chow morphism ϕ : G −HX → X/G restricted to
X//G factors through Gχ. Moreover the induced morphism X//G −→

∏
X/GGχ is

an isomorphism (the right-hand side means the fiber product of the Gχ’s).

Proof:
Recall the commutative diagram (4.7)

(4.13) ZG � � //

p

&&MMMMMMMMMMMM

q

&&
X//G×X/G X

p2 //

p1

��

X

π

��
X//G

ϕX // X/G

Since π is affine the natural morphism ψ : ϕ∗X(π∗(OX) −→ p1∗(OX//G×X/GX) is an
isomorphism. This isomorphism together with the surjection OX//G×X/GX → OZG

yield a surjective map

(4.14) ϕ∗(π∗(OX)) −→ q∗(OZG
) =

⊕
χ

(q∗(OZG
))χ

This morphism is clearly G-equivariant, thus for any irreducible character χ we get a
surjective morphism between isotypic factors

(4.15) ϕ∗X(Eχ) −→ q∗(OZG
)
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Notice the right-hand side is locally free of rank degχ, that makes it the quotient
of ϕ∗X(Eχ) by its torsion sub-sheaf. Therefore, from the universal property of the
Grassmann blow-up, we get a factorization of ϕ through Gχ. This in turn yields a

canonical morphism to the fiber product X̃/G of the G′χs

(4.16) X//G −→ X̃/G =
∏
X/G

Gχ

To check this morphism is an isomorphism we must construct the inverse morphism.

Let ρ : X̃/G → X/G be the canonical morphism. We know the quotient sheaf A =

ρ∗(π∗(OX))/(tors) is locally free, then a locally free algebra over X̃/G. Clearly there

is an induced G-action on A. Let SpecA → ˜X/G be the corresponding scheme, affine

over X̃/G. It is not difficult to see there is a G-equivariant morphism f : SpecA → X
that fits into a commutative diagram

(4.17) SpecA

r
��

f // X

π

��

X̃/G
ρ // X/G

The morphism r is flat, therefore we can see SpecA as a G-cluster with base X̃/G.

We get in this way a morphism X̃/G→ G−HX which clearly factors though X//G.
Clearly this yields the inverse of ρ. �

4.1.6. The punctual Hilbert scheme of A2 revisited. The Hilbert scheme Hn classifies
the finite subscheme of A2 of length n. Remarkably it yields a crepant resolution
of (A2)(n) = A2/Sn. It is also natural to ask if the equivariant Hilbert scheme,
eventually its dynamical component (A2)n//Sn leads to the same result i.e whether
Hn

∼= (A2)n//Sn. An indication in that direction is the fact (3.16) that Hn is nothing
but the Grassmann blow-up of (A2)(n) associated to a very particular isotypic factor
of π∗(O(A2)n) namely the factor corresponding to the signature χ = ε. It is a nice

and difficult result proved by Haiman that for (A2)(n) this result holds true [30]. This
result essentially solves the n! conjecture (see also Gordon’s notes at this school [26]).
Namely:

Theorem 4.13. There is a natural isomorphism

(4.18) (A2)n//Sn
∼−→ Hn

given by Σ ∈ (A2)n//Sn 7→ Z = Σ/Sn−1.

For the complete proof we refer to Haiman [31], [32] Theorem 2, and the references
therein. The map that realizes the isomorphism is easy to find. Let Z be the universal
Sn-cluster with base (A2)n//Sn. It has a natural Sn-action. The quotient? Z/Sn−1 is

?Sn−1 is the subgroup leaving fixed the last coordinate
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flat and finite of degree n over (A2)n//Sn, therefore yields a map

(4.19) (A2)n//Sn −→ Hn

On the other hand let Xn be the reduced fiber product, viz.

(4.20) Xn

��

// (A2)n

��
Hn]

ϕ // (A2)n/Sn

Suppose the reduced scheme Xn is flat over Hn, then finite flat of degree n!. The
universal property of (A2)n//Sn then yields a map

(4.21) Hn → (A2)n//Sn

One of the main results in Haiman’s approach of the n! conjecture is the fact that the
claim holds true, and as a consequence (4.19) and (4.21) both maps are isomorphism
inverse each other.

5. ADE singularities

In this section we are going to comment, with or sometimes, without proof, on the
structure of the minimal resolution of singular points of ADE type i.e. the rational
double points (Example 1.1), with particular attention to the exceptional fiber.

5.1. Reminder of Intersection theory on surfaces. Our setting is the following.
Let X be a normal surface, in most cases affine. There is no loss of generality to
assume X has only one singular point, say p. Therefore X − p is smooth. Recall that
a desingularization of X means the following data:

(5.1) X̃
π−→ X

where X̃ is a smooth surface, and π is a proper morphism which is an isomorphism
over X − p. It is known that the scheme theoretic fiber π−1(p) is purely of dimension
one, and connected (see [34]). Thus we can identify π−1(p) to a dimension one cycle

(5.2) π−1(p) =
r∑
i=1

niEi

the E ′
is being the irreducible reduced components, and ni ∈ N>0. This fiber is

called the execptional fiber. A key technical tool to study the exceptional fiber is the
intersection pairing. Notice that any component E = Ei is a complete curve, so for
any coherent sheaf F on E, the Euler characteristic

(5.3) χE(F) = dimH0(E,F)− dimH1(E,F)

is defined.
Recall that by an integral (or prime) divisor on X̃ we mean an integral curve.

The group Div(X̃) is the group freely generated by the prime divisors. There is a
distinguished subgroup Divπ =

⊕r
i=1 ZEi called the subgroup of vertical divisors.

A prime divisor E 6∈ {E1, · · · , Er} is horizontal. Let x ∈ X be a (closed) point.
- 76 -



Summer school - Grenoble, June 16 - July 12, 2008

Since OX̃,x is a regular two-dimensional local ring, therefore a UFD, if f, g ∈ Mx

are without a common prime factor, then dimOX̃,x/(f, g) < ∞. This follows from
the fact that the only prime ideal containing f and g is Mx. If f and g are the
local equation of two positive divisors D and E through x, then this dimension is the
intersection multiplicity of D and E at x, commonly denoted (D,E)x. If this is the
case for all intersection points x ∈ |D| ∩ |E|, then the sum over all common points

(5.4) D.E =
∑

x∈|D|∩|E|

(D.E)x ∈ N

is the the usual definition of the intersection number of D and E. Clearly D.E = E.D
whenever one of the members makes sense. The formula (5.4) does make sense if at
somme point the intersection D∩E is not tranversal, i.e. if D and E have a common
component. For this reason, and also due to the fact that X̃ is not necessarily
complete, we must give another definition of the intersection multiplicity, and also
restrict its domain of validity. If E is a complete curve, a purely of dimension one
scheme, not necessarily irreducible, or even reduced, one knows how define the degree
of a line bundle L ([34]):

Definition 5.1. The degree of L is

(5.5) deg(L) = χ(OE)− χ(L−1)

Let E = ∪ri=1Ei the irreducible components of E, and let ni denote the multiplicity
of E along Ei, that is the length of the local ring of E at the generic point of Ei.
Then one can shows that

(5.6) deg(L) =
∑
i

ni degEi
(L ⊗OEi

)

Theorem 5.2. There is a unique bilinear pairing Divπ(X̃)×Div(X̃) → Z, (E,D) 7→
E.D, such that

• i) E.D depends only on the linear equivalence class of D, i.e. of O(D). namely
one has (E.D) = degE(O(D)).

• ii) If E,D are both vertical then

(5.7) (E.D) = χ(OE) + χ(OD)− χ(OE+D)

in particular (E.D) = (D.E). If furthermore E,D are non negative, then

(5.8) (E.D) = χ(OE ⊗OX
OD)− χ(T or1

OS
(OE,OD))

• iii) If E and D are non negative, and intersect at only finitely many points,
then (E.D) =

∑
x∈E∩D dimk OX,x/(fx, gx), where fx (resp. gx) denotes a local

equation of E (resp. D) at x.

Let us return to a desingularization π : X̃ → X of a normal surface X. We want to
study the exceptional fiber over a singular point p ∈ X. There is no loss of generality
to assume X = SpecR, where R is a normal two dimensional algebra, and that p is
the only singular point. Let M ⊂ R be the corresponding maximal ideal, and let
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K denote the fraction field of R. The first information about the exceptional fiber
π−1(p) is:

Proposition 5.3. The exceptional fiber π−1(p) is connected.

Proof:
The morphism π is an isomorphism over X − p, thus π∗(OX̃) is finitely a sub R-
algebra of K, finitely generated as R-module, therefore must be equal to R. Then
the connectedness theorem of Zariski yields the result (see [34]). �

Let E1, · · · , Er denote the irreducible components of π−1(p). As a 1-cycle we can
write π−1(p) =

∑
i niEi. It is very convenient to picture the exceptional fiber as a

graph (the dual graph), with vertices the E ′
is, and if i 6= j, there are (Ei.Ej) edges

between Ei and Ej. This graph is then connected. The following is very useful result
due to Du Val and Mumford.

Theorem 5.4. The symmetric matrix ‖(Ei.Ej)‖ is negative definite.

Proof:
Let us choice 0 6= f ∈ M. We can see f as a regular function on X̃. Its divisor is of
the form

(5.9) Div(f) =
∑
i

aiEi +D

where ai ∈ N, and D is a positive vertical divisor. Since f ∈ M, then f vanishes
identically on each Ei, therefore ai > 0. Since π is an isomorphism over X − p, then
we can identify D with the divisor of f computed in X. A well known theorem due to
Krull says that any minimal prime ideal of R among those containing f is of height
1. Furthermore such an ideal contained in M must exist. This means that D must
intersect one of the E ′

is, i.e. that (
∑

iEi).D > 0. Intersecting the equality (5.9) with
Ei yields

(5.10)
∑
j

aj(Ei.Ej) + (Ei.D) = 0 =⇒
∑
j

aj(Ei.Ej) ≤ 0

the inequality necessary strict for some index i. Set cij = (Ei.Ej), and si =
∑

j ajcij.
Useful is the Coxeter trick: for any x1, · · · , xr ∈ R, we have the identity

(5.11)
∑
i,j

cijxixj =
∑
k

skx
2
k

ak
− 1

2

∑
i,k

aiakcik

(
xi
ai
− xk
ak

)2

Notice si ≤ 0, and even strictly negative for at least one index. Thus the left hand side
of (5.11) is ≤ 0. We must check it is indeed stricly negative unless x1 = · · · = xr = 0.
Suppose it is zero. If for example sk < 0, then this forces to have xk = 0. Furthermore
for all i with cik 6= 0, that is if the vertices Ek and Ei are connected by at leat an
edge, we must have xi = 0. The connectedness of the dual graph implies readily that
all for all j, xj = 0. This proves the Mumford result. �

Notice a byproduct of the theorem is that for all i, (Ei)
2 < 0. Let Z =

∑r
i=1 aiEi

be a positive cycle (ai > 0) such that (Z,Ei) ≤ 0 (∀i). Such a cycle exists by the
construction above, but better [1]:
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Lemma 5.5. Among the positive cycles Z =
∑r

i=1 aiEi, ai > 0∀i, there exists a
smallest one. This uniquely defined cycle is called the fundamental cycle.

Proof:
Suppose Z1 =

∑
i aiEi, Z2 =

∑
i biEi are two such cycles. We set ci = Inf(ai, bi) > 0,

then Z3 =
∑

i ciEi = Inf(Z1, Z2). For a given j, if for example cj = aj ≤ bj, we have

(5.12) (Z3, Ej) = aj(Ej)
2 +

∑
i6=j

ci(Ei, Ej) ≤ aj(Ej)
2 +

∑
i6=j

ai(Ei, Ej) = (Z1, Ej) ≤ 0

The lemma follows easily. �

Definition 5.6. The desingularization π : X̃ → X is minimal if π don’t factors

through a smooth surface, i.e. in any factorization π : X̃
h→ Y → X, with Y smooth,

then h is an isomorphism.

Recall that a component Ei of the exceptional fiber is of the first kind if Ei ∼= P1

and E2
i = −1. It is a fundamental result (see [34]) that such curve can be contracted

smoothly, i.e. there is factorization (a contraction) π : X̃
ν→ Y → X with Y smooth,

ν(Ei) = pi ∈ Y a point, and ν : X̃ − Ei
∼→ Y − pi. Thus the desingularization

π : X̃ → X is minimal if and only if the irreducible components of the exceptional
fiber are not of the first kind.

Proposition 5.7. Assume the desingularization π : X̃ → X crepant, then it is
minimal.

Proof:
Let E be an irreducible component of the exceptional fiber. The assumption amounts
to KX̃ ⊗OE

∼= OE. The adjunction formula yields KE = OE(E), which in turn gives

degKE = (E2) = χ(KE)− χ(OE) = −2χ(OE)

It is known that χ(OE) = 1 − pa(E) where pa(E) = pg(E) + δ(E) is the arithmetic
genus. Thus we get

2pa(E)− 2 = (E2) < 0

which implies that pa(E) = 0. Thus pg(E) = δ(E) = 0 giving the fact that E is a
smooth rational curve with self intersection −2. This show the resolution is minimal.

�
We can now define the special but very workable class of rational singularities of

normal surfaces ([1]).

Definition 5.8. Let X = Spec(R) be a normal affine surface, say with only one
singular point. Let π : X̃ → X be a minimal resolution of the singularities of X.
We say X has rational singularities if R1π∗(OX̃) = 0 (the first higher direct image is
zero).

It is a theorem of Artin ([1], theorem 3) that the singularity of X is rational if and
only if χ(Z) = 1, if furthermore Z2 = −2 then the singular point is called a rational
double point (loc.cit cor 3). A simple and well-known combinatorial lemma about
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negative definite integral matrix leads quickly to the classification of the dual graph
attached to a rational double point.

Lemma 5.9. Let A = (aij) be n × n integral symmetric matrix with aii = −2 for
all i = 1, · · · , n, and aij ≥ 0 if i 6= j. We assume also that A is irreducible, which
means there is no non trivial partition [1, n] = I t J with aij = 0 for all i ∈ I, j ∈ J .
Then there is a Dynkin graph of A,D,E type (i.e a simply laced root system) with
incidence matrix C such that?

(5.13) A = C − 2In

Proof:
See [7]

�
It is a nice fact that, at least in characteristic zero, the rational double point are

classified by means of the associated dual graph [44].

Theorem 5.10. Let R be the local ring of a normal surface at a rational double point
defined over an algebraically closed field of characteristic zero. Then R̂ is isomorphic
to one of the five type of singularities of the list 1.1.

Such a singular point is in turn classified by the dual graph of its minimal resolution,
and formally isomorphic to a quotient singularity A2/G for a binary polyhedral group
with same ADE label.

Example 5.1. Resolution of the An−1 point

There are many ways to resolve the rational double points [48], [53]. Here we
work by hand the An case. We first resolve the A1 singularity. Let us blow up the
x-y-z space at x = z = 0. Namely, we replace the x-y-z space by a union of two
spaces with coordinates (x, y, z̃) and (x̃, y, z) which are mapped to the x-y-z space by
(x, y, z) = (x, y, xz̃) = (zx̃, y, z). The x-y-z̃ and the x̃-y-z spaces are glued by z̃x̃ = 1
and z = xz̃. The equation xy = z2 of the A1 singularity looks as x(y − xz̃2) = 0 in
the x-y-z̃ space and z(x̃y− z) = 0 in the x̃-y-z space. If we ignore the piece described
by x = 0 and z = 0 which is mapped to the y-axis x = z = 0, we obtain a union of
two smooth surfaces

U1 = {y = xz̃2} ∪ U2 = {x̃y = z}
The surfaces U1 and U2 are coordinatized by (x, z̃) and (x̃, y) respectively and are
glued together by z̃x̃ = 1 and xz̃ = x̃y. Thus, we obtain a smooth surface. This
surface is mapped onto the original singular by (x, y, z) = (x, xz̃2, xz̃) on U1 and
(x, y, z) = (x̃2y, y, x̃y) on U2. The inverse image of the singular point x = y = z = 0
is described by x = 0 in U1 and by y = 0 in U2. It is coordinatized by z̃ and x̃ which
are related by z̃x̃ = 1, and thus is a projective line P1.

If we started with higher An−1 singularity, the equation xy = zn looks as y = xn−1z̃n

in the x-y-z̃ space and x̃y = zn−1 in the x̃-y-z space (ignoring the trivial piece x = 0
and z = 0). It is smooth in the x-y-z̃ plane but the part is the x̃-y-z has the An−2

?−A is the Cartan matrix of the root system
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singularity at x̃ = y = z = 0. Thus, the surface is not yet resolved but n has
decreased by one. We can further decrease n− 1 by one by blowing up the x̃-z plane
at x̃ = z = 0. Iterating this process, we can finally resolve the singular An−1 surface.
It is straightforward to see that the resolved space is covered by n planes U1, U2, U3,
..., Un with coordinates (x1, z1) = (x, z̃), (x2 = x̃, z2), (x3, z3), ..., (xn, zn = y) which
are mapped to the singular An−1 surface by

(5.14) Ui 3 (xi, zi) 7−→


x = xiiz

i−1
i

y = xn−ii zn+1−i
i

z = xizi

The planes Ui are glued together by zixi+1 = 1 and xizi = xi+1zi+1. The map onto
the singular An−1 surface is isomorphic except at the inverse image of the singular
point x = y = z = 0. The inverse image consists of n− 1 P1s C1, C2, ..., Cn−1 where
Ci is the locus of xi = 0 in Ui and zi+1 = 0 in Ui+1, and is coordinatized by zi and
xi+1 that are related by zixi+1 = 1. Ci and Cj do not intersect unless j = i ± 1,
and Ci−1 and Ci intersect transversely at xi = zi = 0. It is also possible to show
that the self-intersection of Ci is −2. Thus, we see that the intersection matrix of the
components C1, . . . , Cn−1 is the opposite of the An−1 Cartan matrix.

A more aesthetic way to produce this resolution is by mean of a toric methods.
The resolution procedure is encoded in a fan. For n = 6 it looks like:

fan for A2/Z6

One can work out likewise the other singular points, and produce the dual graph
of the exceptional curve in the resolved space.

Dynkin(A− D − E ) diagrams

An

Dn

E6
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E7

E8

5.1.1. Reflexive modules on a rational singularity. Throughout this subsection R
means the completion of the local ring at a rational singular point of some surface.
By M we denote the maximal ideal, and by k the residue field. The ring R is normal
and U = SpecR− {M} is a regular one dimensional scheme. The closed points of U
are the height one prime ideals of R. The category we are interested in is a suitable
full subcategory of R-Mod. Here is the definition of the objects?.

Definition 5.11. Let M be a finitely generated module. If the canonical map M →
M∗∗ = Hom(M,Hom(M,R)) is an isomorphism, then we say M is reflexive.

A free module of finite rank is reflexive, a dual N∗ is reflexive. There is a wellknown
and easy criterion to check a module M is reflexive [16].

Proposition 5.12. The conditions below are equivalent:

(1) The module M is reflexive,
(2) depth(M) = 2 i.e M is a maximal Cohen-Macaulay module,
(3) M is torsion free and M = ∩℘M℘ where the intersection runs over the height

one prime ideals,
(4) there exists a linear map ϕ : Rp → Rq with M = ker(ϕ).

Proof:
We limit ourselves to the last assertion. Assume M is reflexive. Let Rq → Rp →
M∗ → 0 be a presentation of the dual module. Then applying the right exact functor
HomR(−, R) we get an exact sequence

0 →M = M∗∗ → Rp → Rq

as expected. Conversely letM be a kernelM = ker(L = Rp → Rq). ThenM is torsion
free so M ⊂ M∗∗ ⊂ L∗∗ = L. The module M∗∗/M is torsion and a submodule of
L/M ⊂ Rq. Then M = M∗∗. �

The definition extends immediatly on an arbitrary scheme. On a two dimensional
regular ring (or regular scheme) a reflexive module (sheaf) is locally free. This is a
direct consequence of the Auslander-Buchbaum formula [16].

On the other hand if R is the local ring at a two dimensional isolated singularity
it is not difficult to identify the category of reflexive R-modules with the category of
vector bundles on the open curve U = SpecR− {M}:

?In this definition R is any commutative ring
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Lemma 5.13. Let F be a vector bundle on U (locally free module of finite rank),
then the R-module M = Γ(U, F ) is reflexive. The functor F 7→ Γ(U, F ) yields an
equivalence between the category of vector bundles on U , and the category of reflexive
R-modules. The inverse functor is M 7→ M̃|U .

Proof:
Let ı : U ↪→ SpecR be the injection. It is known that we can find for a given vector
bundle (or coherent sheaf) F on U a finitely generated R-module N with F = ı∗(Ñ).
Then Γ(U, F ) = Γ(U, Ñ). It suffices to show that Γ(U, Ñ) = N∗∗ the double dual.
The module N is locally free in codimension one, because F is, so we may take N∗∗

in place of N , and assume N is reflexive. Since depth(N) = 2 (5.12) the restriction
map

N −→ Γ(U, Ñ)

is bijective. This proves the lemma. �
Assume now that R is the complete local ring at the singular point of A2/G, where

G ⊂ SU(2) as in 1.1. Here we assume k = C, but all work more generally over
an algebraically closed field of characteristic zero, and G ⊂ SL(2, k). In this setting

there is another description of the previous category. We set S = ÔA2,0, so R = SG.

Proposition 5.14. The map V 7→ (S ⊗ V )G induces a one to one correspondance
between reflexive R-modules and representations of G. In particular indecomposable
reflexives modules are in bijection with the irreps of G.

Proof:
Let M be a reflexive R-module (5.12). We can see M as the kernel of ϕ : Rp → Rq.
We extend this map to a S-linear map

ϕ : Sp −→ Sq

The entries of ϕ are in R, so N = ker(Sp → Sq) is a G-submodule of Sp. It is
also a reflexive S-module. But S is regular so the homological dimension of N is
dimR − depth(N) = 0, so N is free. The characteristic of the base field is zero so it
is easy to see that as (S,G)-module

(5.15) N = S ⊗k V (V = N ⊗S k)

where V = N ⊗S k, and finally M = NG. It is not difficult to check that conversely
for any G-module V , the R-module M = (S ⊗k V )G is reflexive. Indeed if π :
SpecS − {0, 0} → U denotes the etale cover with base the open curve U , then M =
Γ(U, π∗(O ⊗ V )G), which in turn yields the result. The fact that the correspondance
is one to one follows from the remark that we can recover V from M = (S ⊗ V )G.
Indeed it is esay to check that S ⊗ V ∼= (M ⊗R S)∗∗.

�

Corollary 5.15. Under the same assumptions as before there is only a finite number
of indecomposable reflexive R-modules.

In [3], [4], Auslander and Reiten proved a much more difficult result, valid for all
rational double point over any algebraically closed field k, even when there is no
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reference to a finite group. This should be the case in char = 2, 3, 5. The McKay
quiver must be replaced by the AR quiver (Auslander-reiten quiver)

Theorem 5.16. Let R be a normal two dimensional noetherian complete local ring,
defining a rational double point. Then the category of reflexive modules is of finite
representation type (the number of indecomposable reflexive modules is finite). The
corresponding AR quiver is an A-D-E quiver (once the vertex corresponding to R
removed).

�

Example 5.2. A Z/2Z quotient singularity in characteristic two

To motivate the fact that in characteristic two the McKay graph (quiver) collapses
and must be replaced by the AR-quiver, not defined in these notes, we can use the
Mumford example. In this example k is an algebraically closed field of characteristic
two, the group G = Z/2Z acts non linearly on S = k[[u, v]] according to

(5.16) σ(u) =
u

1 + u
, σ(v) =

v

1 + v

It is not difficult to check that the invariant subring is R = k[[x, y, z]] where

(5.17) x =
u2

1/u
, y =

v2

1 + v
, z = uy + vx

The ring if invariants is an hypersurface algebra

(5.18) R = k[[X,Y, Z]]/(Z2 +XY Z +XY (X + Y ))

Therefore SpecR is is normal with an isolated singularity at M = (x, y, z). The
corresponding singularity is a D4 rational double point [1]. From the remark above
one can find exactly three indecomposables reflexive non free modules of rank one
showing the difference with the characteristic zero case. Viewing S as a R-module
defines a rank two indecomposable reflexive R-module.

On the other hand, and in the case of an arbitrary two dimensional rational sin-
gularity, it is important to figure out some relationship between on one hand the
reflexives modules on R, and on other hand suitable sheaves lying on a minimal res-
olution X̃ → X = SpecR. The result is a key step in the geometric proof of the
McKay correspondance by Gonzalez-Sprinberg and Verdier [25]. Obviously when R
is an invariant ring of an ADE group, and in characteristic zero, the result is sim-
ply reminiscent to the fact to be proved below that the G-Hilbert scheme yields the
minimal resolution. Even when the group interpretation collapses, such a relation-
ship remains, the minimal resolution is the universal scheme that makes the strict
transform of the reflexive R-modules flat.

The result below, see for example [20], makes a bridge between the reflexive modules
over R and a special class of vector bundles on the minimal resolution. This is a key
step to understand the geometry behind the McKay remark. Obviously with the
knowledge that the minimal resolution is given by the G-Hilbert scheme, some part
of the theorem are tautological.
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Theorem 5.17. Let R be a two-dimensional (complete) normal noetherian local ring
with a rational singularity?. Let π : X̃ → X = Spec(R) be the minimal resolution.
Let M be a reflexive R-module, then its strict transform (1.4) M ] = π∗(M)/(tors)
enjoys the following properties:

(1) M ] is locally free and generated by its global sections,
(2) One has Γ(X̃,M ]) = M and H1(X̃,M ]∗) = 0.

The map M 7→M ] yields an equivalence between the category of reflexive R-modules
and the category of special vector bundles on X̃, i.e the vector bundles for which 1)
and 2) holds true.

Proof:
Throughout M will denote either the module or the associated sheaf on SpecR. If
we write M as a quotient of the free module Rn, then π∗(M) is a quotient of On

X̃
.

Then we get a surjective map On
X̃
→M ]. Since R2π∗ = 0, an obvious exact sequence,

taking into account of the fact that H1(X̃,OX̃) = 0, yields R1(M ]) = 0. It is easy

to check that Rπ∗(M
]) = M . Indeed let N denote the R-module Γ(X̃,M ]). It is

finitely generated since π is proper. Pulling back the map π∗(M) →M ], yields a map
π∗π

∗(M) → π∗(M
]), which together with the canonical map M → π∗π∗(M), gives us

a map

(5.19) M → N

This map is obviously the identity over the open set U . Now we have the commutative
diagram

(5.20) M //

��

n

��
Γ(U,M)

= // Γ(U,N)

The left vertical map is bijective since M is Cohen-Macaulay, and the right vertical
map is into since N is torsion free. Therefore M = N .

Now we are going to prove 1). That M ] is generated by its global sections is clear
from the contruction. We now check M ] is locally free, equivalently reflexive, together
the last part of 2). This part of the proof uses a bit of homological algebra, the local
and global duality theorem as exposed by Hartshorne [35]. To check the stalk of M ]

at some point x ∈ X̃ is Cohen-Macaulay amounts to see the vanishing property of
local cohomology groups Hj

x(M
]
x) = 0 for j < 2. The local duality theorem applied

to a finitely generated Oc-module F gives a canonical isomorphism?

(5.21) Hj
x(F )

∼−→ HomOx(Ext2−j(F,Oc), I)

where I denotes the injective hull of k = k(x). So we must check that for all x ∈ X̃
we have Extk(M ]

x,Oc) = 0 for k > 0. This is equivalent to the vanishing of the
sheaves Extk(M ],OX̃) for k > 0 equivalently the complex RHom(M ],OX̃) on X̃

?the complete local ring at a singular point of a normal surface
?X̃ is regular so the local dualizing complex at x is OX̃,x
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has only cohomology in degree zero. But M ] is torsion free, so is locally free in
codimension one, which in turn said that the higher cohomology of our complex is
concentrated in finitely many points of the exceptional fiber. To check the vanishing
proiperty is therefore equivalent to the vanishing in degree k > 0 of the cohomology
of Rπ∗(RHom(M ],OX̃)). But now the global duality theorem [35] yields an isomor-
phism

(5.22) π∗(RHom(M ],OX̃))
∼−→ RHomOX

(Rπ∗(M
]), ωX))

where ωX denote the dualizing sheaf of X. We known that Rπ∗(M]) = M . This
is a Cohen-Macaulay module so the previous local-duality argument shows that the
complexe on the right has only cohomology in degree zero. The spectral sequence in
degree p+ q = 1

(5.23) Ep,q
2 = Rpπ∗(Extq(M ],OX̃)) =⇒ Ext1(M,ωR) = 0

degenerates and yields what we want

(5.24) π∗(Ext1(M ],OX̃)) = R1π∗(M
]) = 0

The last thing to check is the fact that a special vector bundle on X̃ comes from
a reflexive module. This is clear because if F is such vector bundle, the candidate is
M = Γ(X̃, F ) = Rπ∗(F ). From 1) there is a surjective map

π∗(M) −→ F

with kernel the torsion subsheaf T of π∗(M), therefore F = M ]. �

5.1.2. Matrix factorizations. There are indeed two results in the theorem 5.16. The
first says that for isolated singularities in any dimension d ≥ 2, the full subcategory of
maximal Cohen-Macaulay modules, i.e the Cohen-Macaulay modules with dimension
d, [16] has almost-split (A-R) sequences [3]. For rational double points this category
has finite representation type, a companion result to Gabriel’s theorem [10]. As a
byproduct of the proof, the minimal number of generators of a reflexive module is
twice its rank.

The category of reflexive modules (when d = 2), or maximal Cohen-Macaulay
when d ≥ 2, MCM(R/(w)), is enhanced if we think it in the stable sense. In the
stable category the set of morphisms Hom(M,N) is the quotient of HomR(M,N)
be the submodule consisting of linear maps which factors through a free module.
This rather abstract category has a rich structure. It is a Krull-Schmidt category
and is in a natural way a triangulated category. It is nice fact that we can interpret
this triangulated category as the homotopy category of the Z/2Z-graded differential
category of matrix factorizations of the defining equation of the singularity, the so-
called super potential [56].

The definition goes as follows. Let w(x1, · · · , xr) ∈ R = k[x1, · · · , xr] be a poly-
nomial, the so-called (super)potential in the physics litterature. Even if in most
applications w(x) is choosen homogeneous, or quasi-homogeneous, it is not necessary
to impose such a restriction in this introduction . Throughout 1n denotes the n × n
identity matrix.
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Definition 5.18. By a rank n matrix factorization (MF in short) of w, we mean the
data of a pair of n× n square matrices P,Q with polynomial entries, such that

PQ = QP = w(x).1n(5.25)

Alternatively we can see 5.25 as a diagram with two arrows between free R-modules
of rank n, with the periodicity condition, source of ϕ equal target of ψ, and ψϕ =
ϕψ = w.1.

(M) M0
∼= Rn ϕ−→M1

∼= Rn ψ−→M0(5.26)

Indeed put M0 = M1 = Rn, and take for ϕ and ψ the linear mapping with respective
matrix P and Q. In the sequel we will use 5.25 and 5.26 interchangeably, and will
denote by a bold letter M such MF. Notice at this stage there no need to work with
a polynomial ring. So the properties listed below are equally valid with an arbitrary
commutative ring R as ground ring, and w ∈ R a non zero divisor. Another classical
choice for deformation theoretic reasons is R = k[[x1, · · · , xr]] a power series ring.

A MF M is trivial if either ϕ or ψ is an isomorphism, and said reduced if P (0) =
Q(0) = 0. Troughout a MF is non trivial and reduced. Notice that 5.25 yields
detP detQ = w(x)n, so the linear mapping ϕ and ψ are injective.

It is important to see a MF M as a Z/2Z-graded module M = M0 ⊕M1, endowed
with as an odd operator Q which is a square root of w, precisely

Q =

(
0 ψ
ϕ 0

)
: M → M (Q2 = w.1)(5.27)

We hope there is no trouble to denote by the same bold letter M a MF, and the same
object viewed as a R-graded module equipped with the odd operator Q. Hereafter
a bold character will always means a graded object. Let us define the morphisms
between two MF M and M′.

Definition 5.19. Let M,M′ be two MF of the same potential w ∈ R. A MF-
morphism f = (A,D) : M → M′ is the data of a commutative diagram

M0

ϕ //

A
��

M1

ψ //

D
��

M0

A
��

M ′
0

ϕ′ // M ′
1

ψ′ // M ′
0

where A,D are R-linear maps, i.e given by matrices with polynomials entries. The
MF morphism f is an isomorphism if and only if A and D are.

Said differently an isomorphism (A,D) between the MF M = (P,Q)M′ = (P ′, Q′)
is a simultaneous similarity P ′ = DPA−1, Q′ = AQD−1.

In other hand, and more generally, the module homR(M,M′) of all R-linear map-
ping M → M′ can be seen in a natural manner as a Z/2Z-graded module, i.e a
module with an even (resp. odd) part. The notation hom•

R(M,M′) i.e the dot, will
refer to this graded structure. It is important to notice hom•

R(M,M′) has a richer
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structure, it may be endowed with a Z/2Z-differential graded module struture with
differential the graded bracket

D(ξ) = Q′ξ − (−1)kξQ = [Q, ξ] (k = deg ξ ∈ Z/2Z)(5.28)

An easy check yields D2 = 0. Furthermore hom•
R(M,M) is easily seen to be a

dg-algebra. With this structure in mind, the MF-morphisms as previously defined,
are in this setting the even morphisms annihilated by D, i.e are the even cocycles.
Two MF-morphisms f, g such that f − g = D(h) for some odd morphism h are
said homotopic. For convenience of the reader we include a diggest of homological
algebra. By a dg-module (a module is an R-module) it is meant a Z/2Z-graded
module C = C0⊕C1, together with an odd operator D : C → C with D2 = 0, called
the differential. The (co)homology module H(C) = kerD/ImD is also clearly graded,
thus H(C) = H0(C) ⊕ H1(C). A dg-algebra is a dg-module in the previous sense,
endowed with an even multiplication C⊗C → C, a⊗ b→ ab, such that the following
Leibniz rule holds

D(ab) = D(a)b+ (−1)deg aaD(b)

A dg-morphism f : C → C ′ between dg-modules is an even morphism commuting
with the differentials. A dg-isomorphism is defined accordingly?

With the MF with fixed potential w as objects we can build various categories.
The first one is obtained if we take as morphisms the MF-morphisms as previously
defined. The previous observation showing hom•

R(M,M′) is a dg-module, leads to
the fact that MF(w), the category whose objects are the MF, and with morphisms
between M and M′ the dg-module hom•

R(M,M′), is a Z/2Z-dg-category.
We can perform inside this category another basic contruction. Let M be a MF of

w. We set

M[1] : M1
−ψ−→M0

−ϕ−→M1(5.29)

Clearly M[1] is a MF of w. The functor M → M[1] is the shift (involutive) functor
MF(w) → MF(w). Finally we can also consider morphisms, even or odd, up to
homotopy. Indeed taking cohomology in the graded differential module hom•(M,M′)
yields a graded cohomology module

H•(hom•(M,M′)) = Ext•(M,M′) =
kerD

ImD
= Ext0(M,M′)⊕ Ext1(M,M′)(5.30)

The module Ext0(M,M′) is nothing but the module of MF-morphisms taken up
homotopy, and Ext1(M,M′) = Ext0(M,M′[1]) is the module of odd morphisms up
homotopy. The category we are interested in is described as follows. Let us denote
MFR(w) (or MF(w)) the homotopic category of MF for a fixed potential w, that is
the homotopic category derived from the dg-category MF(w). In this category the
objects are the MF, and the morphisms between M, M′, are the homotopic classes
of even MF-morphisms, i.e the elements of Ext0(M,M′). It is not difficult to check

?In a more abstract setting, there is a concept of dg-category which extends the notion of dg-
algebra. A dg-category means an R-linear category such that the morphisms set hom(a, b) are
endowed with a dg-module structure, the composition map hom(a, b)⊗hom(b, c) → hom(a, c) being
compatible in an obvious sense with these dg-structures.
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that MF(w) can be endowed with a structure of triangulated category (see exercice
below).

Exercise 5.1. Let f : M → M′ be a morphism. Define the cone of f as the graded object
C(f) = M[1]⊕M′ together with the following operators

(5.31) Φ =
(
ψ 0
ϕ ϕ′

)
, Ψ =

(
ϕ 0
A ψ′

)
where f =

(
A 0
0 D

)
. A distinguished triangle in MFR(w) is one isomorphic to M

f→

M′ → C(f) → M[1]. Check we get in this way a triangulated structure on MFR(w).

Exercise 5.2. In this exercise we define the tensor product in the category MFR(w +w′).
Suppose the potential splits as a sum w + w′, (w,w′ ∈ R). If we are given two MF M, M′

with respective potential w, w′, then show the graded tensor product M ⊗R M′ yields a
MF with potential w + w′. As graded module (M ⊗ M′)0 = M0 ⊗ M ′

0 ⊕ M1 ⊗ M ′
1 and

(M⊗M′)1 = M0 ⊗M ′
1 ⊕M1 ⊗M ′

0. Then we set

Φ =
(

1⊗ ϕ′ ψ ⊗ 1
ϕ⊗ 1 −1⊗ ψ′

)
, Ψ =

(
1⊗ ψ′ ψ ⊗ 1
ϕ⊗ 1 −1⊗ ϕ′

)
(5.32)

Check ΦΨ = ΨΦ = (w + w′)1.

The matrix factorizations of w are relevant to our interest in maximal Cohen-
Macaulay modules. Indeed we have the following result, where as indicated before
MCMR/(w) denotes the stable category of maximal Cohen-Macaulay on the hyper-
surface (isolated) singularity R/(w). For any M, we set Cok(M) = coker(ϕ). Clearly
wCok(M) = 0, so we can see Cok(M) as a R/(w)-module.

Theorem 5.20. We have an equivalence of triangulated categories

(5.33) Cok : MFR(w)
∼−→ MCMR/(w)

Proof:
The exact sequence 0 →M0

ϕ→M1 → Cok(M) → 0 shows that the depth of Cok(M)
is the same as dimR/(w), so it is maximal Cohen-Macaulay. It is an easy exercise
to check that Cok(−) defines a functor MFR(w) −→ MCMR/(w). This functor
is essentially surjective. Indeed, let E be a maximal Cohen-Macaulay module over
R/(w). Then as R-module it must have homological dimension one (Auslander-

Buchsbaum formula). If 0 → M0
ϕ→ M1 → E → 0 is a free resolution of E over

R, then due to the fact that w annihilates E, it is easy to check that we can find
ψ : M1 →M0 making (ϕ, ψ) a matrix factorization.

�
Here we give one example of a matrix factorization, which in turn yields a presen-

tation of a reflexive module. For simplicity we limit ourselves to the An−1 case, i.e.
G = Z/nZ, see [25] for more examples. Then w(x, y, z) = zn − xy. The rank two
indecomposable matrix factorizations of w are the following

(5.34) w.12 =

(
zk x
y zn−k

)(
zn−k −x
−y zk

)
(k = 1, · · · , n− 1)
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Exercise 5.3. Complete the proof of theorem 5.20, that is prove that Cok induces a group
isomorphism HomMFR(w)

∼−→ HomMCM(R/(w).

Exercise 5.4. Express the matrix factorization of example 5.34 as a tensor product of two
rank one factorizations of zn and xy respectively.

5.2. ADE world and the McKay correspondence. In this section we come back
to our preferred setting, that is X = A2 the affine plane over an algebraically closed
field k of characteristic zero, and G is a finite subgroup of SL2(k), classically known
as a binary polyedral group. The quotient surface A2/G is normal with an isolated
singularity at the origin, which from the point of view of singularity theory is a rational
double point. We previously saw there is a minimal resolution of singularities, which
is unique up isomorphism. The type of this singularity i.e the dual graph of the
exceptional fiber in the minimal resolution is the same as the ADE type of G (see
(example 1.1).

5.2.1. The G-Hilbert scheme of an A-D-E group. From the point of view of the equi-
variant Hilbert scheme, we have a very nice result. It says the G-Hilbert scheme
yields precisely the minimal desingularization. The McKay correspondance, at some
level, amounts to identify the dual graph of exceptional fiber with the corresponding
A-D-E Dynkin graph in group theoretical terms. The first result is an observation of
J. McKay that this graph can be built with the group G alone, without the knowledge
of the resolution. Here is a way to build a graph or a quiver starting with G, the so
called McKay quiver. Let us denote V the representation of G which follows from
the inclusion G ⊂ SU(2), and set α the character of V . Let {1 = χ0, · · · , χr} be the
ordered list of irreducible characters of G.

Definition 5.21. The McKay graph (resp. quiver) associated to G is the non oriented
(oriented) graph where

• the vertices are the non trivial irreducible characters of G,
• The number of edges (oriented edges) between χi and χj is aij = (χi, αχj),

that is the number of times χi is contained in αχj.

The extended McKay graph (resp. quiver) is the one obtained by adding the trivial
representation.

The observation of McKay is

Proposition 5.22. The McKay graph is an A-D-E graph. More precisely the inci-
dence matrix of the McKay graph is 2I − C with C the Cartan matrix of an A-D-E
root system. Likewise the extended McKay graphs (quivers) correspond to the extended
(affine) Ã− D̃ − Ẽ root systems.

Proof:
The result follows readily from a more general group theoretical result as suggested
by T. Springer:

Lemma 5.23. Let G be a finite group with center Z(G). Let G → GL(V ) be a
faithful representation with character α = α i.e with real values, and n = dimV .
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Assume that V Z(G) = 0. Let {ξ0, · · · , ξr} be the ordered set of irreductible characters
of G. Define a (r + 1)× (r + 1) integral matrix by

(5.35) aij = (αχi, χj)− nδi,j

The integral matrix |aij| is symmetric semi-definite negative with kernel the line span
by the vector (χ0(1), · · · , χr(1)) i.e the regular representation.

Proof:
To begin with notice from the definition of the scalar product on R(G)⊗ C that

(αχi, χj) = (χi, αj) = (χi, αχj) = (αχj, χi)

so the matrix (5.27) is symmetric. Furthermore aij ≥ 0 if i 6= j. To evaluate the
diagonal entries aii = (αχi, χi)− n the key point is the fact that

(αχi, χi) = 0 (i = 0, · · · , r)
To check this, we restrict all the representations to Z(G). So assume G acts on Vi
(the representation space of χi) by the one dimensional character µi (Schur’s lemma),
and Z(G) acts on V through the characters λ1, · · · , λn. Note that by our hypothesis
λk 6= 1. Then as Z(G) module V ⊗ Vi is the sum of χi(1) copies of V , the action on
V being twisted by µi. If Vi is contained in V ⊗ Vi then we must have µiλk = µi for
some k, so λk = 1, contrary to our hypothesis. Thus aii = −n.

The kernel is the set of vectors ξ =
∑

j njχj ∈ R(G) ⊗ C such that
∑

j aijnj = 0
for all i. Equivalently

((α− n1)χi, ξ) = (χi, (α− n1)ξ) = 0

so (α − n1)ξ = 0. The representation of G in V is faithful so α(s) < n when s 6= 1.
This implies ξ(s) = 0, so ξ is a multiple of the regular representation. The proof is
complete.

�

G = Z/(n+ 1)Z

It is easy to validate this picture. The irreps of G = Z/(n + 1)Z are labelled as
(χ0 = 1, χ1, · · · , χn) where χ(1) = e2iπ/n+1. Then V = χ1 ⊕ χn (notation of lemma
5.23). Clearly if i 6= j, aij = 1 ⇐⇒ |i− j| = 1, 0 otherwise.

Ẽ6 quiver

To get the Dynkin graph from the McKay quiver one has to replace • // •oo by
an unoriented arrow • • .
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It is important to interpret the G-Hilbert scheme as a representation variety of the
McKay quiver, construction analogous to the ALE space construction of Kronheimer,
see [39]. This is a simple extension of the previous description of Hn as a representa-
tion variety. With the notations of subsection 3.2.4 a G-cluster can be obtained from
a G-linear map

(5.36) Φ : R −→ T ⊗R

where TΩ∗ is the representation dual to the standard representation of G ⊂ SL(Ω)?,
and R stands for the regular representation. We have R = ⊕r

i=0Ri ⊗ Vi the action of
G being on Vi, and dimRi = degχi = dimVi. Now the representation T ⊗ R splits
as T ⊗R =

⊕
iRi ⊗ T ⊗ Vi. Thus HomG(R, T ⊗R) =

(5.37)
⊕
k,j

HomG(Rk ⊗ Vk, Rj ⊗ T ⊗ Vj) =
⊕
k,j

Homk(Rk, Rj)⊗ HomG(Vk, T ⊗ Vj)

=
⊕
k,j

Homk(Rk, Rj)
ak,j

where ak,j equal the number of times Vk is contained in T ⊗Vj. This show a G-cluster
in the affine space Ω = A2 is the same thing as a class of representations of the McKay
quiver with the relation Φ ∧ Φ = 0. The gauge group is

∏r
i=0 GL(Ri).

The McKay quiver has arrows in both directions, we see it is the double Q of the
corresponding quiver Dynkin quiver Q, i.e. the Dynkin graph together with the choice
of an orientation. The equation Φ ∧ Φ = 0 is encoded in the defining relation of the
path algebra Π(Q). The dimension vector is δ = (δi = dimVi). The last thing to
do is to translate the fact that the distinguished vector given by the trivial character
generates R as a stability condition. We refer to Ito-Nakajima [39] or to Ginzburg’s
notes ([24], 4.6 ; Thm 4.6.2) for a complete discussion.

Theorem 5.24. For a group G of ADE type, the G-Hilbert scheme G−HA2 is smooth
irreducible so coincides with HG(A2), and the equivariant Hilbert-Chow morphism
ϕ : G −HA2 −→ A2/G is the minimal desingularization. Moreover this is a crepant
desingularization.

Proof:
The G-Hilbert scheme is the fixed point subscheme for the natural action of G on
Hn. Since Hn (n = |G|) is smooth, it follows that G − HA2 is smooth, but perhaps
not connected. It is not clear in this set-up to see if the fixed point set is connected
or not. The fact that this is indeed the case is more transparent in the quiver varietiy
language where more powerful results are available ([24], Thm 4.6.2). Then the
equivariant Hilbert-Chow map

(5.38) ϕ : G−HA2 −→ A2/G

is birational, therefore yields a desingularisation of the normal surface A2/G. To
check this is a minimal desingularization, it suffices to check it is crepant, i.e. that
the canonical bundel of G −HA2 is trivial. To see why this is sufficient, one has to

?Indeed Ω is self-dual.
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use the adjonction formula [34]. If E ⊂ S := G −HA2 is a smooth rational curve,
this formula says that

(5.39) KE
∼= (KS)|E ⊗NE/S

where NE/S denote the normal bundle. There fore E2 = deg(NE/S) = degKE = −2.
Thus E cannot be an exceptional curve of the first kind, i.e. contracted to a smooth
point.

Thus the rest of the proof amounts to check that the canonical class of S = G−HA2

is trivial. Luchily we already know that HA2 has a symplectic structure. Therefore
it suffices that this structure induces also a symplectic structure on the fixed point
subset of G. The symplectic structure of HA2 comes from the obvious 2-form on
A2, viz. dx ∧ dy. This form is G-invariant since G is a sugroup of SL2(k). As a
consequence the symplectic 2-form

∑
i dxi ∧ dyi on A2 is G-invariant, meaning that

G acts symplectically on An. The conclusion will follows from the easy lemma:

Lemma 5.25. Let Z be a smooth variety equipped with a non degenerate 2-form ω.
Let G be a finite group that acts on Z, such that for all g ∈ G, we have g∗(ω) = ω. Let
Y = ZG the loci of fixed points (a smooth subvariety). Then ω|Y is non degenerate.

Proof:
This is a purely algebraic lemma. Namely let V be a symplectic vector space, with
symplectic form ω. Suppose G is a finite subgroup of the symplectic group of V . Then
the restriction of ω to V G is non degenerate. Let VG be the subspace of coinvariants,
i.e. span by the gv − v (g ∈ G, v ∈ V ). Then V = V G ⊕ VG, is an orthogonal
direct sum. This is obvious. Therefore if v ∈ V G is such that ω(v, V G) = 0, then
ω(v, V ) = 0, and v = 0. The lemma is proved, and also the theorem. �

The very interesting problem is at this stage to identify the exceptional locus in
terms of G-clusters. As said before, this is a McKay type problem. Such a description,
case by case has been made by Ito-Nakamura [40]. Here is an example to made more
explicit the formal point of view used in our presentation.

Example 5.3. (The singularity An)

In this example G = Z/nZ. Let ζ be a primitive n-root of 1. The group G acts on
the affine plane according to the rule (x, y) 7→ (ζx, ζ−1y). Then the ring of invariant
polynomials is k[x, y]G = k[xn, yn, xy] ∼= k[u, v, w]/(uv − wn). The following general
lemma will help us.

Lemma 5.26. Let G be a finite subgroup of GLn(k). Then G acts in obvious way
on R = k[x1, · · · , xn] i.e. An. Let Z be any point of G−HAn with support the origin
(0, · · · , 0). Then IZ contains all invariant polynomials P ∈ RG, with P (0) = 0.

Proof:
As G-module R/IZ is the regular representation. Therefore it contains only one copy
of the trivial representation, i.e. (R/IZ)G = k.1 the constants. If P ∈ RG with
P (0) = 0, then its residue class P ∈ R/IZ must be zero.

�
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The lemme shows that I must contain the ideal RG ⊂ R generated by the invariant
polynomials without constant term. The quotient algebra R/RG is called the coin-
variant ring. It is a finitely dimensional algebra. In turn this show that the points
of the G-Hilbert scheme that lie over the origin, i.e. the exceptional fiber, form the
”local” G-Hilbert scheme of the coinvariant algebra.

We now apply this to our example. The coinvariant algebra reduces to

(5.40) k[x, y]/(xn, yn, xy) = (k[x, y]/(xy))/(xn, yn)

This reduces our search of G-clusters with support the origin, to find the G-clusters
of the nodal algebra that contain xn and yn. It is not difficult to check that any
point of the n-Hilbert scheme of the nodal algebra is good, and also is G-invariant.
This follows from the precise description of these ideals Proposition 2.23. Therefore
the exceptional fiber of the Hilbert-Chow map G −HA2 → A2/G is identical to the
n-Hilbert scheme of the nodal algebra. But we have shown that this scheme is exactly
a string of n− 1-smooth rational curves 2.1, therefore it yields the diagram An−1.

�

5.2.2. The geometric McKay correspondance. It is a very interesting problem to un-
derstand the geometry behind McKay’s observation. Many speculations about this
question are collected in the Bourbaki seminar by M. Reid [52]. To give some appetite
to a reader, we state and discuss two answers. To simplify the ideas we assume the
ground field is of characteristic zero, thus the reflexive modules are in one to one
correspondance with the representations of G. The first answer is the following result
due to Gonzalez-Sprinberg and Verdier [25]. If F is a rank n vector bundle on a
scheme, its determinant, or first Chern class is the line bundle c1(F ) = ∧nF .

Theorem 5.27. Let G ⊂ SU2 be an A-D-E group. Let π : X̃ → X = SpecR be
the minimal resolution of the corresponding singularity. For any irreducible character
χ ∈ Irrep(G) there is an irreducible component Ei(χ) ∈ {E1, · · · , Er} characterized
by

(c1(M
]
χ).Ej) =

{
1 if j = i(χ)
0 otherwise

The map χ 7→ i(χ) from Irrep(G) to the set of irreducible components of the
exceptional fiber of π is a one to one, and induces an isomorphism between the McKay
graph and the dual graph of the exceptional fiber.

This result as already said survives for any rational double point and in any charac-
teristic [2], Theorem 1.11, [3]. Since in some cases i.e in characteristic 2,3,5 the quo-
tient singularity set-up collapses, the result involves indecomposable reflexive mod-
ules.

Theorem 5.28. Let R be a complete normal noetherian local ring such that X =
SpecR has a rational double point as singularity at the closed point. Let π : X̃ → X
be the minimal resolution.

- 94 -



Summer school - Grenoble, June 16 - July 12, 2008

(1) The first Chern class c1(M
]) establisches a 1-1 correspondance between iso-

morphism classes of non free indecomposable reflexive R-modules and irre-
ducible components of the exceptional fiber.

(2) The previous map identifies the A-R quiver ([3]) with the A-D-E quiver asso-
ciated to the exceptional divisor.

One way to understand this result at least when X is a quotient singularity A2/G,
i.e char(k) = 0, is to use the fact that the G-Hilbert scheme is the minimal resolution
X̃. Then the universal G-cluster Z ⊂ (A2//G)× A2interpolates between X̃ and A2

(5.41) Z

pyyssssssssss
q

��?
??

??
??

?

A2//G = X̃ A2

We can use this correspondance to define a morphism at the derived category level

(5.42) Rq∗ ◦ p∗ : D(A2//G) −→ DG(A2)

here D(−) means the derived category of complexes of coherent sheaves with bounded
cohomology, a substitute of the K-theory, DG(−) stands for the same objet but with
G-sheaves instead of ordinary sheaves.

The main result of [9] states that this kind of Fourier-Mukai transform is an equiv-
alence of derived categories. From this we can rederive (5.27).

Exercise 5.5. Using the matrix factorization (5.34), perform the Grassmann blow-up of
the corresponding reflexive module, et check in the An case the McKay correspondance.
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