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Simultaneous Sparse Approximation : insights

and algorithms

Alain Rakotomamonjy

Abstract

This paper addresses the problem of simultaneous sparsexapption of signals, given an over-
complete dictionary of elementary functions, with a joipassity profile induced by 4, — ¢, mixed-
norm. Our contributions are essentially two-fold i) makicgnnections between such an approach and
other methods available in the literature and ii) on pravidalgorithms for solving the problem with
different values ofp and ¢. At first, we introduce a simple algorithm for solving the tipik signals
extension of the Basis Pursuit Denoising problem=1 and ¢ = 2). Then, we show that for general
sparsity-inducingl,, — ¢, mixed-norm penalty, this optimization problem is actuadiguivalent to an
automatic relevance determination problem. From thigyhisiwe derive an simple EM-like algorithm
for problems with?; — ¢,<o penalty. For addressing approximation problem with nonves penalty
(p < 1), we propose an iterative reweighted Multiple-Basis Purswe trade the non-convexity of the
problem against several resolutions of the convex muHiglsis pursuit problem. Relations between such
a reweighted algorithm and the Multiple-Sparse Bayesiaarhiag are also highlighted. Experimental
results show how our algorithms behave and how they compamrdated approaches (such as CosAmp)

for solving simultaneous sparse approximation problem.
EDICS. DSP-TFSR, MLR-LEAR

. INTRODUCTION

Since several years now, there has been a lot of interest apatse signal approximation. This large
interest comes from frequent wishes of practitioners taasgnt data in the most parsimonious way.

According to this objective, in signal analysis, one ugualnts to approximate a signal by using a

A. Rakotomamonjy is with the LITIS EA4108, University of Reny France.
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linear combination of elementary functions called a ditdiry. Mathematically, such a problem can be

formulated as the following optimization problem :
min [[c|lp Sts= Pc
C

wheres € RY is the signal vector to be approximatebl,c RV*M is a matrix of unit-norm elementary
functions,c a weight vector ang - ||p the ¢y pseudo-norm that counts the number of non-zero components
in its vector parameter. Solving this problem of finding tiparsest approximation over a dictionaby

is a hard problem, and it is usual to relax the problem in otdenake it more tractable. For instance,
Chen et al.[[l7] have posed the problem as a convex optimizgioblem by replacing thé, pseudo-
norm with a/; norm and proposed the so-called Basis Pursuit algorithree®r algorithms are also
available for solving this sparse approximation probléf][350]. Such a family of algorithms known
as Matching Pursuit is simply based on iterative selectibdictionary elements. Although the original
sparse approximation problem has been relaxed, both BasssiiPand Matching Pursuit algorithms can
be provided with some conditions whereby they are guardrte@roduce the sparsest approximation of
the signal vector [11],149].

A natural extension of sparse approximation problem is tteblpm of finding jointly sparse repre-
sentations of multiple signal vectors. This problem is dBown as simultaneous sparse approximation
and it can be stated as follows. Suppose we have severalsigescribing the same phenomenon, and
each signal is contaminated by noise. We want to find the speapproximation of each signal by using
the same set of elementary functions. Hence, the problemistenin finding the best approximation
of each signal while controlling the number of functionsdlvwed in all the approximations. Such a
situation arises in many different application domainshsas sensor networks signal processingd [35],

neuroelectromagnetic imaging 125][, [40] and source laeaion [36].

A. Problem formalization

Formally, the problem of simultaneous sparse approximaothe following. Suppose that we have

measured. signals{s;}~ , where each signal is of the form
S; = q)CZ' +€

wheres; € RV, & ¢ RV*M s a matrix of unit-norm elementary functions, € R a weighting vector
ande is a noise vector® will be denoted in the sequel as the dictionary matrix. Sweehave several

signals, the overall measurements can be written as :

S=®C+¢ 1)
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with S = [s1 s2 -+ sz] a signal matrix,C = [c; c2 --- cz] and € a noise matrix. Note that in the
sequel, we have adopted the following notations. and c. ; respectively denote théh row and;th
column of matrixC andc; ; is theith element in thejth column of C.

For the simultaneous sparse approximation problem, théigdhen to recover the matriC given
the signal matrixS and the dictionary® under the hypothesis that all signalsshare the same sparsity
profile. This latter hypothesis can also be translated ihto doefficient matrixC having a minimal
number of non-zero rows. In order to measure the number ofzeom rows ofC, a frequent criterion

is the so-calledow-supportor row-diversity measuref a coefficient matrix defined as

rowsupgC) = {i € [1--- M] : ¢; , # 0 for somek}
The row-support ofC tells us which atoms of the dictionary have been used fordimgl the signal
matrix. Hence, if the cardinality of the row-support is laovtkan the dictionary cardinality, it means that

at least one atom of the dictionary has not been used for egizihg the signal matrix. Then, the raiy-

pseudo-norm of a coefficient matrix can be defined as :
ICllrow—0 = [rowsupgC)|
According to this definition, the simultaneous sparse ayipration problem can be stated as
minc %HS — <I’CH%

st. Hc”row—o <T
where || - || is the Frobenius norm and@ a user-defined parameter that controls the sparsity of the

(@)

solution. Note that the problem can also take the differeninf:

mingc HCHrow—O
st. IS — ®Cllp <
For this latter formulation, the problem translates in mmizing the number of non-zero rows in the

®3)

coefficient matrixC while keeping control on the approximation error. Both peots [2) and[(B) are
appealing for their formulation clarity. However, similato the single signal approximation case, solving
these optimization problems are notably intractable beegli,...,—o is a discrete-valued function. Hence,

some relaxed versions of these problems have been proposkd literature.

B. Related works

Two ways of addressing problenis (2) amdl (3) are possibleaxirgy the problem by replacing the
Il |lrow—o function with a more tractable row-diversity measure or Bing some suboptimal algorithms.

We details these two approaches in the sequel.
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A large class of relaxed versions @f: ||,.w—0 proposed in the literature are encompassed into the

following form :
Tpa(C) = lles. Iy

where typicallyp < 1 andq > 1. This novel penalty term can be interpreted as#hguasi-norm of the
sequencq||¢; .||, }i- Note that agp converges td), J, ,(C) provably converges towards,, log(]|c; .||)-
According to this relaxed version of the row-diversity ma@@s most of the algorithms proposed in the

literature try to solve the relaxed problem :
1
min 2 — @C|[F + Ay (C) @

where) is another user-defined parameter that balances the apmtian error and the sparsity-inducing
penalty.J, ,(C). The choice ofp and ¢ results in a compromise between the row-support sparsity an
the convexity of the optimization problem. Indeed, probl@ is known to be convex whep,q > 1
while it is known to produce a row-sparse mat@xif p < 1 (due to the penalty function singularity at
C = 0 [16]).

Several authors have proposed methods for solving prolferfr¢r instance, Cotter et alll [8] developed
an algorithm for solving problenii(4) when< 1 andq = 2, known as M-FOCUSS. Such an algorithm
based on factored gradient descent have been proved torgeresvards a local or global (when= 1)
minimum of problem[(#) if it does not get stuck in a fixed-point

The casep = 1,¢ = 2, named as M-BP for Multiple Basis Pursuit in the following,d special case
that deserves attention. Indeed, it seems to be the mosthatiension of the so-called Lasso problem
[46] or Basis Pursuit Denoisindl[7], since fdr = 1, problem [%) reduced to the Lasso problem. The
key point of this case is that it yields to a convex optimiaatproblem and thus it can benefit from all
properties resulting from convexigigglobal minimum. Malioutov et al[136] have proposed an ailtpon
based on a second-order cone programming formulation feingothe M-BP convex problem which at
the contrary of M-FOCUSS, always converges to the problesballsolution.

Whenp = 1 andq = 1, again we fall within a very particular case that has beedistlby Chen et al.
[6]. In this case, the simultaneous sparse problem can beugésd in L independent problems. In such
a situation, estimations of the true signals are no more guaranteed to have the same spaucile,
thus the problem can hardly be considered as a simultang@usesapproximation problem. However,
in this case, one can use efficient algorithms that solve thiékmown Lassoproblem [46], [12], [18].

Another important piece of work belonging to the framewoflconvex relaxation is the one of Tropp

[48]. In this latter work, Tropp proposed to relax proble), (&) and [#) by replacing|C||, with a
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J1,00(C) penalty. He then analyzed the theoretical properties ofdifierent problem formulations and
provided some conditions under which that convex relaratimduces good solutions.

Very recently, Baraniuk et al[[1] have extended the CosArgwradhm of Needell et al.[139] in
order to address simultaneous sparse approximation ubmgenalty.J,»(C). Besides providing a
computationally efficient approach, they also provide th&oal guarantees on estimation robustness.

In the sequel, we denote the algorithm of Baraniuk et al. aSddAmp.

The approach proposed by Wipf et al.[[54], denoted in the alemgiMultiple-Sparse Bayesian Learning
(M-SBL), for solving the sparse simultaneous approxinrati® somewhat related to the optimization
problem in equation{4) but from a very different perspextiindeed, if we consider that the above
described approaches are equivalent to a MAP-estimatiocedures, then Wipf et al. have explored a
Bayesian model which prior encourages spatrsity. In thiseethmeir approach is related to the relevance
vector machine of Tipping et al[_[47]. Algorithmically thgyoposed an empirical bayesian learning
approach based on Automatic Relevance Determination (ARBg ARD prior over each row they have
introduced is

plei;di) = N(0,d;I) Vi

whered is a vector of non-negative hyperparameters that govermptioe variance of each coefficient
matrix row. Hence, these hyperparamaters aim at catchiagspiarsity profile of the approximation.
Mathematically, the resulting optimization problem is ténimize according tod the following cost

function :

L
Llog %] + ng-Et_lsj (5)
j=1

whereY; = 0?1+ ®D®!, D = diagd) ando? a parameter of the algorithm related to the noise level
presented in the signals to be approximated. The algoriththen based on a likelihood maximization
which is performed through an Expectation-Minimizatiorpagach. Very recently, a very efficient al-
gorithm for solving this problem has been proposed [31]. klsv, the main drawback of this latter
approach is that due to its greedy nature, and as any EM #dlgowhere the objective function is not

convex, the algorithm can be easily stuck in local minima.

The second family of methods for solving the simultaneoa@sspapproximation is to use a suboptimal
forward sequential selection of a dictionary element. Ehalgorithms denoted as S-OMP in the sequel

[51]], are a simple extension of the well-known Matching Ritrechnique to simultaneous approximation.
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While the algorithms are relatively simple, their main actaagye is their efficiency and some theoretical

guarantees about the correctness of the approximation egmdvided [28], [[51L].

Due to the recent interest around compressed sensing, thbemwf works addressing simultaneous
sparse approximation problem have flourished. Many of thesgeers consider exactly sparse signal
recovery which is not the case we are interested in since aenas that the signals we have are naisy.
Nonetheless, they are of great interest since most of theyserp propose theoretically guaranteed recovery
schemes[[38],[[15][114].

C. Our contributions

At the present time, one of the most interesting approactsifoultaneous sparse approximation is
the Bayesian approach introduced by Wipf et ll [54] anchierrimproved by Ji et al[[31] in terms of
speed efficiency. However, in this paper, we depart from ithige and instead consider a (frequentist)
regularized empirical minimization approach. Indeed, iew of the very flourishing literature o#,
minimization algorithms and subsequent theoretical tesglg consistency of estimator, convergence
rate, ... [32], [[48],[55]) related to single signal sparppm@ximation, we think that many of these results
can be transposed to the multiple signal approximation easewe hope with this paper to give our
dime to reach that objective. Hence, we follow the steps dfeC@t al. [8] and Malioutov et al[I36] in
considering using, minimization problem for simultaneous sparse approxiomtbut propose a different
way of solving the minimization problenil(4). Our contritaris in this paper are essentially on novel
algorithms for solving that problem for different values @fand ¢ and on some novel insights on its
connection with different existing approaches for sirmétaus sparse approximation.

At first, we develop a simple and efficient algorithm for solyithe M-Basis Pursuit problenp & 1
andq = 2). We show that by using results from non-smooth optimizatiteory, we are able to propose
an block-coordinate descent method which only needs sonréxmaultiplications. In this sense, this first
contribution is strongly related to the work of Sardy et @H][for single-signal approximation and thus
it can be understood as an extension of their block-cooteliapproach to simultaneous approximation.
A proof of convergence and a discussion with related work$ sas those of Fornasier et él. [20], Elad
et al. [13] and Sardy et al_[44] are also provided.

Then, we focus on the more general situation where0 andq < 2 in J, ,(C). We show that such a
row-diversity measure is actually related to automatievahce determination (ARD). Indeed, we show

that for anyp > 0 andq¢ < 2, J,, can be interpreted as a weighted 2-norm row-measure and thes
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weights evaluate the relevance of a given entry of the ma&ixThe equivalence betweef, ,(C) and
the ARD needs the weights to be optimized according to ¢edanstraints (which for instance induce
some row-sparsity ofC). Owing to this insight, we clarify the relation between NDEUSS and the
Multiple-Sparse Bayesian Learning of Wipf et dl.][54] (wialso uses ARD) for any value @f > 0.
Then, from this ARD formulation, we derive an Iterative Régteed Least-Square algorithm, which has
the flavor of M-FOCUSS, for solving problem with ;<,<>. To the best of our knowledge, this is the
first algorithm for sparse simultaneous approximation with - ;<2(C).

Afterward, instead of directly deriving a proper algorithfior solving the non-convex optimization
problem whenp < 1 and1 < ¢ < 2, we propose an iterative reweighted algorithm which reuses
algorithms that solve problenid(4) with penalfy ;<,<2(C). Using a Majorize-Minimize optimization
framework, we show that depending on the chosen weightd) anociterative reweighted scheme can
actually solve problem[d4). Our main contribution at thisinpds to have translated the non-convex
problem [4) into a serie of convex problems. In this senseaiit be considered as an extension of the
work of Candes et all 4], Foucart et &l. [21] and Gasso €28]. to simultaneous sparse approximation.

Furthermore, by choosing a different weighting scheme, lvesvshat our iterative reweighted approach
is strongly related to M-SBL. An experimental comparisorit@fse two (and other) algorithms will make
clear the benefits and disadvantages of using our iteraweighted algorithm. For instance, experimental
results show that although our iterative reweighted apgraa slower than the M-CosAmp of Baraniuk
et al. [1], it is able to provide better estimation of the dmént matrix C.

The paper is organized as follows. Sectidn Il introduces @diadusses our block-coordinate algorithm
for solving the M-BP problem. Sectiolll deals with the eguénce between ARD and, ,(C)
optimization. An algorithm which addresses the generat gaserep = 1 and1 < ¢ < 2 is then proposed.
Then, the iterative reweighted algorithm for addressirgdptimization problem whep < 1 is described
and discussed in Secti@nllV. Experimental results presgmp&rformance of our algorithms are in Section
Mwhile conclusion and perspectives in Secfiamh VI close thpgs. For a sake of reproducibility, the code

used in this paper is available on http://asi.insa-rouEms$eignants/arakotom/code/SSAindex.himl

[I. SIMPLE ALGORITHM FOR M-BASIS PURSUIT

The algorithm we propose in this section addresses thecpkticase ob = 1 andg = 2, denoted
as the M-BP problem. We show that the specific structure ofptioblem leads to a very simple block
coordinate descent algorithm named as M-BCD. We also shatvitthhe dictionary is under-complete

then it can be proved that the solution of the problem is exjeit to a simple shrinkage of the coefficient
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matrix. Proof of convergence of our M-BCD algorithm is als@eg in this section

Before delving into the algorithmic details, we should nthtat block-coordinate descent have already
been considered by Sardy et al.l[44] and E[ad [13] for spdgg@bapproximations from orthogonal and
redundant representations. Hence the numerical schemeopese here can be seen as an extension of

their works to vector-valued data.

A. Deriving optimality conditions

The M-BP optimization problem is the following
. 1 2
win W(C) = 518 — C + A Jei. (6)

where the objective functio®’ (C) is a non-smooth but convex function. Since the problem is un-
constrained a necessary and sufficient condition for a mdfi to be a minimizer of [[6) is that
0 € W (C*) wheredWW (C) denotes the subdifferential of our objective vallidC) [2]. By computing
the subdifferential of¥/(C) with respect to each row; . of C, the KKT optimality condition of problem
@) is then

—r; + Ag;,. =0 Vi

wherer; = ¢}(S — ®C) andg;,. is thei-th row of a subdifferential matridxG of J; 5(C) = >_, ||c;,.||2-
The following lemma which proof has been postponed to theeagix, characterizes this subdifferential
G of J;2(C).

Lemma 1:A matrix G is a subdifferential of/; »(C) = >, ||c;..||2 if and only if the j-th row of G

satisfies

eRE: |glly < 1 it Ve =0
oG {g lgllz < 1} ik

ij.
lleg, Il

otherwise

wheree; is a canonical vector R,
According to this definition of/; »’s subdifferential, the KKT optimality conditions can bemrtten as

—r;+ A G- _ 9 Vi, ¢.#0 (7)
llci, 2
HriH2 < A VZ, Ci. = 0

)

A matrix C satisfying these equations can be obtained after the follpwlgebra. Let us expand each

r; So that
r; = ¢i(S—®C_;) — didici.

= T;i—q,. (8)
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whereC_; is the matrixC with thei-th row being set t@) and7; = ¢(S—®C_;). The second equality
is obtained by remembering thaf¢;=1. Then, equatiori]7) tells us thatdf. is non-zero,I; andc;.
have to be collinear. Plugging all these points into equafi) yields to an optimal solution that can be

obtained as :
A

G.o=(1-—2-) 17, Vi 9)
(- 77m).

From this update equation, we can derive a simple algorithhithwvconsists in iteratively applying the

update [[P) to each row df.

B. The algorithm and its convergence

Our block-coordinate descent algorithm is detailed in Aipon (). It is a simple and efficient
algorithm for solving M-BP.

Basically, the idea consists in solving each row at a time. By starting from a sparse solution like,
C =0, at each iteration, we check for a givénwhether rowc; . is optimal or not based on conditions
@). If not, ¢; . is then updated according to equatigh (9).

Although, such a block-coordinate algorithm does not cageén general for non-smooth optimization
problem, Tsengl[82] has shown that for an optimization moblwhich objective value is the sum of
a smooth and convex function and a non-smooth but blockrablgaconvex function, block-coordinate
optimization converges towards the global minimum of thebgm. Our proof of convergence is based
on such properties and follows the same line as the one pedpmg Sardy et all[44].

Theorem 1:The M-BCD algorithm converges to a solution of the M-BasigdRit problem given in
Equation [6), where convergence is understood as any adatiomupoint of the M-BCD algorithm is a
minimum of problem[{) and the sequence{@,} generated by the algorithm is bounded.

Proof: Note that M-BP problem presents a particular structure @itemooth and differentiable
convex function||S — ®C||% and a row-separable penalty functidn; h;(c;.) whereh(:) is a continuous
and convex function with respects tg..

Also note that our algorithm considers a cyclic rule wherthimi each loop, for eache [1,--- , M],
eachc; . is considered for optimization. The main particularity lt for somei, the ¢;. may be left
unchanged by the block-coordinate descent if already @ptifrhis occurs especially for row; . which
are equal td.

Then according to the special structure of the problem aedifie of a cyclic rule, the results of Tseng

[52] prove that our M-BCD algorithm converges. [ |

September 30, 2009 DRAFT



10

Algorithm 1 Solving M-BP through block-coordinate descent
1. C=0, Loop =1

2: while Loopdo
3 fori=1,2,---,M do

4: Compute||r;||

5: if optimality condition ofc; . according to equation§l(7) is not satisfiguen
: (1 :

6 a.=(1- ), T

7: end if

8  end for

9: if all optimality conditions are satisfietthen
10: Loop =0
11:  end if

12: end while

Intuitively, we can understand this algorithm as an al@ponitwhich tends to shrink to zero rows of
the coefficient matrix that contribute poorly to the appmation. Indeed;; can be interpreted as the
correlation between the residual when roWwas been removed ang. Hence the smaller the norm &§f
is, the lessp; is relevant in the approximation. And according to equaf@y, the smaller the resulting
¢, is. Insight into this block-coordinate descent algorithem de further obtained by supposing that

M < N and that® is composed of orthonormal elementsi®Y, hence®!® = 1. In such situation, we

have .
T;=¢iS and |5 = Z(¢§3k)2
k=1
and thus
cG.=|1- ; ¢§S
Sk (Bhsy)? .

This last equation highlights the relation between thelsiBasis Pursuit (whe® = 1) and the Multiple-
Basis Pursuit algorithm presented here. Both algorithrad te a shrinkage of the coefficient projection.
With the inclusion of multiple signals, the shrinking factiecomes more robust to noise since it depends

on the correlation of the atom; to all signals.
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C. Some relations with other works

As we have already stated, our M-BCD algorithm can be consitas an extension to simultaneous
signal approximations of the works of Sardy et &l.1[44] anddE[13]. However, here, we want to
emphasize the importance of starting fronCa= 0. Indeed, since in the estimat€d is expected to be
sparse, by doing so, only few updates are needed before rg@meoe.

In addition to the works of Sardy et al. and Elad, many othath@s have considered block-coordinate
descent algorithm for related sparse approximation profleFor instance, it has also been used for
solving the Lassd [22], and the elastic netl[55]. Other wdrise also considered iterative thresholding
algorithms for solving single signal sparse approximagooblem [9], [19].

For recovering vector valued data with joint sparsity coaiats, Fornasier et all_[20] have proposed
an extension of the Landweber iterative approach of Datibedt al. [9]. In their work, Fornasier et al.
have also used an iterative shrinking algorithm (which tesflavor of a gradient projection approach)
which is able to solve the general problel (4) with= 1 and¢ = {1,2,00}. For ¢ = 2, the main
difference between their algorithm and the one we propose isghat, by optimizing at each loop, only

thec; .’s that are not optimal yet, we have an algorithm that is mffieient than the one of Fornasier et al.

As we stated previously, the M-FOCUSS algorithm also sallkesM-BP problem. In their M-FOCUSS
approach, Cotter et alll[8] have proposed a factored gradigorithm. That algorithm is related to
iterative reweighted least-squares, which at each itevatipdates the coefficient matriX. However,
their factored gradient algorithm presents a importantésdndeed, the updates they propose are not
guaranteed to converge to a local minima of the problem @fglhoblem is not convex < 1) or to the
global minimum of the convex problenp = 1). Indeed, their algorithm presents several fixed-points
since when a row ofC is equal to0, it stays at0 at the next iteration. Although such a point may
be harmless if the algorithm is initialized with a “good” giag point, it is nonetheless an undesirable
point when solving a convex problem. At the contrary, our @B algorithm does not suffer from the
presence of such fixed-points. However, such fixed-pointiseérM-FOCUSS algorithm can be handled by

introducing a smoothing term in the weight so that the updated weight (according to Cettestation

W = diag<\ el + e)

whereW is the diagonal weighting matrix and> 0. The use ot avoids a given weight to be at zero

and forp = 1) becomes

and consequently it avoids the relatgd to stay permanently at zero. Then if we furthermore note that
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M-FOCUSS is not more than an iterative reweighted leastsguAccording to the very recent works
of Daubechies et all ]10] and Chartrand et [al. [5], it seerstfjed to iterate the M-FOCUSS algorithm
using decreasing value ef In our numerical experimental, we will consider the M-FO&® algorithm

with fixed and decreasing value of

D. Evaluating complexity

From a computational complexity point of view, it is not pii¥s to evaluate the exact number
of iterations that will be needed before convergence of dgoradhm. However, we can analyze the
computational cost per each iteration. Although, this mat/be relevant since the number of iterations
needed for the considered algorithms to converge may be diffgrent, such knowledge give an hint
about the algorithm scaling with respects to parametetfse$imultaneous sparse approximation problem.

For our M-BCD algorithm, we can note that each shrinking apen, in the worst case scenario, has
to be donelM times and the dominating cost for each update is the compntaf 7;. This computation
involves the matrix multiplication®C_; and a matrix-vector multiplication which respectively dee
O(NML) andO(N L) operations. On the overall, if we assume that at each itevadill c; . are updated,
we can consider that the computational cost of our algorithaboutO (M2 N L). This cost per iteration
can be compared to the one of M-FOCUSS algorithm and secatet-oode programming of Malioutov
et. al [36] which are respectivel®»(M N?) and O(M3L?). Theoretically, it seems that our algorithm
suffers more than M-FOCUSS from large dictionary size buisifar more efficient than the SOC
programming.

lllustrations of how our algorithm behaves and empiricampatational complexity evaluations are

given in sectiorV.

I1l. ARD FORMULATION OF SIMULTANEOUS SPARSEAPPROXIMATION

In this section, we focus on the relaxed optimization probtgven in [4) with the general penalization
Jp,q(C). Our objective here is to clarify the connection betweerhsadorm of penalization and the
automatic relevance determination ©fs rows, which has been the keystone of the Bayesian approach
of Wipf et al [54]. We will show that for a set of values ¢f and ¢, the mixed-normJ, ,(C) has
an equivalent variational formulation. Then by using thael formulation in problem[{4), instead of
Jp4(C), we exhibit the relation between our sparse approximatioilpm and ARD. We then propose

an iterative reweighted least-square approach for soltiegresulting ARD problem.
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A. Exhibiting the relation with ARD

For this purpose, we first consider the following formulatiof the simultaneous sparse approximation
problem:
min 5|8 — SC3 + X (J,4(C)7 (10)
In the convex case (fgv > 1 andq > 1), since the power function is strictly monotonically inasing,
problems [¥) and[{10) are equivalent, in the sense that fowengvalue )\, there exists a\ so that
solution of the two problems are equal. Whéyy, is not convex, this equivalence does not strictly apply.
However, due to the nature of the problem, the problem foatrar [I0) is more convenient for exhibiting

the relation with ARD.

Let us introduce the key lemma that allows us to derive the ARBed formulation of the problem.
This lemma gives a variational form of thfg , norm of a sequencéu; ;, }.

Lemma 2:if s > 0 and{a. : k € N,,,t € Nr} € R such that at least ong ;, > 0, then

min Z“‘“f’ dtk>OZ<Zdl/S> Tl Z(z\%k’q)’ (11)
t.k k t

whereq = ;21 andp = ﬁ Furthermore, at optimality, we have:
1 (Sulaws )
(12)

-2 sjjjrl e
Zv <Zu |a“7” S+1)

‘at,k

*x
diy =

Proof : See Appendix.

According to this lemma, thé,, norm of a sequence can be computed through a minimization
problem. Hence, applying this lemma ¢dp7q(C))§ by defininga; ;, = c,,, we get a variational form
of the penalization term. We can also note that the mixedanon the matrix coefficients has been
transformed to a mixed-norm on weight matex

Then plugging the above variational formulation of the pizasion term in problem[{1I0) yields to the

following equivalent problem :
win 38— $CIE + AT, 32t
st %, (Sedl) T <1 (13)
di, >0 Vt, k
This problem is the one which makes clear the automatic aelex determination interpretation of the

original formulation [#). Indeed, we have transformed feab(2) into a problem with a smooth objective
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(r,s)
0,1) (1,0) (3,3)
lia 41,00 412
C | lia {12 5173

=}

TABLE |
EQUIVALENCE BETWEEN MIXED-NORM ONd AND C FOR DIFFERENT VALUES OFr AND s.

function at the expense of some additional variables These parametets ;. actually aim at determining
the relevance of each element Gf Indeed, in the objective function, each squared-vajyeis now
inversely weighted by a coefficient ;.. By taking the convention thg} = oo if = # 0 and0 otherwise,
the objective value of the optimization problem becomesefionly if d,; = 0 for Cik = 0. Then the
smallerd, ;, is, the smaller the, ;, norm should be. Furthermore, optimization probléni (13) atsolves
some constraints ofid; .. }. These constraints impose the matixo have positive elements and to be
so that its¢_._ :» mixed-norm is smaller thaih. Note that this mixed-norm od plays an important role

r+s’s

since it induces the row-norm sparsity @h According to the relation between r ands, for p < 1, we

also haver+s > 1, making thdﬁé non-differentiable with respect to the first norm. Such siagties
favor row-norm sparsity of the matrid at optimality, inducing row-norm sparsity &. As we have
noted above, when a row-norm dfis equal to 0, the corresponding row-norm@fshould also be equal
to 0 which means that the corresponding element of the dictjoisdiirrelevant” for the approximation of
all signals. Probleni{13) proposes an equivalent formuratif problem [(#) for which the row-diversity
measure has been transformed in another penalty functiomgaw an ARD formulation. The trade-off
between convexity of the problem and the sparsity of thet®wiuhas been transferred fromq to r
ands. Tablel] gives some examples of equivalence between the twedsmorms ond and C.

From a Bayesian perspective, we can interpret the row-nordchas the diagonal term of the covariance
matrix of a Gaussian prior over the row-norm @nhdistribution. This is typically the classical Bayesian
Automatic Relevance Determination approach as proposeddtance in the following works [41] [47].
This novel insight on the ARD interpretation df ,(C) clarifies the connection between the M-FOCUSS
algorithm of Cotter et al.[]8] and the M-SBL algorithm of Wipt al. [54] for any value op < 1. In
their previous works, Wipf et al. have proved that these tigo@thms were related whep~ 0. Here,
we refine their result by enlarging the connection for othalugs ofp. In a frequentist framework, we

can also note that Grandvalet et al. has proposed a simifapagh for feature selection in generalized

September 30, 2009 DRAFT



15

Algorithm 2 Iterative Reweighted Least-Square for addressing-,. penalty

1: Initialize d© to a strictly positive matrix

22t=1

3: while Loopdo

4:  CW® — solution of problem[[T4) with fixed = d*~ as given by Equatio {15)
5. d® — solution of problem[[14) with fixedC = C(*) as given by Equation[{16)
6: t—t+1

7. if stopping condition is satisfiethen

8: Loop =0

9: endif

10: end while

linear models and SVM_[26][[27].

B. Solving the ARD formulation fgr=1 and1 < ¢ <2

Here, we propose a simple iterative algorithm for solvinglpem [IB) forp = 1 and1 < ¢ < 2. Our
algorithm, named as M-EM is based on an iterative-reweighted least squares wherevéhights are
updated according to equatidn112). Thus, it can be seen astansion of the M-FOCUSS algorithm
of Cotter et al. forg < 2. Note that we have restricted ourselvepte 1 since we will show in the next
section thap < 1 can be handled using another reweighted scheme.

Sincep =1, thuss 4+ r = 1, the problem we are considering is :

min S0 g (e - Pesld+ A%, 5% ) = Juy (C.)
st 9 (i) <1 (14)
dip >0
Since, we consider that < ¢ < 2 hence0 < s <1 H this optimization problem is convex with
a smooth objective function. We propose to address thisl@molbhrough a block-coordinate algorithm
which alternatively solves the problem with respect€tavith the weightd being fixed and then keeping

C fixed and computes the optimal weigtt The resulting algorithm is detailed in Algorithioh 2.

Yor s = 0, we have explicitly used the sup norm of vectby, in the constraints.
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Owing to the problem structure, step 4 and 5 of this algoritias a simple closed form. Indeed, for

fixed d, each vectob(tlz at iterationt is given by :

-1
= (e +2D[7V)  @'s (15)

)

whereDl(f_l) is a diagonal matrix of entrie&?t,f_l). In a similar way, for fixedC, step 5 boils down in

solving problem[{Il1). Hence, by defining; = cgt; we also have a closed-form fak*) as

1—s

(t) ’at,k‘ st (ZU ‘a%k‘ st > ’
dt,k = N
Zv (Zu |au,v 6_“>

Note that similarly to the M-FOCUSS algorithm, this algbnit can also be seen as an iterative

(16)

reweighted least-square approach or as an ExpectatioimMation algorithm, where the weights are
defined in equatior[{16). Furthermore, it can be shown th#tefweightsd are initialized to non-zero
values then at each loop involving stépand 5, the objective value of probleni{l14) decreases. Hence,

since the problem is convex, our algorithm should convesgsatds the global minimum of the problem.

Theorem 2:If the objective value of probleni(l4) is strictly convexi(fiastance wher is full-rank),
and if for thet-th loop, after the step 5, we had®) # d(*—1), then the objective value has decreased,
ie:

Jobj(C(tJrl),d(t)) < Jobj(C(t),d(t)) < Jobj(c(t),d(t_l)).

Proof : The right inequality.J,;;(C®,d®) < J,,;(C®,d* 1) comes fromd® being the optimal
value of the optimization problem resulting from stepf algorithm [2). The strict inequality yields
from the hypothesis thad(!) £ d*-1) and from the strict convexity of the objective function. Anlar
reasoning allows us to derive the left inequality. IndeeédcesC® is not optimal with respects td(*)
for the problem given by steft), invoking the strict convexity of the associated objecfiwection and

optimality of C**+1 concludes the proof.

As stated by the above theorem, the decrease in objective valactually guaranteed unless, the
algorithm get stuck in some fixed points.g all the elements ofl being zero expect for one entry
{t1,k1}). In practice, we have experienced, by comparingdos 2 with the M-BCD algorithm, that
if d is initialized to non-zero entries, algorithifll (2) convesde the global minimum of problenfi{lL4).

Numerical experiments will illustrate this point.
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IV. REWEIGHTED M-BASIS PURSUIT

This section introduces an iterative reweighted M-Basis#&it (IrM-BP) algorithm and proposes two
ways for setting these weights. By using the first weightiohiesne, we are able to provide an iterative
algorithm which solves probleni](4) when< 1 and1 < ¢ < 2. The second weighting scheme makes

clear the strong relation between the empirical bayesiatesty of Wipf et al.[[54] and our work.

A. Reweighted algorithm

Recently, several works have advocated that sparse appmb®ns can be recovered through iterative
algorithms based on a reweightéd minimization [56], [4], [5]. Typically, for a single signalase, the

idea consists in iteratively solving the following problem
1 2
min §Hs — Pcll3+ A Z zilcil
(2

wherez; are some positive weights, and then to update the positiightge;; according to the solutioa*

of the problem. Besides providing empirical evidences teateighted/; minimization yields to sparser
solutions than a simplé, minimization, the above cited works theoretically supmarth claims. These
results for the single signal approximation case suggesdtiththe simultaneous sparse approximation
problem, reweighted M-Basis Pursuit would also lead to sgrasolutions than the classical M-Basis

Pursuit.

Our iterative reweighted M-Basis Pursuit algorithm is defiras follows. We iteratively construct a
sequenceC(™ defined as

1
(m) _ st _ 2 (m) ..
c™ = argmin 5 IS —®C|lz + A E z; i llq (17)

)

where the positive weight vectaf™ depends on the previous itera®™ 1. Form = 1, we typically

definez( =1 and form > 1, in our case, we will consider the following weighting scheem

(m) 1 ,
z’i = o \V/Z (18)
(™D g +e)r

where{cgfn_l)} is the i-th row of C(™~1), 1 a user-defined positive constant and small regularization
(m—1)

term that prevents from having an infinite regularizatiomntéor c; .as soon as; vanishes. This is
a classical trick that has been used for instance by Cartdéis [@] or Chartrand et all]43]. Note that
for any positive weight vectoz, problem [IF¥) is a convex problem that does not present imiaiima.

Furthermore, foil < ¢ < 2, it can be solved by our block-coordinate descent algoribinioy our M-EM,
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given in Algorithm[2, by simply replacing. with \; = X - z;. This reweighting scheme we propose is
similar to theadaptive lassalgorithm of Zou et al.[[56] but uses more than two iteratiang addresses

the simultaneous approximation problem.

B. Connections with Majorization-Minimization algorithm

The IrM-BP algorithm we proposed above can also be intezdrets an algorithm for solving an
approximation of problem14) whet < p < 1 and1 < ¢ < 2. Indeed, similarly to the reweighted
scheme of Candes et all [4] or the one-step reweighted laisZou et al. [57], our algorithm falls in
the class of majorize-minimize (MM) algorithmis_|30]. MM aldgthms consists in replacing a difficult
optimization problem with a more easier one, for instancérgarizing the objective function, by solving
the resulting optimization problem and by iterating suchr@cpdure.

The connection between MM algorithms and our reweightedmehcan be made through linearization.

Let us first define/, , .(C) as an approximation of the penalty tetp,(C) :
Ipg.e(C) = Zg (leillg +¢)

whereg(-) = | - |P. Sinceg(-) is concave for0 < p < 1, a linear approximation of/, , .(C) around

C(m=1) yields to the following majorizing inequality

m— p m—1
Ipge(C) < Jp,q,a(c( 1)) + Z (H (m—l)H >1_p(HCi’.”q _ HCE )Hq)
i G g 1€

then for the minimization step, replacing in probleih (), with the right part of the inequality and

dropping constant terms lead to our optimization problEd) (kith appropriately choses andr. Note
that for the weights given in equatioh {18),= 1 corresponds to the linearization of a log penalty
> log(|lci.|| + ) whereas setting = 1 — p corresponds to &, penalty ( < p < 1).

MM algorithms have already been considered in optimizgpiaiblems with sparsity-inducing penalties.
For instance, an MM approach have been used by Figueiredo[&7pfor solving a least-square problem
with a ¢, sparsity-inducing penalty, whereas Candes etlal. [4] reddressed the problem for exact
sparse signal recovery. In a context of simultaneous afpedion, Simila [45] has also considered MM
algorithms while approximating the non-convex penaltyhwadt quadratic term. Hence our contribution
here can be considered as an extension of their works to tsinedus sparse approximation using a

mixed ¢, — £, norm where at each iteration, this norm has been linearlycpated.
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Algorithm 3 Reweighted M-Basis Pursuit with annealing setting: of
1: Initialize e =1,z=1

2: while ¢ > ¢,,,;, do

3. (C,z) < solution of problem[17) using
4:  Updatez according to equatiof.{18) and
5 e+« ¢/10

6: end while

Analyzing the convergence of the sequei@&”) towards the global minimizer of problerfll (4) is a
challenging issue. Indeed, several points make a formalfprbconvergence difficult. At first, in order
to avoid a rOWCZ(.j,”) to be permanently at zero, we have introduced a smoothingdethus we are only
solving aes-approximation of problem[]4). Furthermore, the penalty wee is non-convex, thus using
a monotonic algorithm like a MM approach which decreasesathjective value at each iteration, can
not guarantee convergence to the global minimum of @approximate problem. Hence, due to these
two major obstacles, we have left the convergence proofufturé works. Note however that few works
have addressed the convergence issue of reweidghted/; algorithms for single sparse signal recovery.
Notably, we can mention the recent work of Daubechies ef1&l] \vhich provide a convergence proof
of iterative reweighted least square for exact sparse ergoin the same flavor, Foucart et al. [21] have
proposed a tentative of rigorous convergence proof for ighwed/; sparse signal recovery. Although, we
do not have any rigorous proof of convergence, in practieewi¥ show that our reweighted algorithm
provides good sparse approximations.

As already noted by several authadrs [4],1[48].1[10plays a major role in the quality of the solution.
In the experimental results presented below, we have iigagst two methods for setting : the first
one is to set it to a fixed value = 0.001, the other one is denoted as an annealing approach which

consists in gradually decreasiagafter having solved probleni{fL7). This annealing approadtetailed
in Algorithm (3).

C. Relation with M-SBL

Recently, Wipf et al.[[53] have proposed some new insightaiomatic Relevance Determination and
Sparse Bayesian Learning. They have shown that, for thewvesgression case, ARD can be achieved by
means of iterative reweightég minimization. Furthermore, in that paper, they have skedcn extension

of such results for matrix regression in which ARD is useddatomatically selecting the most relevant
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covariance components in a dictionary of covariance megriSuch an extension is more related to
learning with multiple kernels in regression as introdubgdGirolami et al. [[24] or Rakotomamonjy et
al. [42] although some connections with simultaneous gpapproximation can be made. Here, we build
on the works on Wipf et all 53] and give all the details abooivhM-SBL and reweighted M-BP are

related.

Recall that the cost function minimized by the M-SBL of Wigfa. |[54] is

L
L(d) = Llog || + > _si%; s (19)
j=1

whereY; = 021 + ®D®! andD = diag(d), with d being a vector of hyperparameters that govern the
prior variance of each coefficient matrix row. Now, let us defi*(z) as the conjugate function of the
concavelog |%;|. Since, that log function is concave and continuous]Rﬂﬁ, according to the scaling

property of conjugate functions we have [3]

L-log |5, = mi td—L*(E)
0g|%| = min 2 9\7

Thus, the cost functior£(d) in equation [IB) can then be upper-bounded by
z L
£(d,z) 2 z'd — Lg* <Z> +3 805 s, (20)
j=1

Hence when optimized over all its parameteéd, z) converges to a local minima or a saddle point of
(@I39). However, for any fixedl, one can optimize ovez and get the tight optimal upper bound. If we
denote az* such an optimak for any fixedd', sincelL - log |X;| is differentiable, we have, according

to conjugate function properties, the following closednioof z*
z* = L-Vliog|%|(d") = diag®'s; ' ®) (21)

Similarly to what proposed by Wipf et al., Equatiois](20) g&d) suggest an alternate optimization
scheme for minimizingC(d, z). Such a scheme would consist, after initializationzab some arbitrary
vector, in keepingz fixed and in computing
L
d' = argmin £-(d) Lald+) sinls; (22)
j=1
then to minimize£(d, z) for fixed df, which can be analytically done according to equatlan (Thjs

alternate scheme is then performed until convergence t@ sbim
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Owing to this iterative scheme proposed for solving M-SBle @an now make clear the connection
between M-SBL and an iterative reweighted M-BP accordinghto following lemma. Again this is an
extension to the multiple signals case of a Wipf's lemma.

Lemma 3:The objective function in equatiori{R2) is convex and can baivalently solved by

computing

* . _ 1 2 2 1/2
C* = argmin £.(C) = 5 IS = ®CI|7 + 0> 2l | (23)

and then by setting

—1/2 .
4=z e Vi

Proof: Convexity of the objective function in equatidn]22) is gjfdforward since it is just a sum

of convex functions[[3]. The key point of the proof is basedtioa equality
ty—1 1 2 ;i
;2 Sj = P rcmjn lIsj — ®c.;ll2 + Z d_j (24)
which proof is given in appendix. According to this equalitye can upper-bound . (d) with
1 .
L:(d,C) =z'd+ ) Slls; —@eyli+ ) 22 (25)
J 2,J
The problem of minimizingC.(d, C) is smooth and jointly convex in its paramet&sandd and thus
an iterative coordinatewise optimization scheme (iteedyi optimizing overd with fixed C and then

optimizing overC with fixed d ) yields to the global minimum. It is easy to show that for amedi C,

the minimal value ofL(d, C) with respects tal is achieved when

—1/2 .
di =z Pl Vi

Plugging these solutions back infa25) and multiplying the resulting objective function with? /2
yields to

1 1/2
L:(C) = 5> lIsj = ®e B +0 > 5 e (26)
i %

Making the relation betweefy, and Frobenius norms concludes the proof. [ |
Minimizing £.(C) boils down to minimize the M-BP problem with an adaptive ggna; = o2 - zil/2

on each row-norm. This latter point makes the alternateropéition scheme based on equatibd (21) and

(Z32) equivalent to our iterative reweighted M-BP for whickightsz; would be given by equatiofi{P1).
The impact of this relation between M-SBL and reweighted RliB8 essentially methodological. Indeed,

its main advantage is that it turns the original M-SBL op#iation problem into a serie of convex
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optimization problems. In this sense, our iterative rewtdg algorithm described here, can again be
viewed as an application of MM approach for solving probl€#)( Indeed, we are actually iteratively
minimizing a proxy function which has been obtained by majog each term of equatiofi.{]L9). Owing
to this MM point of view, convergence of our iterative alghr towards a local minimum of equation
(I9) is guaranteed_[B0]. Convergence for the single sigaakausing other arguments has also been
shown by Wipf et al.[[5B]. Note that similarly to M-FOCUSS gtloriginal M-SBL algorithm based on
EM approach suffers from presence of fixed-points (whign= 0). Hence, such an algorithm is not
guaranteed to converge towards a local minimumlaf (19). #hiken another argument for preferring

IrM-BP.

V. NUMERICAL EXPERIMENTS

Some computer simulations have been carried out in ordevailuae the algorithms proposed in the

above sections. Results that have been obtained from theserical studies are detailed in this section.

A. Experimental set-up

In order to quantify the performance of our algorithms anchpare them to other approaches, we have
used simulated datasets with different redundancy fac%‘&nrsumberk of active elements and numbér
of signals to approximate. The dictionadyis based onV/ vectors sampled from the unit hypersphere of
RY. The true coefficient matrixC* has been obtained as follows. The positions of kh@on-zero rows
in the matrix are randomly drawn. The non-zero coefficiefit€ b are then drawn from a zero-mean unit
variance Gaussian distribution. The signal ma8Biis obtained as in equatiohl (1) with the noise matrix
being drawn i.i.d from a zero-mean Gaussian distributiod @ariance so that the signal-to-noise ratio
of each single signal i$0 dB. For a given experiment, when several trials are neededyiy resample
the dictionary® and the additive noisé.

Each algorithm is provided with the signal mat@xand the dictionary® and will output an estimate
of C. The performance criterion we have considered are the regaare error between the true and the
approximate signals and the sparsity profile of the coefficiaatrix that has been recovered. For the
latter, we use as a performance criterion the F-measureeketthe row-support of the true matix*
and the estimate on€. In order to take into account numerical precisions, we largrloaded the row
support definition as :

rowsupgC) ={i € [1--- M]: |lc;.|| < p}
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Fig. 1. Examples of objective value evolution with respgotsomputational time. Here we havidf = 128, N = 64, L = 3.
The number of active elements is : left)= 5. right) k = 32. For each curve, the large point corresponds to the obgegtlue

at convergence.

where . is a threshold coefficient that has been set by defaulo.td in our experiments. From
rowsupmé) and rowsuppC*) respectively the estimated and true sparsity profile, wendefi

[rowsupgC) N rowsupgC*))|

F-measure= 2 - — .
[rowsupgC)| + [rowsupgC*)|

Note that the F-measure is equalltavhen the estimated sparsity profile coincides exactly withttue

one.

Regarding the stopping criterion, in the experiments preskbelow, we have considered convergence
of our M-BCD algorithm when the optimality conditions giveém equation [[I¥) are satisfied up to a
tolerance 0f0.001 and when all matrix coefficient; ; variations are smaller thaf.001. This latter

condition has also been used as a stopping criterion for cgMMand IrM-BP algorithms.

B. Comparingl; — ¢2 M-BP problem solvers

In this first experiment, we have compared different algongs which solves the M-BP problem with
p = 1 andg = 2. Besides our M-BCD and M-EM algorithms, we have also usedMhEOCUSS of
Cotter et al.[[8] and the approach of Fornasier et al. [20kdas Landweber iterations and denoted in the
sequel as M-BPland. Note that for M-FOCUSS, we have modifiedgenuine algorithm by introducing

a ¢ parameter, set t0.001, which helps in avoiding a row-norm o to be permanently &i.
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TABLE Il
SUMMARY OF M-BP SOLVERS COMPARISON COMPARISONS HAVE BEEN CARRIED OUT FOR TWO VALUES Ok, THE
NUMBER OF ACTIVE ELEMENTS IN THE DICTIONARY AND HAVE BEEN AVERAGED OVER100 TRIALS. COMPARISON
MEASURES ARE THE TIME NEEDED BEFORE CONVERGENGHHE DIFFERENCE IN OBJECTIVE VALUE AND THE LARGEST
COEFFICIENT MATRIX DIFFERENCE FOR THE TWO LATTER MEASURE THE BASELINE ALGORITHM IS CONSIDERED TO BE
THE M-BCD ONE.

k=5 k=32

Time (ms) A Objval 10°)  AC|(10~°) || Time (ms) A Objval (10%) [JAC]w(10°?)
M-BCD 6.90 + 3.13 - - 29.2 + 8.6 - -
M-EM 58.87 £ 13.8 1.01 £0.36 2.54 +1.63 158.8 £ 7.1 8.02 4+ 3.2 19.2 £5.3
M-Focuss | 38.47 +9.97 9.75 + 2.22 4.51 &£ 1.57 74.6 +19.2 17.56 £ 3.2 25.3 5.1
M-BPland | 13.69 & 3.62 0.04 £1.18 5.63 £ 1.19 24.7 £ 5.1 1.09 £ 6.9 31.1 £6.9

Figure[l shows two examples of how the objective value of tifferdnt algorithms evolves with
respects to computational time. We can note that the twatiter reweighted least-square algorithms
(M-EM and M-FOCUSS) are the most computationally demandiigthermore, we also see that the
Landweber iteration approach of Fornasier et al. quickuoes its objective value but compared to our
M-BCD method, it needs more time before properly convergiraple[ll summarizes more accurately the
difference between the four algorithms. As comparisoreddf we have considered the computational
time before convergence, the difference (compared to olBQW algorithm) in objective values and
the maximal absolute difference in the coefficient matsix. The table clearly shows that our M-BCD
algorithm is clearly faster than M-BPland and the two itemateweighted least-square approaches. We
can also note from the table that, although M-FOCUSS and o@EMJare not provided with a formal

convergence proof, these two algorithms seems to emgyricahverge to the problem global minimum.

C. lllustrating our M-BCD and IrM-BP algorithms

This other experiment illustrates the behavior of our M-B@ad Ir-MBP algorithms. As an experi-
mental set-up, we have uséd = 128, N = 64, L = 3 and the numbek of active elements in the
dictionary is equal tol0. A has been chosen so as to optimize the sparsity profile resdvsr our
M-BCD algorithm. Since we just want to illustrate how the@ithms work, we think that such a default
value of X is sufficient for making our point.

Figure[2 respectively plots the variations of the objectiadue, the row normgc; .|| and the F-

measure for our iterative shrinking algorithm. For this rapée, many iterations are needed for achieving
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Fig. 2. lllustration of our block coordinate descent algon for solving M-BP. Example of variation along the itecats
of : left) Objective value, middle) row-nornfic;..||, right) F-measure. For this example, the dictionary sizé28 while 10

active elements have been considered in the true sparsifyepr
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0 0.5 1 15 2 25 3 35 4 [¢) 0.5 1 15 2 25 3 35 4 o 0.5 1 15 2 25 3 35 4
Iterations Iterations Iterations

Fig. 3. lllustration of the iterative reweighted M-BP aygali for J%’Q penalty. Example of variation along the iterations of :

left) Objective value, middle) row-norrc;,.||, right) F-measure

convergence. However, we can note that the objective vadeeedses rapidly whereas the row-support
(middle plot) of C first increases, then many of these row-norms get shrunkererm Following this
trend, the F-measure slowly increases before yieldingstaniaximal value. In this example, we can see
that we have more non-zero rows than expected. Figure 3 sthernsame plots resulting from the same
approximation problem but using an lterative reweighted®-with a penalty,]%,z. The first iteration
corresponds to a single pass of M-BCD. The next iteratial$istp in shrinking to zero some coefficients
and thus in improving the sparsity profile of the estim@talthough some true non-zero row-norms have
also been filtered out. For this problem, both algorithmsnarteable to perfectly recover the true sparsity
profile, although for another value of the Ir-MBP algorithm would.

Figure[d compares the true row-norm ©f with the ones obtained with our algorithms. On the left
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Fig. 4. Estimated row-norm obtained from the M-BCD and IrBB@vith p = 0.5) algorithms. left) k=10. right) k=20.

panel, the number of active elements is equal@@nd we can see that both algorithms (with the same
value of A are able to recover the exact sparsity profileCdf We can note that the concavity of the
penalty yields to a better estimation of the row-norm valddse right panel illustrates an example, for
k = 20, where the M-BCD algorithm tends to produce a solution whieturns undesired non-zeros

row-norms whereas the Ir-MBP approach tends to shrink to geme true non-zero rows.

D. Computational performances

We have also empirically assessed the computational cestyplef our algorithms (we used = 0.2,
thusq = g for M-EM andr = 1 for IrM-BP). We varied one of the different parameters (dicary size
M, signal dimensionalityN) while keeping the others fixed. All matricas, C and S are created as
described above. Experiments have been run on a Pentium BzZ3with 4 GB of RAM using Matlab
code. The results in Figufé 5, averaged ®trials, show the computational complexity of the different
algorithms for different experimental settings. Note that have also experimented on the M-SBL and
M-FOCUSS computational performances owing to the code @f\&fi al. [54] and have implemented the
CosAmp block-sparse approach of Baraniuk et[él. [1] and #wedweber iteration method of Fornasier
et al. _2()]H. All algorithms need one hyperparameter to be set, for M-ZBld CosAmp, we were
able to choose the optimal one since the hyperparameteeaidggly depends on a known noise level
and a known number of active elements in the dictionary. Eberoalgorithms, we have reported the
computational complexity for tha that yields to the best sparsity recovery. Note that our agéme his

not give an exact comparison of computational complexityhef algorithms but just to give an order of

2All the implementations are included in the toolbox.
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Fig. 5. Estimating the empirical exponent, given in paresth, of the computational complexity of different alglnits (M-
BCD, IrM-BP, M-SBL, M-FOCUSS, CosAmp, Landweber iteradnThe top plots give the computation time of the algorithms
with respects to the dictionary size. The bottom plots repaly depict the computational complexity with respetctshe signal
dimensionality. For a sake of readability, we have sepdr#te algorithms in two groups :(left) the ones that sofve- ¢,
problem. (right) the ones that solvg — ¢ problem (M-BCD result provided for baseline comparisonheTIrM-BP Ann”
and “M-FOC Ann” refers to the Ir-MBP and M-FOCUSS algorithrsing an annealing approach for iteratively decreasitas
described in Algorithm[{3).

magnitude of these complexities. Indeed, accurate cosgaiare difficult since the different algorithms
do not solve the same problem and do not use the same stopjiirpo.

We can remark in Figurd 5 that with respects to the dictiosag, all algorithms present an empirical
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exponent between3 and2.7. Interestingly, we have theoretically evaluate the coxipleof our M-BCD
algorithm as quadratic whereas we measure a sub-quadoatiplexity. We suppose that this happens
because at each iteration, only the non-optimas are updated and thus the number of updates drastically
reduces along iterations. We can note that among all appesabat solve thé, —/, problem (left plots),
M-BCD, Landweber iteration approach and M-CosAmp have lamgomplexity with a slight advantage
to M-BCD for large dictionary size. However, we have to ndtattthe M-CosAmp algorithm sometimes
suffers from lack of convergence and thus stop only when thgimmal number of allowed iterations is
reached. This is the reason why for large dictionary sizeAGgs is computationally expensive. When
considering the algorithms that solve the— ¢, problem (right plots), they all have similar complexity,
with a slightly better constant for IrM-BP while M-SBL seentsbe the most demanding algorithm.
Bottom plots of Figuréls depicts the complexity dependerfcglloalgorithms with respects to signal
dimensionN. Interestingly, the results show that except for M-SBL aneFRMICUSS algorithms, all
algorithms do not suffer from the signal dimension incred¥e assume that this is due to the fact that
as dimension increases, the approximation problem beceasgsr and thus faster convergence of those

algorithms occurs.

E. Comparing performances

The objective of the next empirical study is to compare thdgpmances of the algorithms we propose
with some of those proposed in the literature (M-SBL, CosAlrgndweber iterations, S-OMP and M-
FOCUSS with an annealing decreasing«)f From our side, we have considered only our M-BCD
algorithm and our IrM-BP with two values ¢f and an annealing decreasecof

The baseline experimental contexti$ = 128, N = 64, k = 10 and L = 3. For this experiment,
we have considered an agnostic context with no prior knogdesbout the noise level being available.
Hence, for all models, we have performed model selectiothdeifor selecting), the noise levelb
for M-SBL or the number of elements for M-CosAmp and S-OMPddl selection procedure is the
following. Training signalsS are randomly splitted in two parts 6¥/2 samples. Each algorithm is then
trained on one part of the signal and the mean-square errtireofesulting model is evaluated on the
second part. This splitting and training is réntimes and the hyperparameter yielding to the minimal
averaged mean-square error is considered as optimal. Eatdtodhis then run on the full signals with
that parameter. Performances, averaged 6uetrials of all methods have been evaluated according to
the F-measure and a mean-square error computeld@i) samples.

Figure[® shows, from top to bottom, these performances vkhenreases fron2 to 40, whenM goes
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Fig. 6. Results comparing performances of different siemdbus sparse algorithms. We have varied (top) the nuinlmdr
active elements in the dictionary. (middle) the dictionaize M and (bottom) the number of signal to approximd@teOn the

left columns are given the F-measure of all methods whileatlerage mean-square errors are on the right column.

from 64 to 256 and whenL = 2,--- | 7. When varyingk, we can note that across the range of variation,
our IrM-BP method withp = 0 is competitive compared to all other approaches both wipeets to the

F-measure and the mean-square error criterion. Whiecreases, IrM-BP and M-FOCUSS with= 0.5
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Fig. 7. Examples of estimated row-norm using 3 differenpatgms. left) M = 128, N = 64, k = 10 and L = 3. right)
M =64, N =64, k =10 and L = 3. Here, we want to illustrate cases where a “good” sparsitpvery does not necessary

lead to low mean-square error.

perform also very good. This may be explained by the fact #sat increases, the optimal solution
becomes less and less sparse thus the need for a less aggpeswlty. CosAmp and S-OMP are very
competitive for smallk but as soon as the latter increases these two methods ardlacirgymore to
recover a “reasonable” sparsity pattern. Interestingly, remark that M-SBL yields to a poor sparsity
recovery measure while the resulting model achieves goahrsquare error. A reason for this is that the
model selection procedure tends to under-estimate the faisl and thus it leads to a model which keeps
many spurious dictionary elements as illustrated in Figliaad detailed in the sequel. From Figlle 6, we
can also notice that the two M-BP solvers, our M-BCD and thadveeber iteration approach perform
poorly compared to other methods. However, the Fornasieethod seems to be less sensitive to noise
and model selection since it provides a better sparsityepattecovery. It is worth noting that M-SBL
and these two latter methods always correctly select altrilne dictionary elements but they also have
the tendency to include other spurious ones.

In the middle and bottom plots, similar behavior as above lwarmighlighted. M-CosAmp yields to
very sparsity recovery while the resulting mean-squarerésrrather poor. Again our IrM-BP with = 0
yields the best mean-square error while providing a goodsgiggattern recovery. M-SBL and M-BCD
keeps too many spurious dictionary elements. All other oadhprovide in-between performances both
in term of F-measure and mean-square error.

FigurelT illustrates the behaviour of M-CosAmp, M-SBL and bt¥-BP with p = 0 for two different
experimental situations. On the left plot, we have a caserevioe one hand, M-CosAmp misses to
recover the first active dictionary element yielding thushigh mean-square error. On the other hand,

M-SBL achieves lower mean-square error while keeping feurieps dictionary elements in the model.
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In the meantime, IrM-BP recovers perfectly the sparsitygratand yields to low mean-square error. In
the right plot, we have another case where M-CosAmp achiegdect sparsity recovery but provides a
model with higher mean-square error than IrM-BP.

In most of the experimental situations presented here, EAGE and our IrM-BP seems to be the
two algorithms that perform the best with however, a cleavaathge for our IrM-BP. Nonetheless,
these two methods are actually related since both appreadiee a simultaneous sparse approximation
with a Jy2(C) penalty. The main difference lies in the algorithms since bi-BP owing to thee
term provides a smooth approximation of the quasi-norm whereas M-CosAmp directly solves the

approximation problem with théj »(C) penalty.

VI. CONCLUSIONS AND PERSPECTIVES

This paper aimed at contributing to simultaneous sparseakigpproximation problems on several
points. Firstly, we have proposed an algorithm for solving multiple signal counterpart of Basis Pursuit
Denoising named, M-BCD. The algorithm we introduced is daxgnd efficient. It is based on a block-
coordinate descent algorithm which only needs matrix iplidgétions. Then, we have considered the
more general non-convex approximation problem with pgngjt. ,<2(C) for which M-BP is a special
case. We have shown that such a problem can also be undeestamd ARD problem. Afterward, for
addressing this ARD optimization problem, we derived arodfgm similar to M-FOCUSS which can
handle any; € [1,2].

Finally, we have introduced an iterative reweighted M-BBoathm for addressing the non-convex
optimization problem with penalty, 1 1<4<2(C). We also made clear the relationship between M-SBL
and such a reweighted algorithm. We provided some expetahegsults that show how our algorithms
behave and how they compare to other methods dedicated tdtam@ous sparse approximation. In
terms of performances for sparsity profile recovery, theeeixpental results show that our algorithms are
provided with interesting features such as a better alitityecover the joint signal sparsity profile and
a better estimation of the regression coefficients.

Owing to this formulation of the simultaneous sparse apipmation problem and its numerically
reproducible solution (due to convexity), our perspectivethis work is now to theoretically investigate
the properties of the M-BP problem as well as the statisficaperties of IrM-BP solutions. We believe
that the recent theoretical advance on the Lasso and raladiibds can be extended in order to make
clear in which situations M-BP and IrM-BP achieve consisteor better consistency compared to a single

signal approximation. Recent works have investigatedréteal properties of related problems [29], ]33],
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[34] and we plan to contribute to such efforts in the conteéxsimultaneous sparse approximation.
Further improvements on algorithm speed-up would also tagésting so that tackling very large-scale

approximation problem may become tractable.
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VII. APPENDIX
A. Proof of Lemma 1

By definition, a matrixG lies in 0.J; »(B) if and only if for every matrixZ, we have
J12(Z) > J12(B) +(Z - B,G)p (27)

If we expand this equation we have the following equivaleqiression

Z llzi,[l2 > Z 16, ll2 + Z(zz,- —bi\ 9i) (28)

From this latter equation, we understand that, since bigthand the Frobenius inner product are row-
separable, a matri% € 9.J; »(B) if and only if each row ofG belongs to the subdifferential of thig
norm of the corresponding row as.

Indeed, suppose th&k is so that any row ofG belongs to the subdifferential of thg norm of the

corresponding row oB. We thus have for any row
Vz, |zl2 = [|bi.ll2 + (z = bi., gi,) (29)

A summation over all the rows then proves th@t satisfies equation (P8) and thus belongs to the
subdifferential of.J; »(B).

Now, let us show that a matri& for which there exists a row that does not belong to the stdrdifitial
of the ¢, norm of the corresponding row d@ can not belong to the subdifferential df »(B). Let us

considerg; . the i-th row of G, since we have supposed that ¢ 0|b;..||2, the following equation holds

dzo st. |lzoll2 < ||bi,[l2 +(z — bi., 9i)

Now let us construcZ so thatZ = B except for thei-th row wherez;. = zy. Then it is easy to show

that this matrixZ does not satisfy equatiof{28), which means #Batloes not belong t@.J; »(B). In
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conclusion, we ged.J; »(B) by applying thel; norm subdifferential to each row d. And it is well

known [2Z] that

(30)
otherwise

{geRl:|glla<1} ifb=0
Allbllz = { .

Ib]l-
B. Proof of Lemma 2

We aim at proving that

mm{ w dtk>02<2d”5>”<1}(%:(Z:amkq)};)i

54%1 The proof proceeds by writing the Lagrangian of the optatian

whereq = andp =

s—i—r-‘,—l
problem :

L= Z szklj (Z (Z d1/8> " 1) — Zyt’kdt’k
PR th

where) and{v, ; } are the Lagrangian multipliers associated to the inequedibstraint and the positivity

constraints oni, ;. By deriving the first-order optimality conditions, we get :

oL |Gm.n|? As 772 DA =
— _ ) _ d L. d s
8dm,n d?mn Vm,n + r+s zt: t,n s m,n

According to these optimality conditions, at a stationaoynp we have eithet,, , = 0 or

rs/[(r+s)(s+1)]

< A >—s/(8+1)| |2 J(s+1) ( 1/ ) ( )
dmn = |75 g dtms 31
r+s -

Then, we can derive

(s+1) s+1 r/(r+s)
(Z d%m) — <T+ ) <Zr LG ) <§j d}n/;;> (32)

m m

s+1 (r+s)/(r+s+1)
(Z dl/s ) _ (T—;\-S (Z ’am7n’2/(s+1)> ) (33)

As \ # 0, the inequality on the mixed-norm aofy , becomes an equality. Hence, after powering each

and thus

side of Equation[(33) td/(r + s) and summing each side over we have :

r+s+1
Z (s++1)/(r+s+1) (34)
T+ s
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whereg, = 3 |am.n|> 1. Then, plugging equationE{34) aridl(33) irfol(31) gives tbsirgd result :

2s —r
gt

P | @

m,n T s41 r+s
str41
Zn dn

(35)

C. Proof of equation[(24)

We want to show that at optimality which occurs@t, we have

1
-1
sz-Et s; = ;sﬁ-(sj - ®CY)

which is equivalent, after factorizing witf, to show that
o?sj = Yys; — L, ®C*
This last equation can be proved using simple algebra
Sis; — 5 ®C = o7s; + 8DP's — (0’1 + $DP')PC*
= o’s; + ®D®'s — ®(s*I + DP'®)C*

= o%s; + ®D®'s — PDP's

— 25
= 07s;
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