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Simultaneous Sparse Approximation : insights

and algorithms
Alain Rakotomamonjy

Abstract

This paper addresses the problem of simultaneous sparse approximation of signals, given an over-

complete dictionary of elementary functions, with a joint sparsity profile induced by aℓp − ℓq mixed-

norm. Our contributions are essentially two-fold i) makingconnections between such an approach and

other methods available in the literature and ii) on providing algorithms for solving the problem with

different values ofp and q. At first, we introduce a simple algorithm for solving the multiple signals

extension of the Basis Pursuit Denoising problem (p = 1 and q = 2). Then, we show that for general

sparsity-inducingℓp − ℓq mixed-norm penalty, this optimization problem is actuallyequivalent to an

automatic relevance determination problem. From this insight, we derive an simple EM-like algorithm

for problems withℓ1 − ℓq≤2 penalty. For addressing approximation problem with non-convex penalty

(p < 1), we propose an iterative reweighted Multiple-Basis Pursuit ; we trade the non-convexity of the

problem against several resolutions of the convex multiple-basis pursuit problem. Relations between such

a reweighted algorithm and the Multiple-Sparse Bayesian Learning are also highlighted. Experimental

results show how our algorithms behave and how they compare to related approaches (such as CosAmp)

for solving simultaneous sparse approximation problem.

EDICS: DSP-TFSR, MLR-LEAR

I. INTRODUCTION

Since several years now, there has been a lot of interest about sparse signal approximation. This large

interest comes from frequent wishes of practitioners to represent data in the most parsimonious way.

According to this objective, in signal analysis, one usually wants to approximate a signal by using a

A. Rakotomamonjy is with the LITIS EA4108, University of Rouen, France.
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linear combination of elementary functions called a dictionary. Mathematically, such a problem can be

formulated as the following optimization problem :

min
c
‖c‖0 st s = Φc

wheres ∈ R
N is the signal vector to be approximated,Φ ∈ R

N×M is a matrix of unit-norm elementary

functions,c a weight vector and‖·‖0 theℓ0 pseudo-norm that counts the number of non-zero components

in its vector parameter. Solving this problem of finding the sparsest approximation over a dictionaryΦ

is a hard problem, and it is usual to relax the problem in orderto make it more tractable. For instance,

Chen et al. [7] have posed the problem as a convex optimization problem by replacing theℓ0 pseudo-

norm with a ℓ1 norm and proposed the so-called Basis Pursuit algorithm. Greedy algorithms are also

available for solving this sparse approximation problem [37], [50]. Such a family of algorithms known

as Matching Pursuit is simply based on iterative selection of dictionary elements. Although the original

sparse approximation problem has been relaxed, both Basis Pursuit and Matching Pursuit algorithms can

be provided with some conditions whereby they are guaranteed to produce the sparsest approximation of

the signal vector [11], [49].

A natural extension of sparse approximation problem is the problem of finding jointly sparse repre-

sentations of multiple signal vectors. This problem is alsoknown as simultaneous sparse approximation

and it can be stated as follows. Suppose we have several signals describing the same phenomenon, and

each signal is contaminated by noise. We want to find the sparsest approximation of each signal by using

the same set of elementary functions. Hence, the problem consists in finding the best approximation

of each signal while controlling the number of functions involved in all the approximations. Such a

situation arises in many different application domains such as sensor networks signal processing [35],

neuroelectromagnetic imaging [25], [40] and source localization [36].

A. Problem formalization

Formally, the problem of simultaneous sparse approximation is the following. Suppose that we have

measuredL signals{si}
L
i=1 where each signal is of the form

si = Φci + ǫ

wheresi ∈ R
N , Φ ∈ R

N×M is a matrix of unit-norm elementary functions,ci ∈ R
M a weighting vector

andǫ is a noise vector.Φ will be denoted in the sequel as the dictionary matrix. Sincewe have several

signals, the overall measurements can be written as :

S = ΦC + E (1)
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with S = [s1 s2 · · · sL] a signal matrix,C = [c1 c2 · · · cL] and E a noise matrix. Note that in the

sequel, we have adopted the following notations.ci,· and c·,j respectively denote theith row andjth

column of matrixC andci,j is the ith element in thejth column ofC.

For the simultaneous sparse approximation problem, the goal is then to recover the matrixC given

the signal matrixS and the dictionaryΦ under the hypothesis that all signalssi share the same sparsity

profile. This latter hypothesis can also be translated into the coefficient matrixC having a minimal

number of non-zero rows. In order to measure the number of non-zero rows ofC, a frequent criterion

is the so-calledrow-supportor row-diversity measureof a coefficient matrix defined as

rowsupp(C) = {i ∈ [1 · · ·M ] : ci,k 6= 0 for somek}

The row-support ofC tells us which atoms of the dictionary have been used for building the signal

matrix. Hence, if the cardinality of the row-support is lower than the dictionary cardinality, it means that

at least one atom of the dictionary has not been used for synthesizing the signal matrix. Then, the row-ℓ0

pseudo-norm of a coefficient matrix can be defined as :

‖C‖row−0 = |rowsupp(C)|

According to this definition, the simultaneous sparse approximation problem can be stated as

minC
1
2‖S−ΦC‖2F

st. ‖C‖row−0 ≤ T
(2)

where ‖ · ‖F is the Frobenius norm andT a user-defined parameter that controls the sparsity of the

solution. Note that the problem can also take the different form :

minC ‖C‖row−0

st. 1
2‖S−ΦC‖F ≤ ǫ

(3)

For this latter formulation, the problem translates in minimizing the number of non-zero rows in the

coefficient matrixC while keeping control on the approximation error. Both problems (2) and (3) are

appealing for their formulation clarity. However, similarly to the single signal approximation case, solving

these optimization problems are notably intractable because‖·‖row−0 is a discrete-valued function. Hence,

some relaxed versions of these problems have been proposed in the literature.

B. Related works

Two ways of addressing problems (2) and (3) are possible : relaxing the problem by replacing the

‖ · ‖row−0 function with a more tractable row-diversity measure or by using some suboptimal algorithms.

We details these two approaches in the sequel.
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A large class of relaxed versions of‖ · ‖row−0 proposed in the literature are encompassed into the

following form :

Jp,q(C) =
∑

i

‖ci,·‖
p
q

where typicallyp ≤ 1 andq ≥ 1. This novel penalty term can be interpreted as theℓp quasi-norm of the

sequence{‖ci,·‖q}i. Note that asp converges to0, Jp,q(C) provably converges towards
∑

i log(‖ci,·‖).

According to this relaxed version of the row-diversity measure, most of the algorithms proposed in the

literature try to solve the relaxed problem :

min
C

1

2
‖S−ΦC‖2F + λJp,q(C) (4)

whereλ is another user-defined parameter that balances the approximation error and the sparsity-inducing

penaltyJp,q(C). The choice ofp and q results in a compromise between the row-support sparsity and

the convexity of the optimization problem. Indeed, problem(4) is known to be convex whenp, q ≥ 1

while it is known to produce a row-sparse matrixC if p ≤ 1 (due to the penalty function singularity at

C = 0 [16]).

Several authors have proposed methods for solving problem (4). For instance, Cotter et al. [8] developed

an algorithm for solving problem (4) whenp ≤ 1 andq = 2, known as M-FOCUSS. Such an algorithm

based on factored gradient descent have been proved to converge towards a local or global (whenp = 1)

minimum of problem (4) if it does not get stuck in a fixed-point.

The casep = 1, q = 2, named as M-BP for Multiple Basis Pursuit in the following, is a special case

that deserves attention. Indeed, it seems to be the most natural extension of the so-called Lasso problem

[46] or Basis Pursuit Denoising [7], since forL = 1, problem (4) reduced to the Lasso problem. The

key point of this case is that it yields to a convex optimization problem and thus it can benefit from all

properties resulting from convexitye.gglobal minimum. Malioutov et al. [36] have proposed an algorithm

based on a second-order cone programming formulation for solving the M-BP convex problem which at

the contrary of M-FOCUSS, always converges to the problem global solution.

Whenp = 1 andq = 1, again we fall within a very particular case that has been studied by Chen et al.

[6]. In this case, the simultaneous sparse problem can be decoupled inL independent problems. In such

a situation, estimations of theL true signals are no more guaranteed to have the same sparsityprofile,

thus the problem can hardly be considered as a simultaneous sparse approximation problem. However,

in this case, one can use efficient algorithms that solve the well-known Lassoproblem [46], [12], [18].

Another important piece of work belonging to the framework of convex relaxation is the one of Tropp

[48]. In this latter work, Tropp proposed to relax problem (2), (3) and (4) by replacing‖C‖0 with a
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J1,∞(C) penalty. He then analyzed the theoretical properties of thedifferent problem formulations and

provided some conditions under which that convex relaxation produces good solutions.

Very recently, Baraniuk et al. [1] have extended the CosAmp algorithm of Needell et al. [39] in

order to address simultaneous sparse approximation using the penaltyJ0,2(C). Besides providing a

computationally efficient approach, they also provide theoretical guarantees on estimation robustness.

In the sequel, we denote the algorithm of Baraniuk et al. as M-CosAmp.

The approach proposed by Wipf et al. [54], denoted in the sequel as Multiple-Sparse Bayesian Learning

(M-SBL), for solving the sparse simultaneous approximation is somewhat related to the optimization

problem in equation (4) but from a very different perspective. Indeed, if we consider that the above

described approaches are equivalent to a MAP-estimation procedures, then Wipf et al. have explored a

Bayesian model which prior encourages sparsity. In this sense, their approach is related to the relevance

vector machine of Tipping et al. [47]. Algorithmically theyproposed an empirical bayesian learning

approach based on Automatic Relevance Determination (ARD). The ARD prior over each row they have

introduced is

p(ci,·; di) = N (0, diI) ∀i

whered is a vector of non-negative hyperparameters that govern theprior variance of each coefficient

matrix row. Hence, these hyperparamaters aim at catching the sparsity profile of the approximation.

Mathematically, the resulting optimization problem is to minimize according tod the following cost

function :

L log |Σt|+
L
∑

j=1

st
jΣ

−1
t sj (5)

whereΣt = σ2I + ΦDΦt, D = diag(d) andσ2 a parameter of the algorithm related to the noise level

presented in the signals to be approximated. The algorithm is then based on a likelihood maximization

which is performed through an Expectation-Minimization approach. Very recently, a very efficient al-

gorithm for solving this problem has been proposed [31]. However, the main drawback of this latter

approach is that due to its greedy nature, and as any EM algorithm where the objective function is not

convex, the algorithm can be easily stuck in local minima.

The second family of methods for solving the simultaneous sparse approximation is to use a suboptimal

forward sequential selection of a dictionary element. These algorithms denoted as S-OMP in the sequel

[51], are a simple extension of the well-known Matching Pursuit technique to simultaneous approximation.
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While the algorithms are relatively simple, their main advantage is their efficiency and some theoretical

guarantees about the correctness of the approximation can be provided [28], [51].

Due to the recent interest around compressed sensing, the number of works addressing simultaneous

sparse approximation problem have flourished. Many of thesepapers consider exactly sparse signal

recovery which is not the case we are interested in since we assume that the signals we have are noisy.

Nonetheless, they are of great interest since most of those papers propose theoretically guaranteed recovery

schemes [38], [15], [14].

C. Our contributions

At the present time, one of the most interesting approach forsimultaneous sparse approximation is

the Bayesian approach introduced by Wipf et al. [54] and further improved by Ji et al. [31] in terms of

speed efficiency. However, in this paper, we depart from thisroute and instead consider a (frequentist)

regularized empirical minimization approach. Indeed, in view of the very flourishing literature onℓp

minimization algorithms and subsequent theoretical results (e.g consistency of estimator, convergence

rate, ... [32], [43], [56]) related to single signal sparse approximation, we think that many of these results

can be transposed to the multiple signal approximation caseand we hope with this paper to give our

dime to reach that objective. Hence, we follow the steps of Cotter et al. [8] and Malioutov et al. [36] in

considering usingℓp minimization problem for simultaneous sparse approximation, but propose a different

way of solving the minimization problem (4). Our contributions in this paper are essentially on novel

algorithms for solving that problem for different values ofp and q and on some novel insights on its

connection with different existing approaches for simultaneous sparse approximation.

At first, we develop a simple and efficient algorithm for solving the M-Basis Pursuit problem (p = 1

andq = 2). We show that by using results from non-smooth optimization theory, we are able to propose

an block-coordinate descent method which only needs some matrix multiplications. In this sense, this first

contribution is strongly related to the work of Sardy et al. [44] for single-signal approximation and thus

it can be understood as an extension of their block-coordinate approach to simultaneous approximation.

A proof of convergence and a discussion with related works such as those of Fornasier et al. [20], Elad

et al. [13] and Sardy et al. [44] are also provided.

Then, we focus on the more general situation wherep > 0 andq ≤ 2 in Jp,q(C). We show that such a

row-diversity measure is actually related to automatic relevance determination (ARD). Indeed, we show

that for anyp > 0 and q ≤ 2, Jp,q can be interpreted as a weighted 2-norm row-measure and these
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weights evaluate the relevance of a given entry of the matrixC. The equivalence betweenJp,q(C) and

the ARD needs the weights to be optimized according to certain constraints (which for instance induce

some row-sparsity ofC). Owing to this insight, we clarify the relation between M-FOCUSS and the

Multiple-Sparse Bayesian Learning of Wipf et al. [54] (which also uses ARD) for any value ofp > 0.

Then, from this ARD formulation, we derive an Iterative Reweighted Least-Square algorithm, which has

the flavor of M-FOCUSS, for solving problem withJ1,1≤q≤2. To the best of our knowledge, this is the

first algorithm for sparse simultaneous approximation withJ1,1<q<2(C).

Afterward, instead of directly deriving a proper algorithmfor solving the non-convex optimization

problem whenp < 1 and 1 ≤ q ≤ 2, we propose an iterative reweighted algorithm which reusesour

algorithms that solve problem (4) with penaltyJ1,1≤q≤2(C). Using a Majorize-Minimize optimization

framework, we show that depending on the chosen weights, such an iterative reweighted scheme can

actually solve problem (4). Our main contribution at this point is to have translated the non-convex

problem (4) into a serie of convex problems. In this sense, itcan be considered as an extension of the

work of Candès et al. [4], Foucart et al. [21] and Gasso et al.[23] to simultaneous sparse approximation.

Furthermore, by choosing a different weighting scheme, we show that our iterative reweighted approach

is strongly related to M-SBL. An experimental comparison ofthese two (and other) algorithms will make

clear the benefits and disadvantages of using our iterative reweighted algorithm. For instance, experimental

results show that although our iterative reweighted approach is slower than the M-CosAmp of Baraniuk

et al. [1], it is able to provide better estimation of the coefficient matrixC.

The paper is organized as follows. Section II introduces anddiscusses our block-coordinate algorithm

for solving the M-BP problem. Section III deals with the equivalence between ARD andJp,q(C)

optimization. An algorithm which addresses the general case wherep = 1 and1 ≤ q ≤ 2 is then proposed.

Then, the iterative reweighted algorithm for addressing the optimization problem whenp < 1 is described

and discussed in Section IV. Experimental results presenting performance of our algorithms are in Section

V while conclusion and perspectives in Section VI close the paper. For a sake of reproducibility, the code

used in this paper is available on http://asi.insa-rouen.fr/enseignants/∼arakotom/code/SSAindex.html

II. SIMPLE ALGORITHM FOR M-BASIS PURSUIT

The algorithm we propose in this section addresses the particular case ofp = 1 and q = 2, denoted

as the M-BP problem. We show that the specific structure of theproblem leads to a very simple block

coordinate descent algorithm named as M-BCD. We also show that if the dictionary is under-complete

then it can be proved that the solution of the problem is equivalent to a simple shrinkage of the coefficient
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matrix. Proof of convergence of our M-BCD algorithm is also given in this section

Before delving into the algorithmic details, we should notethat block-coordinate descent have already

been considered by Sardy et al. [44] and Elad [13] for sparse signal approximations from orthogonal and

redundant representations. Hence the numerical scheme we propose here can be seen as an extension of

their works to vector-valued data.

A. Deriving optimality conditions

The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S−ΦC‖2F + λ

∑

i

‖ci,·‖2 (6)

where the objective functionW (C) is a non-smooth but convex function. Since the problem is un-

constrained a necessary and sufficient condition for a matrix C⋆ to be a minimizer of (6) is that

0 ∈ ∂W (C⋆) where∂W (C) denotes the subdifferential of our objective valueW (C) [2]. By computing

the subdifferential ofW (C) with respect to each rowci,· of C, the KKT optimality condition of problem

(6) is then

−ri + λgi,· = 0 ∀i

whereri = φt
i(S −ΦC) andgi,· is the i-th row of a subdifferential matrixG of J1,2(C) =

∑

i ‖ci,·‖2.

The following lemma which proof has been postponed to the appendix, characterizes this subdifferential

G of J1,2(C).

Lemma 1:A matrix G is a subdifferential ofJ1,2(C) =
∑

i ‖ci,·‖2 if and only if the j-th row of G

satisfies

et
jG ∈







{g ∈ R
L : ‖g‖2 ≤ 1} if ∀k, cj,k = 0

cj,·

‖cj,·‖2
otherwise

whereej is a canonical vector ofRM .

According to this definition ofJ1,2’s subdifferential, the KKT optimality conditions can be rewritten as

− ri + λ
ci,·

‖ci,·‖2
= 0 ∀i, ci,· 6= 0 (7)

‖ri‖2 ≤ λ ∀i, ci,· = 0

A matrix C satisfying these equations can be obtained after the following algebra. Let us expand each

ri so that

ri = φt
i(S−ΦC−i)− φt

iφici,·

= Ti − ci,· (8)

September 30, 2009 DRAFT



9

whereC−i is the matrixC with the i-th row being set to0 andTi = φt
i(S−ΦC−i). The second equality

is obtained by remembering thatφt
iφi=1. Then, equation (7) tells us that ifci,· is non-zero,Ti and ci,·

have to be collinear. Plugging all these points into equation (7) yields to an optimal solution that can be

obtained as :

ci,· =

(

1−
λ

‖Ti‖

)

+

Ti ∀i (9)

From this update equation, we can derive a simple algorithm which consists in iteratively applying the

update (9) to each row ofC.

B. The algorithm and its convergence

Our block-coordinate descent algorithm is detailed in Algorithm (1). It is a simple and efficient

algorithm for solving M-BP.

Basically, the idea consists in solving each rowci.· at a time. By starting from a sparse solution like,

C = 0, at each iteration, we check for a giveni whether rowci,· is optimal or not based on conditions

(7). If not, ci,· is then updated according to equation (9).

Although, such a block-coordinate algorithm does not converge in general for non-smooth optimization

problem, Tseng [52] has shown that for an optimization problem which objective value is the sum of

a smooth and convex function and a non-smooth but block-separable convex function, block-coordinate

optimization converges towards the global minimum of the problem. Our proof of convergence is based

on such properties and follows the same line as the one proposed by Sardy et al. [44].

Theorem 1:The M-BCD algorithm converges to a solution of the M-Basis Pursuit problem given in

Equation (6), where convergence is understood as any accumulation point of the M-BCD algorithm is a

minimum of problem (6) and the sequence of{Ck} generated by the algorithm is bounded.

Proof: Note that M-BP problem presents a particular structure witha smooth and differentiable

convex function‖S−ΦC‖2F and a row-separable penalty function
∑

i hi(ci,·) whereh(·) is a continuous

and convex function with respects toci,·.

Also note that our algorithm considers a cyclic rule where within each loop, for eachi ∈ [1, · · · ,M ],

eachci,· is considered for optimization. The main particularity is that for somei, the ci,· may be left

unchanged by the block-coordinate descent if already optimal. This occurs especially for rowci,· which

are equal to0.

Then according to the special structure of the problem and the use of a cyclic rule, the results of Tseng

[52] prove that our M-BCD algorithm converges.
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Algorithm 1 Solving M-BP through block-coordinate descent
1: C = 0, Loop = 1

2: while Loop do

3: for i = 1, 2, · · · ,M do

4: Compute‖ri‖

5: if optimality condition ofci,· according to equations (7) is not satisfiedthen

6: ci,· =
(

1− λ
‖Ti‖

)

+
Ti

7: end if

8: end for

9: if all optimality conditions are satisfiedthen

10: Loop = 0

11: end if

12: end while

Intuitively, we can understand this algorithm as an algorithm which tends to shrink to zero rows of

the coefficient matrix that contribute poorly to the approximation. Indeed,Ti can be interpreted as the

correlation between the residual when rowi has been removed andφi. Hence the smaller the norm ofTi

is, the lessφi is relevant in the approximation. And according to equation(9), the smaller the resulting

ci,· is. Insight into this block-coordinate descent algorithm can be further obtained by supposing that

M ≤ N and thatΦ is composed of orthonormal elements ofR
N , henceΦtΦ = I. In such situation, we

have

Ti = φt
iS and ‖Ti‖

2
2 =

L
∑

k=1

(φt
isk)

2

and thus

ci,· =



1−
λ

√

∑L
k (φt

isk)2





+

φt
iS

This last equation highlights the relation between the single Basis Pursuit (whenL = 1) and the Multiple-

Basis Pursuit algorithm presented here. Both algorithms lead to a shrinkage of the coefficient projection.

With the inclusion of multiple signals, the shrinking factor becomes more robust to noise since it depends

on the correlation of the atomφi to all signals.
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C. Some relations with other works

As we have already stated, our M-BCD algorithm can be considered as an extension to simultaneous

signal approximations of the works of Sardy et al. [44] and Elad [13]. However, here, we want to

emphasize the importance of starting from aC = 0. Indeed, since in the estimated̂C is expected to be

sparse, by doing so, only few updates are needed before convergence.

In addition to the works of Sardy et al. and Elad, many others authors have considered block-coordinate

descent algorithm for related sparse approximation problems. For instance, it has also been used for

solving the Lasso [22], and the elastic net [55]. Other workshave also considered iterative thresholding

algorithms for solving single signal sparse approximationproblem [9], [19].

For recovering vector valued data with joint sparsity constraints, Fornasier et al. [20] have proposed

an extension of the Landweber iterative approach of Daubechies et al. [9]. In their work, Fornasier et al.

have also used an iterative shrinking algorithm (which has the flavor of a gradient projection approach)

which is able to solve the general problem (4) withp = 1 and q = {1, 2,∞}. For q = 2, the main

difference between their algorithm and the one we propose here is that, by optimizing at each loop, only

theci,·’s that are not optimal yet, we have an algorithm that is more efficient than the one of Fornasier et al.

As we stated previously, the M-FOCUSS algorithm also solvesthe M-BP problem. In their M-FOCUSS

approach, Cotter et al. [8] have proposed a factored gradient algorithm. That algorithm is related to

iterative reweighted least-squares, which at each iteration updates the coefficient matrixC. However,

their factored gradient algorithm presents a important issue. Indeed, the updates they propose are not

guaranteed to converge to a local minima of the problem (if the problem is not convexp < 1) or to the

global minimum of the convex problem (p = 1). Indeed, their algorithm presents several fixed-points

since when a row ofC is equal to0, it stays at0 at the next iteration. Although such a point may

be harmless if the algorithm is initialized with a “good” starting point, it is nonetheless an undesirable

point when solving a convex problem. At the contrary, our M-BCD algorithm does not suffer from the

presence of such fixed-points. However, such fixed-points inthe M-FOCUSS algorithm can be handled by

introducing a smoothing termε in the weight so that the updated weight (according to Cotter’s notation

and forp = 1) becomes

W = diag

(

√

‖ci,·‖+ ǫ

)

whereW is the diagonal weighting matrix andε > 0. The use ofε avoids a given weight to be at zero

and consequently it avoids the relatedci,· to stay permanently at zero. Then if we furthermore note that
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M-FOCUSS is not more than an iterative reweighted least-square. According to the very recent works

of Daubechies et al. [10] and Chartrand et al. [5], it seems justified to iterate the M-FOCUSS algorithm

using decreasing value ofε. In our numerical experimental, we will consider the M-FOCUSS algorithm

with fixed and decreasing value ofε.

D. Evaluating complexity

From a computational complexity point of view, it is not possible to evaluate the exact number

of iterations that will be needed before convergence of our algorithm. However, we can analyze the

computational cost per each iteration. Although, this may not be relevant since the number of iterations

needed for the considered algorithms to converge may be verydifferent, such knowledge give an hint

about the algorithm scaling with respects to parameters of the simultaneous sparse approximation problem.

For our M-BCD algorithm, we can note that each shrinking operation, in the worst case scenario, has

to be doneM times and the dominating cost for each update is the computation of Ti. This computation

involves the matrix multiplicationΦC−i and a matrix-vector multiplication which respectively need

O(NML) andO(NL) operations. On the overall, if we assume that at each iteration, all ci,· are updated,

we can consider that the computational cost of our algorithmis aboutO(M2NL). This cost per iteration

can be compared to the one of M-FOCUSS algorithm and second-order code programming of Malioutov

et. al [36] which are respectivelyO(MN2) andO(M3L3). Theoretically, it seems that our algorithm

suffers more than M-FOCUSS from large dictionary size but itis far more efficient than the SOC

programming.

Illustrations of how our algorithm behaves and empirical computational complexity evaluations are

given in section V.

III. ARD F ORMULATION OF SIMULTANEOUS SPARSEAPPROXIMATION

In this section, we focus on the relaxed optimization problem given in (4) with the general penalization

Jp,q(C). Our objective here is to clarify the connection between such a form of penalization and the

automatic relevance determination ofC’s rows, which has been the keystone of the Bayesian approach

of Wipf et al [54]. We will show that for a set of values ofp and q, the mixed-normJp,q(C) has

an equivalent variational formulation. Then by using this novel formulation in problem (4), instead of

Jp,q(C), we exhibit the relation between our sparse approximation problem and ARD. We then propose

an iterative reweighted least-square approach for solvingthe resulting ARD problem.
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A. Exhibiting the relation with ARD

For this purpose, we first consider the following formulation of the simultaneous sparse approximation

problem:

min
C

1

2
‖S−ΦC‖2F + λ′ (Jp,q(C))

2

p . (10)

In the convex case (forp ≥ 1 andq ≥ 1), since the power function is strictly monotonically increasing,

problems (4) and (10) are equivalent, in the sense that for a given valueλ′, there exists aλ so that

solution of the two problems are equal. WhenJp,q is not convex, this equivalence does not strictly apply.

However, due to the nature of the problem, the problem formulation (10) is more convenient for exhibiting

the relation with ARD.

Let us introduce the key lemma that allows us to derive the ARD-based formulation of the problem.

This lemma gives a variational form of theℓp,q norm of a sequence{at,k}.

Lemma 2: if s > 0 and{at,k : k ∈ Nn, t ∈ NT } ∈ R such that at least oneat,k > 0, then

min
d







∑

t,k

|at,k|
2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

) s

r+s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)
p

q





2

p

(11)

whereq = 2
s+1 andp = 2

s+r+1 . Furthermore, at optimality, we have:

d⋆
t,k =

|at,k|
2s

s+1

(

∑

u |au,k|
2

s+1

) r

s+r+1

(

∑

v

(

∑

u |au,v|
2

s+1

)
s+1

s+r+1

)r+s (12)

Proof : See Appendix.

According to this lemma, theℓp,q norm of a sequence can be computed through a minimization

problem. Hence, applying this lemma to(Jp,q(C))
2

p by definingat,k = ct,k, we get a variational form

of the penalization term. We can also note that the mixed-norm on the matrix coefficients has been

transformed to a mixed-norm on weight matrixd.

Then plugging the above variational formulation of the penalization term in problem (10) yields to the

following equivalent problem :

min
C,d

1
2‖S−ΦC‖2F + λ

∑

t,k
c2

t,k

dt,k

s.t.
∑

k

(

∑

t d
1/s
t,k

)
s

r+s

≤ 1

dt,k ≥ 0 ∀t, k

(13)

This problem is the one which makes clear the automatic relevance determination interpretation of the

original formulation (4). Indeed, we have transformed problem (4) into a problem with a smooth objective
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(r, s)

(0, 1) (1, 0) ( 1

2
, 1

2
)

d ℓ1,1 ℓ1,∞ ℓ1,2

C ℓ1,1 ℓ1,2 ℓ
1, 4

3

TABLE I

EQUIVALENCE BETWEEN MIXED-NORM ON d AND C FOR DIFFERENT VALUES OFr AND s.

function at the expense of some additional variablesdt,k. These parametersdt,k actually aim at determining

the relevance of each element ofC. Indeed, in the objective function, each squared-valuect,k is now

inversely weighted by a coefficientdt,k. By taking the convention thatx0 =∞ if x 6= 0 and0 otherwise,

the objective value of the optimization problem becomes finite only if dt,k = 0 for c2
t,k = 0. Then the

smallerdt,k is, the smaller thect,k norm should be. Furthermore, optimization problem (13) also involves

some constraints on{dt,k}. These constraints impose the matrixd to have positive elements and to be

so that itsℓ 1

r+s
, 1

s

mixed-norm is smaller than1. Note that this mixed-norm ond plays an important role

since it induces the row-norm sparsity onC. According to the relation betweenp, r ands, for p < 1, we

also haver+s > 1, making theℓ 1

r+s
, 1

s

non-differentiable with respect to the first norm. Such singularities

favor row-norm sparsity of the matrixd at optimality, inducing row-norm sparsity ofC. As we have

noted above, when a row-norm ofd is equal to 0, the corresponding row-norm ofC should also be equal

to 0 which means that the corresponding element of the dictionary is “irrelevant” for the approximation of

all signals. Problem (13) proposes an equivalent formulation of problem (4) for which the row-diversity

measure has been transformed in another penalty function owing to an ARD formulation. The trade-off

between convexity of the problem and the sparsity of the solution has been transferred fromp, q to r

ands. Table I gives some examples of equivalence between the two mixed-norms ond andC.

From a Bayesian perspective, we can interpret the row-norm on d as the diagonal term of the covariance

matrix of a Gaussian prior over the row-norm onC distribution. This is typically the classical Bayesian

Automatic Relevance Determination approach as proposed for instance in the following works [41], [47].

This novel insight on the ARD interpretation ofJp,q(C) clarifies the connection between the M-FOCUSS

algorithm of Cotter et al. [8] and the M-SBL algorithm of Wipfet al. [54] for any value ofp < 1. In

their previous works, Wipf et al. have proved that these two algorithms were related whenp ≈ 0. Here,

we refine their result by enlarging the connection for other values ofp. In a frequentist framework, we

can also note that Grandvalet et al. has proposed a similar approach for feature selection in generalized
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Algorithm 2 Iterative Reweighted Least-Square for addressingJ1,1≤q2 penalty

1: Initialize d(0) to a strictly positive matrix

2: t = 1

3: while Loop do

4: C(t) ← solution of problem (14) with fixedd = d(t−1) as given by Equation (15)

5: d(t) ← solution of problem (14) with fixedC = C(t) as given by Equation (16)

6: t← t + 1

7: if stopping condition is satisfiedthen

8: Loop = 0

9: end if

10: end while

linear models and SVM [26], [27].

B. Solving the ARD formulation forp = 1 and 1 ≤ q ≤ 2

Here, we propose a simple iterative algorithm for solving problem (13) forp = 1 and1 ≤ q ≤ 2. Our

algorithm, named as M-EMq, is based on an iterative-reweighted least squares where the weights are

updated according to equation (12). Thus, it can be seen as anextension of the M-FOCUSS algorithm

of Cotter et al. forq ≤ 2. Note that we have restricted ourselves top = 1 since we will show in the next

section thatp < 1 can be handled using another reweighted scheme.

Sincep = 1, thuss + r = 1, the problem we are considering is :

min
C,d

∑

k
1
2

(

‖sk −Φc·,k‖
2
2 + λ

∑

t
c2

t,k

dt,k

)

= Jobj(C,d)

s.t.
∑

k

(

∑

t d
1/s
t,k

)s
≤ 1

dt,k ≥ 0

(14)

Since, we consider that1 ≤ q ≤ 2 hence0 ≤ s ≤ 1 1, this optimization problem is convex with

a smooth objective function. We propose to address this problem through a block-coordinate algorithm

which alternatively solves the problem with respects toC with the weightd being fixed and then keeping

C fixed and computes the optimal weightd. The resulting algorithm is detailed in Algorithm 2.

1for s = 0, we have explicitly used the sup norm of vectord·,k in the constraints.
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Owing to the problem structure, step 4 and 5 of this algorithmhas a simple closed form. Indeed, for

fixed d, each vectorc(t)
·,k at iterationt is given by :

c
(t)
·,k =

(

ΦtΦ + 2λD
(t−1)
k

)−1
Φtsk (15)

whereD
(t−1)
k is a diagonal matrix of entriesd(t−1)

·,k . In a similar way, for fixedC, step 5 boils down in

solving problem (11). Hence, by definingat,k = c
(t)
t,k, we also have a closed-form ford(t) as

d
(t)
t,k =

|at,k|
2s

s+1

(

∑

u |au,k|
2

s+1

)
1−s

2

∑

v

(

∑

u |au,v|
2

s+1

)
s+1

2

(16)

Note that similarly to the M-FOCUSS algorithm, this algorithm can also be seen as an iterative

reweighted least-square approach or as an Expectation-Minimization algorithm, where the weights are

defined in equation (16). Furthermore, it can be shown that ifthe weightsd are initialized to non-zero

values then at each loop involving step4 and5, the objective value of problem (14) decreases. Hence,

since the problem is convex, our algorithm should converge towards the global minimum of the problem.

Theorem 2:If the objective value of problem (14) is strictly convex (for instance whenΦ is full-rank),

and if for thet-th loop, after the step 5, we haved(t) 6= d(t−1), then the objective value has decreased,

i.e :

Jobj(C
(t+1),d(t)) < Jobj(C

(t),d(t)) < Jobj(C
(t),d(t−1)).

Proof : The right inequalityJobj(C
(t),d(t)) < Jobj(C

(t),d(t−1)) comes fromd(t) being the optimal

value of the optimization problem resulting from step5 of algorithm (2). The strict inequality yields

from the hypothesis thatd(t) 6= d(t−1) and from the strict convexity of the objective function. A similar

reasoning allows us to derive the left inequality. Indeed, since C(t) is not optimal with respects tod(t)

for the problem given by step(4), invoking the strict convexity of the associated objectivefunction and

optimality of C(t+1) concludes the proof.

As stated by the above theorem, the decrease in objective value is actually guaranteed unless, the

algorithm get stuck in some fixed points (e.g all the elements ofd being zero expect for one entry

{t1, k1}). In practice, we have experienced, by comparing forq = 2 with the M-BCD algorithm, that

if d is initialized to non-zero entries, algorithm (2) converges to the global minimum of problem (14).

Numerical experiments will illustrate this point.
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IV. REWEIGHTED M-BASIS PURSUIT

This section introduces an iterative reweighted M-Basis Pursuit (IrM-BP) algorithm and proposes two

ways for setting these weights. By using the first weighting scheme, we are able to provide an iterative

algorithm which solves problem (4) whenp < 1 and 1 ≤ q ≤ 2. The second weighting scheme makes

clear the strong relation between the empirical bayesian strategy of Wipf et al. [54] and our work.

A. Reweighted algorithm

Recently, several works have advocated that sparse approximations can be recovered through iterative

algorithms based on a reweightedℓ1 minimization [56], [4], [5]. Typically, for a single signalcase, the

idea consists in iteratively solving the following problem

min
c

1

2
‖s−Φc‖22 + λ

∑

i

zi|ci|

wherezi are some positive weights, and then to update the positive weightszi according to the solutionc⋆

of the problem. Besides providing empirical evidences thatreweightedℓ1 minimization yields to sparser

solutions than a simpleℓ1 minimization, the above cited works theoretically supportsuch claims. These

results for the single signal approximation case suggest that in the simultaneous sparse approximation

problem, reweighted M-Basis Pursuit would also lead to sparser solutions than the classical M-Basis

Pursuit.

Our iterative reweighted M-Basis Pursuit algorithm is defined as follows. We iteratively construct a

sequenceC(m) defined as

C(m) = argmin
C

1

2
‖S−ΦC‖2F + λ

∑

i

z
(m)
i ‖ci,·‖q (17)

where the positive weight vectorz(m) depends on the previous iterateC(m−1). For m = 1, we typically

definez(1) = 1 and form > 1, in our case, we will consider the following weighting scheme

z
(m)
i =

1

(‖c
(m−1)
i,· ‖q + ε)r

∀i (18)

where{c(m−1)
i,· } is the i-th row ofC(m−1), r a user-defined positive constant andε a small regularization

term that prevents from having an infinite regularization term for ci,·as soon asc(m−1)
i,· vanishes. This is

a classical trick that has been used for instance by Candès et al. [4] or Chartrand et al. [43]. Note that

for any positive weight vectorz, problem (17) is a convex problem that does not present localminima.

Furthermore, for1 ≤ q ≤ 2, it can be solved by our block-coordinate descent algorithmor by our M-EMq
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given in Algorithm 2, by simply replacingλ with λi = λ · zi. This reweighting scheme we propose is

similar to theadaptive lassoalgorithm of Zou et al. [56] but uses more than two iterationsand addresses

the simultaneous approximation problem.

B. Connections with Majorization-Minimization algorithm

The IrM-BP algorithm we proposed above can also be interpreted as an algorithm for solving an

approximation of problem (4) when0 < p < 1 and 1 ≤ q ≤ 2. Indeed, similarly to the reweightedℓ1

scheme of Candès et al. [4] or the one-step reweighted lassoof Zou et al. [57], our algorithm falls in

the class of majorize-minimize (MM) algorithms [30]. MM algorithms consists in replacing a difficult

optimization problem with a more easier one, for instance bylinearizing the objective function, by solving

the resulting optimization problem and by iterating such a procedure.

The connection between MM algorithms and our reweighted scheme can be made through linearization.

Let us first defineJp,q,ε(C) as an approximation of the penalty termJp,q(C) :

Jp,q,ε(C) =
∑

i

g (‖ci,·‖q + ε)

whereg(·) = | · |p. Sinceg(·) is concave for0 < p < 1, a linear approximation ofJp,q,ε(C) around

C(m−1) yields to the following majorizing inequality

Jp,q,ε(C) ≤ Jp,q,ε(C
(m−1)) +

∑

i

p
(

‖c
(m−1)
i,· ‖q + ε

)1−p (‖ci,·‖q − ‖c
(m−1)
i,· ‖q)

then for the minimization step, replacing in problem (4)Jp,q with the right part of the inequality and

dropping constant terms lead to our optimization problem (17) with appropriately chosenzi andr. Note

that for the weights given in equation (18),r = 1 corresponds to the linearization of a log penalty
∑

i log(‖ci,·‖+ ε) whereas settingr = 1− p corresponds to aℓp penalty (0 < p < 1).

MM algorithms have already been considered in optimizationproblems with sparsity-inducing penalties.

For instance, an MM approach have been used by Figueiredo et al. [17] for solving a least-square problem

with a ℓp sparsity-inducing penalty, whereas Candès et al. [4] haveaddressed the problem for exact

sparse signal recovery. In a context of simultaneous approximation, Simila [45] has also considered MM

algorithms while approximating the non-convex penalty with a quadratic term. Hence our contribution

here can be considered as an extension of their works to simultaneous sparse approximation using a

mixed ℓp − ℓq norm where at each iteration, this norm has been linearly approximated.
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Algorithm 3 Reweighted M-Basis Pursuit with annealing setting ofε

1: Initialize ε = 1, z = 1

2: while ε > εmin do

3: (Ĉ, ẑ)← solution of problem (17) usingz

4: Updatez according to equation (18) and̂C

5: ε← ε/10

6: end while

Analyzing the convergence of the sequenceC(m) towards the global minimizer of problem (4) is a

challenging issue. Indeed, several points make a formal proof of convergence difficult. At first, in order

to avoid a rowc
(m)
i,· to be permanently at zero, we have introduced a smoothing term ε, thus we are only

solving aε-approximation of problem (4). Furthermore, the penalty weuse is non-convex, thus using

a monotonic algorithm like a MM approach which decreases theobjective value at each iteration, can

not guarantee convergence to the global minimum of ourε-approximate problem. Hence, due to these

two major obstacles, we have left the convergence proof for future works. Note however that few works

have addressed the convergence issue of reweightedℓ1 or ℓ2 algorithms for single sparse signal recovery.

Notably, we can mention the recent work of Daubechies et al. [10] which provide a convergence proof

of iterative reweighted least square for exact sparse recovery. In the same flavor, Foucart et al. [21] have

proposed a tentative of rigorous convergence proof for reweightedℓ1 sparse signal recovery. Although, we

do not have any rigorous proof of convergence, in practice, we will show that our reweighted algorithm

provides good sparse approximations.

As already noted by several authors [4], [43], [10],ε plays a major role in the quality of the solution.

In the experimental results presented below, we have investigated two methods for settingε : the first

one is to set it to a fixed valueε = 0.001, the other one is denoted as an annealing approach which

consists in gradually decreasingε after having solved problem (17). This annealing approach is detailed

in Algorithm (3).

C. Relation with M-SBL

Recently, Wipf et al. [53] have proposed some new insights onAutomatic Relevance Determination and

Sparse Bayesian Learning. They have shown that, for the vector regression case, ARD can be achieved by

means of iterative reweightedℓ1 minimization. Furthermore, in that paper, they have sketched an extension

of such results for matrix regression in which ARD is used forautomatically selecting the most relevant
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covariance components in a dictionary of covariance matrices. Such an extension is more related to

learning with multiple kernels in regression as introducedby Girolami et al. [24] or Rakotomamonjy et

al. [42] although some connections with simultaneous sparse approximation can be made. Here, we build

on the works on Wipf et al. [53] and give all the details about how M-SBL and reweighted M-BP are

related.

Recall that the cost function minimized by the M-SBL of Wipf et al. [54] is

L(d) = L log |Σt|+
L
∑

j=1

st
jΣ

−1
t sj (19)

whereΣt = σ2I + ΦDΦt andD = diag(d), with d being a vector of hyperparameters that govern the

prior variance of each coefficient matrix row. Now, let us define g⋆(z) as the conjugate function of the

concavelog |Σt|. Since, that log function is concave and continuous onR
M
+ , according to the scaling

property of conjugate functions we have [3]

L · log |Σt| = min
z∈RM

ztd− Lg⋆
( z

L

)

Thus, the cost functionL(d) in equation (19) can then be upper-bounded by

L(d, z) , ztd− Lg⋆
( z

L

)

+
L
∑

j=1

st
jΣ

−1
t sj (20)

Hence when optimized over all its parameters,L(d, z) converges to a local minima or a saddle point of

(19). However, for any fixedd, one can optimize overz and get the tight optimal upper bound. If we

denote asz⋆ such an optimalz for any fixedd†, sinceL · log |Σt| is differentiable, we have, according

to conjugate function properties, the following closed form of z⋆

z⋆ = L · ∇ log |Σt|(d
†) = diag(ΦtΣ−1

t Φ) (21)

Similarly to what proposed by Wipf et al., Equations (20) and(21) suggest an alternate optimization

scheme for minimizingL(d, z). Such a scheme would consist, after initialization ofz to some arbitrary

vector, in keepingz fixed and in computing

d† = argmin
d

Lz(d) , ztd +

L
∑

j=1

st
jΣ

−1
t sj (22)

then to minimizeL(d†, z) for fixed d†, which can be analytically done according to equation (21).This

alternate scheme is then performed until convergence to some d⋆.
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Owing to this iterative scheme proposed for solving M-SBL, we can now make clear the connection

between M-SBL and an iterative reweighted M-BP according tothe following lemma. Again this is an

extension to the multiple signals case of a Wipf’s lemma.

Lemma 3:The objective function in equation (22) is convex and can be equivalently solved by

computing

C⋆ = argmin
C

Lz(C) =
1

2
‖S−ΦC‖2F + σ2

∑

i

z
1/2
i ‖ci,·‖ (23)

and then by setting

di = z
−1/2
i ‖c⋆

i,·‖ ∀i

Proof: Convexity of the objective function in equation (22) is straightforward since it is just a sum

of convex functions [3]. The key point of the proof is based onthe equality

st
jΣ

−1
t sj =

1

σ2
min
c
·,j

‖sj −Φc·,j‖
2
2 +

∑

i

c2
i,j

di
(24)

which proof is given in appendix. According to this equality, we can upper-boundLz(d) with

Lz(d,C) = ztd +
∑

j

1

σ2
‖sj −Φc·,j‖

2
2 +

∑

i,j

c2
i,j

di
(25)

The problem of minimizingLz(d,C) is smooth and jointly convex in its parametersC andd and thus

an iterative coordinatewise optimization scheme (iteratively optimizing overd with fixed C and then

optimizing overC with fixed d ) yields to the global minimum. It is easy to show that for any fixedC,

the minimal value ofLz(d,C) with respects tod is achieved when

di = z
−1/2
i ‖ci,·‖ ∀i

Plugging these solutions back into (25) and multiplying thethe resulting objective function withσ2/2

yields to

Lz(C) =
1

2

∑

j

‖sj −Φc·,j‖
2
2 + σ2

∑

i

z
1/2
i ‖ci,·‖ (26)

Making the relation betweenℓ2 and Frobenius norms concludes the proof.

Minimizing Lz(C) boils down to minimize the M-BP problem with an adaptive penalty λi = σ2 · z
1/2
i

on each row-norm. This latter point makes the alternate optimization scheme based on equation (21) and

(22) equivalent to our iterative reweighted M-BP for which weightszi would be given by equation (21).

The impact of this relation between M-SBL and reweighted M-BP is essentially methodological. Indeed,

its main advantage is that it turns the original M-SBL optimization problem into a serie of convex
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optimization problems. In this sense, our iterative reweighted algorithm described here, can again be

viewed as an application of MM approach for solving problem (19). Indeed, we are actually iteratively

minimizing a proxy function which has been obtained by majorizing each term of equation (19). Owing

to this MM point of view, convergence of our iterative algorithm towards a local minimum of equation

(19) is guaranteed [30]. Convergence for the single signal case using other arguments has also been

shown by Wipf et al. [53]. Note that similarly to M-FOCUSS, the original M-SBL algorithm based on

EM approach suffers from presence of fixed-points (whendi = 0). Hence, such an algorithm is not

guaranteed to converge towards a local minimum of (19). Thisis then another argument for preferring

IrM-BP.

V. NUMERICAL EXPERIMENTS

Some computer simulations have been carried out in order to evaluate the algorithms proposed in the

above sections. Results that have been obtained from these numerical studies are detailed in this section.

A. Experimental set-up

In order to quantify the performance of our algorithms and compare them to other approaches, we have

used simulated datasets with different redundancy factorsM
N , numberk of active elements and numberL

of signals to approximate. The dictionaryΦ is based onM vectors sampled from the unit hypersphere of

R
N . The true coefficient matrixC⋆ has been obtained as follows. The positions of thek non-zero rows

in the matrix are randomly drawn. The non-zero coefficients of C⋆ are then drawn from a zero-mean unit

variance Gaussian distribution. The signal matrixS is obtained as in equation (1) with the noise matrix

being drawn i.i.d from a zero-mean Gaussian distribution and variance so that the signal-to-noise ratio

of each single signal is10 dB. For a given experiment, when several trials are needed, we only resample

the dictionaryΦ and the additive noiseE .

Each algorithm is provided with the signal matrixS and the dictionaryΦ and will output an estimate

of C. The performance criterion we have considered are the mean-square error between the true and the

approximate signals and the sparsity profile of the coefficient matrix that has been recovered. For the

latter, we use as a performance criterion the F-measure between the row-support of the true matrixC⋆

and the estimate onêC. In order to take into account numerical precisions, we haveoverloaded the row

support definition as :

rowsupp(C) = {i ∈ [1 · · · M ] : ‖ci,·‖ < µ}
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Fig. 1. Examples of objective value evolution with respectsto computational time. Here we have,M = 128, N = 64, L = 3.

The number of active elements is : left)k = 5. right) k = 32. For each curve, the large point corresponds to the objective value

at convergence.

where µ is a threshold coefficient that has been set by default to0.01 in our experiments. From

rowsupp(Ĉ) and rowsupp(C⋆) respectively the estimated and true sparsity profile, we define :

F-measure= 2 ·
|rowsupp(Ĉ) ∩ rowsupp(C⋆)|

|rowsupp(Ĉ)|+ |rowsupp(C⋆)|
.

Note that the F-measure is equal to1 when the estimated sparsity profile coincides exactly with the true

one.

Regarding the stopping criterion, in the experiments presented below, we have considered convergence

of our M-BCD algorithm when the optimality conditions givenin equation (7) are satisfied up to a

tolerance of0.001 and when all matrix coefficientci,j variations are smaller than0.001. This latter

condition has also been used as a stopping criterion for our M-EM and IrM-BP algorithms.

B. Comparingℓ1 − ℓ2 M-BP problem solvers

In this first experiment, we have compared different algorithms which solves the M-BP problem with

p = 1 and q = 2. Besides our M-BCD and M-EM algorithms, we have also used theM-FOCUSS of

Cotter et al. [8] and the approach of Fornasier et al. [20] based on Landweber iterations and denoted in the

sequel as M-BPland. Note that for M-FOCUSS, we have modified the genuine algorithm by introducing

a ε parameter, set to0.001, which helps in avoiding a row-norm ofC to be permanently at0.
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TABLE II

SUMMARY OF M-BP SOLVERS COMPARISON. COMPARISONS HAVE BEEN CARRIED OUT FOR TWO VALUES OFk, THE

NUMBER OF ACTIVE ELEMENTS IN THE DICTIONARY AND HAVE BEEN AVERAGED OVER100 TRIALS. COMPARISON

MEASURES ARE THE TIME NEEDED BEFORE CONVERGENCE, THE DIFFERENCE IN OBJECTIVE VALUE AND THE LARGEST

COEFFICIENT MATRIX DIFFERENCE. FOR THE TWO LATTER MEASURE, THE BASELINE ALGORITHM IS CONSIDERED TO BE

THE M-BCD ONE.

k=5 k=32

Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3) Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3)

M-BCD 6.90 ± 3.13 - - 29.2 ± 8.6 - -

M-EM 58.87 ± 13.8 1.01 ± 0.36 2.54 ± 1.63 158.8 ± 7.1 8.02 ± 3.2 19.2 ± 5.3

M-Focuss 38.47 ± 9.97 9.75 ± 2.22 4.51 ± 1.57 74.6 ± 19.2 17.56 ± 3.2 25.3 ± 5.1

M-BPland 13.69 ± 3.62 0.04 ± 1.18 5.63 ± 1.19 24.7 ± 5.1 1.09 ± 6.9 31.1 ± 6.9

Figure 1 shows two examples of how the objective value of the different algorithms evolves with

respects to computational time. We can note that the two iterative reweighted least-square algorithms

(M-EM and M-FOCUSS) are the most computationally demanding. Furthermore, we also see that the

Landweber iteration approach of Fornasier et al. quickly reduces its objective value but compared to our

M-BCD method, it needs more time before properly converging. Table II summarizes more accurately the

difference between the four algorithms. As comparison criteria, we have considered the computational

time before convergence, the difference (compared to our M-BCD algorithm) in objective values and

the maximal absolute difference in the coefficient matrixci,j . The table clearly shows that our M-BCD

algorithm is clearly faster than M-BPland and the two iterative reweighted least-square approaches. We

can also note from the table that, although M-FOCUSS and our M-EM are not provided with a formal

convergence proof, these two algorithms seems to empirically converge to the problem global minimum.

C. Illustrating our M-BCD and IrM-BP algorithms

This other experiment illustrates the behavior of our M-BCDand Ir-MBP algorithms. As an experi-

mental set-up, we have usedM = 128, N = 64, L = 3 and the numberk of active elements in the

dictionary is equal to10. λ has been chosen so as to optimize the sparsity profile recovered by our

M-BCD algorithm. Since we just want to illustrate how the algorithms work, we think that such a default

value ofλ is sufficient for making our point.

Figure 2 respectively plots the variations of the objectivevalue, the row norms‖ci,·‖ and the F-

measure for our iterative shrinking algorithm. For this example, many iterations are needed for achieving
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Fig. 2. Illustration of our block coordinate descent algorithm for solving M-BP. Example of variation along the iterations

of : left) Objective value, middle) row-norm‖ci,·‖, right) F-measure. For this example, the dictionary size is128 while 10

active elements have been considered in the true sparsity profile.
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Fig. 3. Illustration of the iterative reweighted M-BP applied for J 1
2

,2 penalty. Example of variation along the iterations of :

left) Objective value, middle) row-norm‖ci,·‖, right) F-measure

convergence. However, we can note that the objective value decreases rapidly whereas the row-support

(middle plot) of Ĉ first increases, then many of these row-norms get shrunken tozero. Following this

trend, the F-measure slowly increases before yielding to its maximal value. In this example, we can see

that we have more non-zero rows than expected. Figure 3 showsthe same plots resulting from the same

approximation problem but using an Iterative reweighted M-BP with a penaltyJ 1

2
,2. The first iteration

corresponds to a single pass of M-BCD. The next iterations still help in shrinking to zero some coefficients

and thus in improving the sparsity profile of the estimateĈ although some true non-zero row-norms have

also been filtered out. For this problem, both algorithms arenot able to perfectly recover the true sparsity

profile, although for another value ofλ, the Ir-MBP algorithm would.

Figure 4 compares the true row-norm ofC with the ones obtained with our algorithms. On the left
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Fig. 4. Estimated row-norm obtained from the M-BCD and Ir-BCD (with p = 0.5) algorithms. left) k=10. right) k=20.

panel, the number of active elements is equal to10 and we can see that both algorithms (with the same

value of λ are able to recover the exact sparsity profile ofC. We can note that the concavity of the

penalty yields to a better estimation of the row-norm values. The right panel illustrates an example, for

k = 20, where the M-BCD algorithm tends to produce a solution whichreturns undesired non-zeros

row-norms whereas the Ir-MBP approach tends to shrink to zero some true non-zero rows.

D. Computational performances

We have also empirically assessed the computational complexity of our algorithms (we useds = 0.2,

thusq = 5
3 for M-EM and r = 1 for IrM-BP). We varied one of the different parameters (dictionary size

M , signal dimensionalityN ) while keeping the others fixed. All matricesΦ, C and S are created as

described above. Experiments have been run on a Pentium D-3 GHz with 4 GB of RAM using Matlab

code. The results in Figure 5, averaged over20 trials, show the computational complexity of the different

algorithms for different experimental settings. Note thatwe have also experimented on the M-SBL and

M-FOCUSS computational performances owing to the code of Wipf et al. [54] and have implemented the

CosAmp block-sparse approach of Baraniuk et al. [1] and the Landweber iteration method of Fornasier

et al. [20] 2. All algorithms need one hyperparameter to be set, for M-SBLand CosAmp, we were

able to choose the optimal one since the hyperparameter respectively depends on a known noise level

and a known number of active elements in the dictionary. For other algorithms, we have reported the

computational complexity for theλ that yields to the best sparsity recovery. Note that our aim here is

not give an exact comparison of computational complexity ofthe algorithms but just to give an order of

2All the implementations are included in the toolbox.
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Fig. 5. Estimating the empirical exponent, given in parenthesis, of the computational complexity of different algorithms (M-

BCD, IrM-BP, M-SBL, M-FOCUSS, CosAmp, Landweber iterations). The top plots give the computation time of the algorithms

with respects to the dictionary size. The bottom plots respectively depict the computational complexity with respectsto the signal

dimensionality. For a sake of readability, we have separated the algorithms in two groups :(left) the ones that solveℓ1 − ℓq

problem. (right) the ones that solveℓp − ℓ2 problem (M-BCD result provided for baseline comparison). The “IrM-BP Ann”

and “M-FOC Ann” refers to the Ir-MBP and M-FOCUSS algorithm using an annealing approach for iteratively decreasingε as

described in Algorithm (3).

magnitude of these complexities. Indeed, accurate comparisons are difficult since the different algorithms

do not solve the same problem and do not use the same stopping criterion.

We can remark in Figure 5 that with respects to the dictionarysize, all algorithms present an empirical
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exponent between1.3 and2.7. Interestingly, we have theoretically evaluate the complexity of our M-BCD

algorithm as quadratic whereas we measure a sub-quadratic complexity. We suppose that this happens

because at each iteration, only the non-optimalci,·’s are updated and thus the number of updates drastically

reduces along iterations. We can note that among all approaches that solve theℓ1−ℓq problem (left plots),

M-BCD, Landweber iteration approach and M-CosAmp have similar complexity with a slight advantage

to M-BCD for large dictionary size. However, we have to note that the M-CosAmp algorithm sometimes

suffers from lack of convergence and thus stop only when the maximal number of allowed iterations is

reached. This is the reason why for large dictionary size CosAmp is computationally expensive. When

considering the algorithms that solve theℓp − ℓ2 problem (right plots), they all have similar complexity,

with a slightly better constant for IrM-BP while M-SBL seemsto be the most demanding algorithm.

Bottom plots of Figure 5 depicts the complexity dependency of all algorithms with respects to signal

dimensionN . Interestingly, the results show that except for M-SBL and M-FOCUSS algorithms, all

algorithms do not suffer from the signal dimension increase. We assume that this is due to the fact that

as dimension increases, the approximation problem becomeseasier and thus faster convergence of those

algorithms occurs.

E. Comparing performances

The objective of the next empirical study is to compare the performances of the algorithms we propose

with some of those proposed in the literature (M-SBL, CosAmp, Landweber iterations, S-OMP and M-

FOCUSS with an annealing decreasing ofε). From our side, we have considered only our M-BCD

algorithm and our IrM-BP with two values ofp and an annealing decrease ofε.

The baseline experimental context isM = 128, N = 64, k = 10 and L = 3. For this experiment,

we have considered an agnostic context with no prior knowledge about the noise level being available.

Hence, for all models, we have performed model selection (either for selectingλ, the noise levelσ

for M-SBL or the number of elements for M-CosAmp and S-OMP). Model selection procedure is the

following. Training signalsS are randomly splitted in two parts ofN/2 samples. Each algorithm is then

trained on one part of the signal and the mean-square error ofthe resulting model is evaluated on the

second part. This splitting and training is run5 times and the hyperparameter yielding to the minimal

averaged mean-square error is considered as optimal. Each method is then run on the full signals with

that parameter. Performances, averaged over50 trials of all methods have been evaluated according to

the F-measure and a mean-square error computed on10000 samples.

Figure 6 shows, from top to bottom, these performances whenk increases from2 to 40, whenM goes
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Fig. 6. Results comparing performances of different simultaneous sparse algorithms. We have varied (top) the numberk of

active elements in the dictionary. (middle) the dictionarysizeM and (bottom) the number of signal to approximateL. On the

left columns are given the F-measure of all methods while theaverage mean-square errors are on the right column.

from 64 to 256 and whenL = 2, · · · , 7. When varyingk, we can note that across the range of variation,

our IrM-BP method withp = 0 is competitive compared to all other approaches both with respects to the

F-measure and the mean-square error criterion. Whenk increases, IrM-BP and M-FOCUSS withp = 0.5
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Fig. 7. Examples of estimated row-norm using 3 different algorithms. left)M = 128, N = 64, k = 10 and L = 3. right)

M = 64, N = 64, k = 10 andL = 3. Here, we want to illustrate cases where a “good” sparsity recovery does not necessary

lead to low mean-square error.

perform also very good. This may be explained by the fact thatas k increases, the optimal solution

becomes less and less sparse thus the need for a less aggressive penalty. CosAmp and S-OMP are very

competitive for smallk but as soon as the latter increases these two methods are not able anymore to

recover a “reasonable” sparsity pattern. Interestingly, we remark that M-SBL yields to a poor sparsity

recovery measure while the resulting model achieves good mean-square error. A reason for this is that the

model selection procedure tends to under-estimate the noise level and thus it leads to a model which keeps

many spurious dictionary elements as illustrated in Figure7 and detailed in the sequel. From Figure 6, we

can also notice that the two M-BP solvers, our M-BCD and the Landweber iteration approach perform

poorly compared to other methods. However, the Fornasier’smethod seems to be less sensitive to noise

and model selection since it provides a better sparsity pattern recovery. It is worth noting that M-SBL

and these two latter methods always correctly select all thetrue dictionary elements but they also have

the tendency to include other spurious ones.

In the middle and bottom plots, similar behavior as above canbe highlighted. M-CosAmp yields to

very sparsity recovery while the resulting mean-square error is rather poor. Again our IrM-BP withp = 0

yields the best mean-square error while providing a good sparsity pattern recovery. M-SBL and M-BCD

keeps too many spurious dictionary elements. All other methods provide in-between performances both

in term of F-measure and mean-square error.

Figure 7 illustrates the behaviour of M-CosAmp, M-SBL and our IrM-BP with p = 0 for two different

experimental situations. On the left plot, we have a case where on one hand, M-CosAmp misses to

recover the first active dictionary element yielding thus tohigh mean-square error. On the other hand,

M-SBL achieves lower mean-square error while keeping few spurious dictionary elements in the model.
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In the meantime, IrM-BP recovers perfectly the sparsity pattern and yields to low mean-square error. In

the right plot, we have another case where M-CosAmp achievesperfect sparsity recovery but provides a

model with higher mean-square error than IrM-BP.

In most of the experimental situations presented here, M-CosAmp and our IrM-BP seems to be the

two algorithms that perform the best with however, a clear advantage for our IrM-BP. Nonetheless,

these two methods are actually related since both approaches solve a simultaneous sparse approximation

with a J0,2(C) penalty. The main difference lies in the algorithms since our IrM-BP owing to theε

term provides a smooth approximation of theℓ0 quasi-norm whereas M-CosAmp directly solves the

approximation problem with theJ0,2(C) penalty.

VI. CONCLUSIONS AND PERSPECTIVES

This paper aimed at contributing to simultaneous sparse signal approximation problems on several

points. Firstly, we have proposed an algorithm for solving the multiple signal counterpart of Basis Pursuit

Denoising named, M-BCD. The algorithm we introduced is simple and efficient. It is based on a block-

coordinate descent algorithm which only needs matrix multiplications. Then, we have considered the

more general non-convex approximation problem with penalty Jp≥0,q≤2(C) for which M-BP is a special

case. We have shown that such a problem can also be understoodas an ARD problem. Afterward, for

addressing this ARD optimization problem, we derived an algorithm similar to M-FOCUSS which can

handle anyq ∈ [1, 2].

Finally, we have introduced an iterative reweighted M-BP algorithm for addressing the non-convex

optimization problem with penaltyJp<1,1≤q≤2(C). We also made clear the relationship between M-SBL

and such a reweighted algorithm. We provided some experimental results that show how our algorithms

behave and how they compare to other methods dedicated to simultaneous sparse approximation. In

terms of performances for sparsity profile recovery, the experimental results show that our algorithms are

provided with interesting features such as a better abilityto recover the joint signal sparsity profile and

a better estimation of the regression coefficients.

Owing to this formulation of the simultaneous sparse approximation problem and its numerically

reproducible solution (due to convexity), our perspectiveon this work is now to theoretically investigate

the properties of the M-BP problem as well as the statisticalproperties of IrM-BP solutions. We believe

that the recent theoretical advance on the Lasso and relatedmethods can be extended in order to make

clear in which situations M-BP and IrM-BP achieve consistency or better consistency compared to a single

signal approximation. Recent works have investigated theoretical properties of related problems [29], [33],
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[34] and we plan to contribute to such efforts in the context of simultaneous sparse approximation.

Further improvements on algorithm speed-up would also be interesting so that tackling very large-scale

approximation problem may become tractable.
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VII. A PPENDIX

A. Proof of Lemma 1

By definition, a matrixG lies in ∂J1,2(B) if and only if for every matrixZ, we have

J1,2(Z) ≥ J1,2(B) + 〈Z−B,G〉F (27)

If we expand this equation we have the following equivalent expression

∑

i

‖zi,·‖2 ≥
∑

i

‖bi,·‖2 +
∑

i

〈zi,· − bi,·, gi,·〉 (28)

From this latter equation, we understand that, since bothJ1,2 and the Frobenius inner product are row-

separable, a matrixG ∈ ∂J1,2(B) if and only if each row ofG belongs to the subdifferential of theℓ2

norm of the corresponding row ofB.

Indeed, suppose thatG is so that any row ofG belongs to the subdifferential of theℓ2 norm of the

corresponding row ofB. We thus have for any rowi

∀z, ‖z‖2 ≥ ‖bi,·‖2 + 〈z − bi,·, gi,·〉 (29)

A summation over all the rows then proves thatG satisfies equation (28) and thus belongs to the

subdifferential ofJ1,2(B).

Now, let us show that a matrixG for which there exists a row that does not belong to the subdifferential

of the ℓ2 norm of the corresponding row ofB can not belong to the subdifferential ofJ1,2(B). Let us

considergi,· the i-th row of G, since we have supposed thatgi,· /∈ ∂‖bi,·‖2, the following equation holds

∃z0 st. ‖z0‖2 < ‖bi,·‖2 + 〈z− bi,·, gi〉

Now let us constructZ so thatZ = B except for thei-th row wherezi,· = z0. Then it is easy to show

that this matrixZ does not satisfy equation (28), which means thatG does not belong to∂J1,2(B). In
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conclusion, we get∂J1,2(B) by applying theℓ2 norm subdifferential to each row ofB. And it is well

known [2] that

∂‖b‖2 =







{g ∈ R
L : ‖g‖2 ≤ 1} if b = 0

b

‖b‖2
otherwise

(30)

B. Proof of Lemma 2

We aim at proving that

min
d







∑

t,k

|at,k|
2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

) s

r+s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)
p

q





2

p

where q = 2
s+1 and p = 2

s+r+1 . The proof proceeds by writing the Lagrangian of the optimization

problem :

L =
∑

t,k

|at,k|
2

dt,k
+ λ





∑

k

(

∑

t

d
1/s
t,k

) s

r+s

− 1



−
∑

t,k

νt,kdt,k

whereλ and{νt,k} are the Lagrangian multipliers associated to the inequality constraint and the positivity

constraints ondt,k. By deriving the first-order optimality conditions, we get :

∂L

∂dm,n
= −

|am,n|
2

d2
m,n

− νm,n +
λs

r + s

(

∑

t

d
1/s
t,n

)
−r

r+s

·
1

s
· d

1−s

s
m,n

According to these optimality conditions, at a stationary point, we have eitherdm,n = 0 or

dm,n =

(

λ

r + s

)−s/(s+1)

|am,n|
2s/(s+1)

(

∑

t

d
1/s
t,n

)rs/[(r+s)(s+1)]

(31)

Then, we can derive
(

∑

m

d1/s
m,n)

)(s+1)

=

(

r + s

λ

)

(

∑

m

|am,n|
2/(s+1)

)s+1(
∑

m

d1/s
m,n

)r/(r+s)

(32)

and thus
(

∑

m

d1/s
m,n)

)s

=





r + s

λ

(

∑

m

|am,n|
2/(s+1)

)s+1




(r+s)/(r+s+1)

(33)

As λ 6= 0, the inequality on the mixed-norm ondt,k becomes an equality. Hence, after powering each

side of Equation (33) to1/(r + s) and summing each side overn, we have :

λ

r + s
=

(

∑

n

g(s+1)/(r+s+1)
n

)r+s+1

(34)
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wheregn =
∑

m |am,n|
2/(s+1). Then, plugging equations (34) and (33) into (31) gives the desired result :

dm,n =
|am,n|

2s

s+1 g
r

s+r+1

n
(

∑

n g
s+1

s+r+1

n

)r+s (35)

C. Proof of equation (24)

We want to show that at optimality which occurs atC⋆, we have

st
jΣ

−1
t sj =

1

σ2
st
j(sj −ΦC⋆)

which is equivalent, after factorizing withst, to show that

σ2sj = Σtsj − ΣtΦC⋆

This last equation can be proved using simple algebra

Σtsj − ΣtΦC = σ2sj + ΦDΦts− (σ2I + ΦDΦt)ΦC⋆

= σ2sj + ΦDΦts−Φ(σ2I + DΦtΦ)C⋆

= σ2sj + ΦDΦts−ΦDΦts

= σ2sj
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