

Data-driven calibration of linear estimators with minimal penalties

Sylvain Arlot, Francis Bach

▶ To cite this version:

Sylvain Arlot, Francis Bach. Data-driven calibration of linear estimators with minimal penalties. Advances in Neural Information Processing Systems (NIPS 2009), Dec 2009, Vancouver, Canada. pp.46–54. hal-00414774v1

HAL Id: hal-00414774 https://hal.science/hal-00414774v1

Submitted on 9 Sep 2009 (v1), last revised 12 Sep 2011 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Data-driven calibration of linear estimators with minimal penalties

Sylvain Arlot * CNRS ; Willow Project-Team Laboratoire d'Informatique de l'Ecole Normale Superieure (CNRS/ENS/INRIA UMR 8548) 23, avenue d'Italie, CS 81321 75214 Paris Cedex 13, France sylvain.arlot@ens.fr Francis Bach[†] INRIA ; Willow Project-Team Laboratoire d'Informatique de l'Ecole Normale Superieure (CNRS/ENS/INRIA UMR 8548) 23, avenue d'Italie, CS 81321 75214 Paris Cedex 13, France francis.bach@ens.fr

September, 9 2009

Abstract

This paper tackles the problem of selecting among several linear estimators in nonparametric regression; this includes model selection for linear regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. We propose a new algorithm which first estimates consistently the variance of the noise, based upon the concept of minimal penalty which was previously introduced in the context of model selection. Then, plugging our variance estimate in Mallows' C_L penalty is proved to lead to an algorithm satisfying an oracle inequality. Simulation experiments with kernel ridge regression and multiple kernel learning show that the proposed algorithm often improves significantly existing calibration procedures such as 10-fold cross-validation or generalized cross-validation.

1 Introduction

Kernel-based methods are now well-established tools for supervised learning, allowing to perform various tasks, such as regression or binary classification, with linear and non-linear predictors [19, 18]. A central issue common to all regularization frameworks is the choice of the regularization parameter: while most practitioners use cross-validation procedures to select such a parameter, data-driven procedures not based on cross-validation are rarely used. The choice of the kernel, a seemingly unrelated issue, is also important for good predictive performance: several techniques exists, either based on cross-validation, Gaussian processes or multiple kernel learning [6, 17, 3].

In this paper, we consider least-squares regression and cast these two problems as the problem of selecting among several *linear estimators*, where the goal is to choose an estimator with a quadratic risk which is as small as possible. This problem includes for instance model selection for linear regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning (see Section 2).

^{*}http://www.di.ens.fr/~arlot/

[†]http://www.di.ens.fr/~fbach/

The main contribution of the paper is to extend the notion of *minimal penalty* [4, 2] to all discrete classes of linear operators, and to use it for defining a fully data-driven selection algorithm satisfying a non-asymptotic oracle inequality. Our new theoretical results presented in Section 4 extend similar results which were limited to unregularized least-squares regression (i.e., projection operators). Finally, in Section 5, we show that our algorithm improves the performances of classical selection procedures, such as GCV [7] and 10-fold cross-validation, for kernel ridge regression or multiple kernel learning, for moderate values of the sample size.

2 Linear estimators

In this section, we define the problem we aim to solve and give several examples of linear estimators.

2.1 Framework and notation

Let us assume that one observes

$$Y_i = f(x_i) + \varepsilon_i \in \mathbb{R}$$
 for $i = 1 \dots n$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. centered random variables with $\mathbb{E}[\varepsilon_i^2] = \sigma^2$ unknown, f is an unknown measurable function $\mathcal{X} \mapsto \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$ are deterministic design points. No assumption is made on the set \mathcal{X} . The goal is to reconstruct the signal $F = (f(x_i))_{1 \leq i \leq n} \in \mathbb{R}^n$, with some estimator $\widehat{F} \in \mathbb{R}^n$, depending only on $(x_1, Y_1) \ldots, (x_n, Y_n)$, and having a small quadratic risk $n^{-1} \|\widehat{F} - F\|_2^2$, where $\forall t \in \mathbb{R}^n$, we denote by $\|t\|_2$ the ℓ_2 -norm of t, defined as $\|t\|_2^2 := \sum_{i=1}^n t_i^2$. In this paper, we focus on *linear estimators* \widehat{F} that can be written as a linear function of $Y = (Y_1, \ldots, Y_n) \in \mathbb{R}^n$, that is, $\widehat{F} = AY$, for some (deterministic) $n \times n$ matrix A. Here and in the rest of the paper, vectors such as Y or F are assumed to be column-vectors. We present in

Section 2.2 several important families of estimators of this form. The matrix A may depend on x_1, \ldots, x_n (which are known and deterministic), but not on Y, and may be parameterized by certain quantities—usually regularization parameter or kernel combination weights.

2.2 Examples of linear estimators

In this paper, our theoretical results apply to matrices A which are symmetric positive semidefinite, such as the ones defined below.

Ordinary least-squares regression / model selection. If we consider linear predictors from a design matrix $X \in \mathbb{R}^{n \times p}$, then $\widehat{F} = AY$ with $A = X(X^{\top}X)^{-1}X^{\top}$, which is a projection matrix (i.e., $A^{\top}A = A$); $\widehat{F} = AY$ is often called a *projection estimator*. In the variable selection setting, one wants to select a subset $J \subset \{1, \ldots, p\}$, and matrices A are parameterized by J.

Kernel ridge regression / spline smoothing. We assume that a positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is given, and we are looking for a function $f : \mathcal{X} \to \mathbb{R}$ in the associated reproducing kernel Hilbert space (RKHS) \mathcal{F} , with norm $\|\cdot\|_{\mathcal{F}}$. If K denotes the $n \times n$ kernel matrix, defined by $K_{ab} = k(x_a, x_b)$, then the ridge regression estimator—a.k.a. spline smoothing estimator for spline kernels [22]—is obtained by minimizing with respect to $f \in \mathcal{F}$ [18]:

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{F}}^2 .$$

The unique solution is equal to $\hat{f} = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$, where $\alpha = (K + n\lambda I)^{-1}Y$. This leads to the smoothing matrix $A_{\lambda} = K(K + n\lambda I_n)^{-1}$, parameterized by the regularization parameter $\lambda \in \mathbb{R}_+$.

Multiple kernel learning / Group Lasso / Lasso. We now assume that we have p different kernels k_j , feature spaces \mathcal{F}_j and feature maps $\Phi_j : \mathcal{X} \to \mathcal{F}_j$, $j = 1, \ldots, p$. The group Lasso [23] and multiple kernel learning [11, 3] frameworks consider the following objective function

$$J(f_1, \dots, f_p) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \sum_{j=1}^p \langle f_j, \Phi_j(x_i) \rangle \right)^2 + 2\lambda \sum_{j=1}^p \|f_j\|_{\mathcal{F}_j} = L(f_1, \dots, f_p) + 2\lambda \sum_{j=1}^p \|f_j\|_{\mathcal{F}_j} .$$

Note that when $\Phi_j(x)$ is simply the *j*-th coordinate of $x \in \mathbb{R}^p$, we get back the penalization by the ℓ^1 -norm and thus the regular Lasso [21].

Using $a^{1/2} = \min_{b \ge 0} \frac{1}{2} \{ \frac{a}{b} + b \}$, we obtain a variational formulation of the sum of norms $2 \sum_{j=1}^{p} ||f_j|| = \min_{\eta \in \mathbb{R}^p_+} \sum_{j=1}^{p} \left\{ \frac{||f_j||^2}{\eta_j} + \eta_j \right\}$. Thus, minimizing $J(f_1, \ldots, f_p)$ with respect to (f_1, \ldots, f_p) is equivalent to minimizing with respect to $\eta \in \mathbb{R}^p_+$ (see [3] for more details):

$$\min_{f_1,\dots,f_p} L(f_1,\dots,f_p) + \lambda \sum_{j=1}^p \frac{\|f_j\|^2}{\eta_j} + \lambda \sum_{j=1}^p \eta_j = \frac{1}{n} y^\top \left(\sum_{j=1}^p \eta_j K_j + n\lambda I_n \right)^{-1} y + \lambda \sum_{j=1}^p \eta_j ,$$

where I_n is the $n \times n$ identity matrix. Moreover, given η , this leads to a smoothing matrix of the form

$$A_{\eta,\lambda} = (\sum_{j=1}^{p} \eta_j K_j) (\sum_{j=1}^{p} \eta_j K_j + n\lambda I_n)^{-1} , \qquad (1)$$

parameterized by the regularization parameter $\lambda \in \mathbb{R}_+$ and the kernel combinations in \mathbb{R}^p_+ —note that it depends only on $\lambda^{-1}\eta$, which can be grouped in a single parameter set \mathbb{R}^p_+ .

Thus, the Lasso/group lasso can be seen as particular (convex) way of optimizing over η . In this paper, we propose a non-convex alternative with better statistical properties (oracle inequality in Theorem 1). Note that in our setting, finding the solution of the problem is hard in general since the optimization is not convex. However, while the model selection problem is by nature combinatorial, our optimization problems for multiple kernels are all differentiable and are thus amenable to gradient descent procedures—which only find local optima.

Non symmetric linear estimators. Other linear estimators are commonly used, such as nearest-neighbor regression or the Nadaraya-Watson estimator [10]; those however lead to non symmetric matrices A, and are not entirely covered by our theoretical results.

3 Linear estimator selection

In this section, we first describe the statistical framework of linear estimator selection and introduce the notion of minimal penalty.

3.1 Unbiased risk estimation heuristics

Usually, several estimators of the form $\hat{F} = AY$ can be used. The problem that we consider in this paper is then to select one of them, that is, to choose a matrix A. Let us assume that a family of matrices $(A_{\lambda})_{\lambda \in \Lambda}$ is given (examples are shown in Section 2.2), hence a family of estimators $(\hat{F}_{\lambda})_{\lambda \in \Lambda}$ can be used, with $\hat{F}_{\lambda} := A_{\lambda}Y$. The goal is to choose from data some $\hat{\lambda} \in \Lambda$, so that the quadratic risk of $\hat{F}_{\hat{\lambda}}$ is as small as possible. The best choice would be the *oracle*:

$$\lambda^{\star} \in \arg\min_{\lambda \in \Lambda} \left\{ n^{-1} \| \widehat{F}_{\lambda} - F \|_2^2 \right\} ,$$

which cannot be used since it depends on the unknown signal F. Therefore, the goal is to define a data-driven $\hat{\lambda}$ satisfying an *oracle inequality*

$$n^{-1} \|\widehat{F}_{\widehat{\lambda}} - F\|_2^2 \le C_n \inf_{\lambda \in \Lambda} \left\{ n^{-1} \|\widehat{F}_{\lambda} - F\|_2^2 \right\} + R_n \quad , \tag{2}$$

with large probability, where the leading constant C_n should be close to 1 (at least for large n) and the remainder term R_n should be negligible compared to the risk of the oracle.

Many classical selection methods are built upon the "unbiased risk estimation" heuristics: If $\hat{\lambda}$ minimizes a criterion crit(λ) such that

$$\forall \lambda \in \Lambda, \qquad \mathbb{E}\left[\operatorname{crit}(\lambda)\right] \approx \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - F\|_{2}^{2}\right],$$

then $\hat{\lambda}$ satisfies an oracle inequality such as in Eq. (2) with large probability. For instance, cross-validation [1, 20] and generalized cross-validation (GCV) [7] are built upon this heuristics.

One way of implementing this heuristics is penalization, which consists in minimizing the sum of the empirical risk and a penalty term, i.e., using a criterion of the form:

$$\operatorname{crit}(\lambda) = n^{-1} \|\widehat{F}_{\lambda} - Y\|_{2}^{2} + \operatorname{pen}(\lambda)$$

The unbiased risk estimation heuristics, also called Mallows' heuristics, then leads to the *ideal (deterministic) penalty*

$$\operatorname{pen}_{\operatorname{id}}(\lambda) := \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - F\|_{2}^{2}\right] - \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - Y\|_{2}^{2}\right] .$$

When $\widehat{F}_{\lambda} = A_{\lambda}Y$, we have:

$$\left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} = \left\|(A_{\lambda} - I_{n})F\right\|_{2}^{2} + \left\|A_{\lambda}\varepsilon\right\|_{2}^{2} + 2\left\langle A_{\lambda}\varepsilon, (A_{\lambda} - I_{n})F\right\rangle , \qquad (3)$$

$$\left\|\widehat{F}_{\lambda} - Y\right\|_{2}^{2} = \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + \left\|\varepsilon\right\|_{2}^{2} - 2\left\langle\varepsilon, A_{\lambda}\varepsilon\right\rangle + 2\left\langle\varepsilon, (I_{n} - A_{\lambda})F\right\rangle , \qquad (4)$$

where $\varepsilon = Y - F \in \mathbb{R}^n$ and $\forall t, u \in \mathbb{R}^n$, $\langle t, u \rangle = \sum_{i=1}^n t_i u_i$. Since ε is centered with covariance matrix $\sigma^2 I_n$, Eq. (3) and Eq. (4) imply that

$$\operatorname{pen}_{\mathrm{id}}(\lambda) = \frac{2\sigma^2 \operatorname{tr}(A_\lambda)}{n} \quad , \tag{5}$$

up to the term $-\mathbb{E}[n^{-1}\|\varepsilon\|_2^2] = -\sigma^2$, which can be dropped off since it does not vary with λ .

Note that $df(\lambda) = tr(A_{\lambda})$ is called the *effective dimensionality* or *degrees of freedom* [24], so that the ideal penalty in Eq. (5) is proportional to the dimensionality associated to the estimator A_{λ} —for projection matrices, we get back the dimension of the subspace, which is classical in model selection.

The expression of the ideal penalty in Eq. (5) led to several selection procedures, in particular Mallows' C_L (called C_p in the case of projection estimators) [14], where σ^2 is replaced by some estimator $\widehat{\sigma^2}$. The estimator of σ^2 usually used with C_L is based upon the value of the empirical risk at some λ_0 with df(λ_0) large; it has the drawback of overestimating the risk, in a way which

Figure 1: Bias-variance decomposition of the generalization error, and minimal/optimal penalties.

depends on λ_0 and F [8]. GCV, which implicitly estimates σ^2 , has the drawback of overfitting if the family $(A_{\lambda})_{\lambda \in \Lambda}$ contains a matrix too close to I_n [5]; GCV also overestimates the risk even more than C_L for most A_{λ} (see (7.9) and Table 4 in [8]).

In this paper, we define an estimator of σ^2 directly related to the selection task which does not have similar drawbacks. Our estimator relies on the concept of minimal penalty, introduced by Birgé and Massart [4] and further studied in [2].

3.2 Minimal and optimal penalties

We deduce from Eq. (3) the bias-variance decomposition of the risk:

$$\mathbb{E}\left[n^{-1}\left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2}\right] = n^{-1}\left\|(A_{\lambda} - I_{n})F\right\|_{2}^{2} + \frac{\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\sigma^{2}}{n} = \operatorname{bias} + \operatorname{variance} , \qquad (6)$$

and from Eq. (4) the expectation of the empirical risk:

$$\mathbb{E}\left[n^{-1}\left\|\widehat{F}_{\lambda}-Y\right\|_{2}^{2}-\left\|\varepsilon\right\|_{2}^{2}\right]=n^{-1}\left\|(A_{\lambda}-I_{n})F\right\|_{2}^{2}-\frac{\left(2\operatorname{tr}(A_{\lambda})-\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\right)\sigma^{2}}{n}.$$
 (7)

Note that the variance term in Eq. (6) is not proportional to the effective dimensionality $df(\lambda) = tr(A_{\lambda})$ but to $tr(A_{\lambda}^{\top}A_{\lambda})$. Although several papers argue these terms are of the same order (for instance, they are equal when A_{λ} is a projection matrix), this may not hold in general. If A_{λ} is symmetric with a spectrum $Sp(A_{\lambda}) \subset [0, 1]$, as in all the examples of Section 2.2, we only have

$$0 \le \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \le \operatorname{tr}(A_{\lambda}) \le 2\operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \le 2\operatorname{tr}(A_{\lambda}) \quad .$$

$$(8)$$

In order to give a first intuitive interpretation of Eq. (6) and Eq. (7), let us consider the kernel ridge regression example and assume that the risk and the empirical risk behave as their expectations in Eq. (6) and Eq. (7); see also Fig. 1. Completely rigorous arguments based upon concentration inequalities are developed in the Appendix and summarized in Section 4, leading to the same conclusion as the present informal reasoning.

First, as proved in Appendix E, the bias $n^{-1} \| (A_{\lambda} - I_n)F \|_2^2$ is a decreasing function of the dimensionality $df(\lambda) = tr(A_{\lambda})$, and the variance $tr(A_{\lambda}^{\top}A_{\lambda})\sigma^2 n^{-1}$ is an increasing function of $df(\lambda)$, as well as $2 tr(A_{\lambda}) - tr(A_{\lambda}^{\top}A_{\lambda})$. Therefore, Eq. (6) shows that the optimal λ realizes the best trade-off between bias (which decreases with $df(\lambda)$) and variance (which increases with $df(\lambda)$), which is a classical fact in model selection.

Second, the expectation of the empirical risk in Eq. (7) can be decomposed into the bias and a negative variance term which is the opposite of

$$\operatorname{pen}_{\min}(\lambda) := n^{-1} \left(2 \operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top} A_{\lambda}) \right) \sigma^2 \quad .$$
(9)

As suggested by the notation pen_{min}, we will show it is a *minimal penalty* in the following sense. If

$$\forall C \ge 0, \qquad \widehat{\lambda}_{\min}(C) \in \arg\min_{\lambda \in \Lambda} \left\{ n^{-1} \left\| \widehat{F}_{\lambda} - Y \right\|_{2}^{2} + C \operatorname{pen}_{\min}(\lambda) \right\}$$

then, up to concentration inequalities that are detailed in Section 4.2, $\widehat{\lambda}_{\min}(C)$ behaves like a minimizer of

$$g_C(\lambda) = \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - Y\|_2^2 + C \operatorname{pen}_{\min}(\lambda)\right] - n^{-1}\sigma^2 = n^{-1} \|(A_{\lambda} - I_n)F\|_2^2 + (C - 1)\operatorname{pen}_{\min}(\lambda) .$$

Therefore, two main cases can be distinguished:

- if C < 1, then $g_C(\lambda)$ decreases with $df(\lambda)$ so that $df(\widehat{\lambda}_{\min}(C))$ is huge: $\widehat{\lambda}_{\min}(C)$ overfits.
- if C > 1, then $g_C(\lambda)$ increases with $df(\lambda)$ when $df(\lambda)$ is large enough, so that $df(\widehat{\lambda}_{\min}(C))$ is much smaller than when C < 1.

As a conclusion, $\text{pen}_{\min}(\lambda)$ is the minimal amount of penalization needed so that a minimizer $\hat{\lambda}$ of a penalized criterion is not clearly overfitting.

Following an idea first proposed in [4] and further analyzed or used in several other papers such as [12, 2, 16], we now propose to use that $\text{pen}_{\min}(\lambda)$ is a minimal penalty for estimating σ^2 and plug this estimator into Eq. (5). This leads to the algorithm described in Section 4.1.

Note that the minimal penalty given by Eq. (9) is new; it generalizes previous results [4, 2] where $\operatorname{pen}_{\min}(A_{\lambda}) = n^{-1} \operatorname{tr}(A_{\lambda})\sigma^2$ because all A_{λ} were assumed to be projection matrices, i.e., $A_{\lambda}^{\top}A_{\lambda} = A_{\lambda}$. Furthermore, our results generalize the slope heuristics $\operatorname{pen}_{\operatorname{id}} \approx 2 \operatorname{pen}_{\min}$ (only valid for projection estimators [4, 2]) to general linear estimators for which $\operatorname{pen}_{\operatorname{id}} / \operatorname{pen}_{\min} \in (1, 2]$.

4 Main results

In this section, we first describe our algorithm and then present our theoretical results.

4.1 Algorithm

The following algorithm first computes an estimator of \widehat{C} of σ^2 using the minimal penalty in Eq. (9), then considers the ideal penalty in Eq. (5) for selecting λ .

Input: A a finite set with $Card(\Lambda) \leq Kn^{\alpha}$ for some $K, \alpha \geq 0$, and matrices A_{λ} .

- $\forall C > 0$, compute $\widehat{\lambda}_0(C) \in \arg\min_{\lambda \in \Lambda} \{ \|\widehat{F}_\lambda Y\|_2^2 + C \left(2\operatorname{tr}(A_\lambda) \operatorname{tr}(A_\lambda^\top A_\lambda) \right) \}$.
- Find \widehat{C} such that $df(\widehat{\lambda}_0(\widehat{C})) \in [n^{3/4}, n/10]$.
- Select $\widehat{\lambda} \in \arg\min_{\lambda \in \Lambda} \{ \|\widehat{F}_{\lambda} Y\|_2^2 + 2\widehat{C}\operatorname{tr}(A_{\lambda}) \}.$

In the steps 1 and 2 of the above algorithm, in practice, a grid in log-scale is used, and our theoretical results from the next section suggest to use a step-size of order $n^{-1/4}$. Note that it may not be possible in all cases to find a C such that $df(\hat{\lambda}_0(C)) \in [n^{3/4}, n/10]$; therefore, our condition in step 2, could be relaxed to finding a \hat{C} such that for all $C > \hat{C} + \delta$, $df(\hat{\lambda}_0(C)) < n^{3/4}$ and for all $C < \hat{C} - \delta$, $df(\hat{\lambda}_0(C)) > n/10$, with $\delta = n^{-1/4+\xi}$, where $\xi > 0$ is a small constant.

Alternatively, using the same grid in log-scale, we can select \widehat{C} with maximal jump between successive values of df($\widehat{\lambda}_0(C)$)—note that our theoretical result then does not entirely hold, as we show the presence of a jump around σ^2 , but do not show the absence of similar jumps elsewhere.

4.2 Oracle inequality

Theorem 1. Let \widehat{C} and $\widehat{\lambda}$ be defined as in the algorithm of Section 4.1, with $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$ for some $K, \alpha \geq 0$. Assume that $\forall \lambda \in \Lambda$, A_{λ} is symmetric with $\operatorname{Sp}(A_{\lambda}) \subset [0,1]$, that ε_i are *i.i.d.* Gaussian with variance $\sigma^2 > 0$, and that $\exists \lambda_1, \lambda_2 \in \Lambda$ with

$$df(\lambda_1) \ge \frac{n}{2}, df(\lambda_2) \le \sqrt{n}, \text{ and } \forall i \in \{1, 2\}, n^{-1} \| (A_{\lambda_i} - I_n)F \|_2^2 \le \sigma^2 \sqrt{\frac{\ln(n)}{n}} .$$
 (A₁₋₂)

Then, a numerical constant C_a and an event of probability at least $1-8Kn^{-2}$ exist on which, for every $n \ge C_a$,

$$\left(1 - 91(\alpha + 2)\sqrt{\frac{\ln(n)}{n}}\right)\sigma^2 \le \widehat{C} \le \left(1 + \frac{44(\alpha + 2)\sqrt{\ln(n)}}{n^{1/4}}\right)\sigma^2 \quad . \tag{10}$$

Furthermore, if

$$\exists \kappa \ge 1, \, \forall \lambda \in \Lambda, \quad n^{-1} \operatorname{tr}(A_{\lambda}) \sigma^{2} \le \kappa \mathbb{E}\left[n^{-1} \|\widehat{F}_{\lambda} - F\|_{2}^{2}\right] \,, \tag{A_{3}}$$

then, a constant C_b depending only on κ exists such that for every $n \geq C_b$, on the same event,

$$n^{-1} \left\| \widehat{F}_{\widehat{\lambda}} - F \right\|_{2}^{2} \leq \left(1 + \frac{40\kappa}{\ln(n)} \right) \inf_{\lambda \in \Lambda} \left\{ n^{-1} \left\| \widehat{F}_{\lambda} - F \right\|_{2}^{2} \right\} + \frac{36(\kappa + \alpha + 2)\ln(n)\sigma^{2}}{n} \quad . \tag{11}$$

Theorem 1 is proved in the Appendix. The proof mainly follows from the informal arguments developed in Section 3.2, completed with the following two concentration inequalities: If $\xi \in \mathbb{R}^n$ is a standard Gaussian random vector, $\alpha \in \mathbb{R}^n$ and M is a real-valued $n \times n$ matrix, then for every $x \ge 0$,

$$\mathbb{P}\left(\left|\langle \alpha, \xi \rangle\right| \le \sqrt{2x} \, \|\alpha\|_2\right) \ge 1 - 2e^{-x} \tag{12}$$

$$\mathbb{P}\left(\forall \theta > 0, \ \left| \|M\xi\|_{2}^{2} - \operatorname{tr}(M^{\top}M) \right| \le \theta \operatorname{tr}(M^{\top}M) + 2(1+\theta^{-1}) \|M\|^{2} x\right) \ge 1 - 2e^{-x} , \quad (13)$$

where ||M|| is the operator norm of M. A proof of Eq. (12) and (13) can be found in Appendix D.

4.3 Discussion of the assumptions of Theorem 1

Gaussian noise. When ε is sub-Gaussian, Eq. (12) and Eq. (13) can be proved for $\xi = \sigma^{-1}\varepsilon$ at the price of additional technicalities, which implies that Theorem 1 is still valid.

Symmetry. The assumption that matrices A_{λ} must be symmetric can certainly be relaxed, since it is only used for deriving from Eq. (13) a concentration inequality for $\langle A_{\lambda}\xi, \xi \rangle$. Note that $\operatorname{Sp}(A_{\lambda}) \subset [0, 1]$ barely is an assumption since it means that A_{λ} actually shrinks Y.

Assumptions $(\mathbf{A_{1-2}})$. $(\mathbf{A_{1-2}})$ holds if $\max_{\lambda \in \Lambda} \{ df(\lambda) \} \ge n/2$ and the bias is smaller than $c df(\lambda)^{-d}$ for some c, d > 0, a quite classical assumption in the context of model selection. Besides, $(\mathbf{A_{1-2}})$ is much less restrictive and can even be relaxed, see Appendix B.

Assumption (A₃). The upper bound (A₃) on tr(A_{λ}) is certainly the strongest assumption of Theorem 1, but it is only needed for Eq. (11). According to Eq. (6), (A₃) holds with $\kappa = 1$ when A_{λ} is a projection matrix since tr($A_{\lambda}^{\top}A_{\lambda}$) = tr(A_{λ}). In the kernel ridge regression framework, (A₃) holds as soon as the eigenvalues of the kernel matrix K decrease like $j^{-\alpha}$ —see Appendix E. In general, (A₃) means that \hat{F}_{λ} should not have a risk smaller than the parametric convergence rate associated with a model of dimension df(λ) = tr(A_{λ}).

When $(\mathbf{A_3})$ does not hold, selecting among estimators whose risks are below the parametric rate is a rather difficult problem and it may not be possible to attain the risk of the oracle in general. Nevertheless, an oracle inequality can still be proved without $(\mathbf{A_3})$, at the price of enlarging \widehat{C} slightly and adding a small fraction of $\sigma^2 n^{-1} \operatorname{tr}(A_\lambda)$ in the right-hand side of Eq. (11), see Appendix C. Enlarging \widehat{C} is necessary in general: If $\operatorname{tr}(A_\lambda^\top A_\lambda) \ll \operatorname{tr}(A_\lambda)$ for most $\lambda \in \Lambda$, the minimal penalty is very close to $2\sigma^2 n^{-1} \operatorname{tr}(A_\lambda)$, so that according to Eq. (10), overfitting is likely as soon as \widehat{C} underestimates σ^2 , even by a very small amount.

4.4 Main consequences of Theorem 1 and comparison with previous results

Consistent estimation of σ^2 . The first part of Theorem 1 shows that \hat{C} is a consistent estimator of σ^2 in a general framework and under mild assumptions. Compared to classical estimators of σ^2 , such as the one usually used with Mallows' C_L , \hat{C} does not depend on the choice of some model assumed to have almost no bias, which can lead to overestimating σ^2 by an unknown amount [8].

Oracle inequality. Our algorithm satisfies an oracle inequality with high probability, as shown by Eq. (11): The risk of the selected estimator $\hat{F}_{\hat{\lambda}}$ is close to the risk of the oracle, up to a remainder term which is negligible when the dimensionality $df(\lambda^*)$ grows with n faster than $\ln(n)$, a typical situation when the bias is never equal to zero, for instance in kernel ridge regression.

Several oracle inequalities have been proved in the statistical literature for Mallows' C_L with a consistent estimator of σ^2 , for instance in [13]. Nevertheless, except for the model selection problem (see [4] and references therein), all previous results were asymptotic, meaning that n is implicitly assumed to be larged compared to each parameter of the problem. This assumption can be problematic for several learning problems, for instance in multiple kernel learning when the number p of kernels may grow with n. On the contrary, Eq. (11) is *non-asymptotic*, meaning that it holds for every fixed n as soon as the assumptions explicitly made in Theorem 1 are satisfied.

Comparison with other procedures. According to Theorem 1 and previous theoretical results [13, 5], C_L , GCV, cross-validation and our algorithm satisfy similar oracle inequalities in various frameworks. This should not lead to the conclusion that these procedures are completely equivalent. Indeed, second-order terms can be large for a given n, while they are hidden in asymptotic results and not tightly estimated by non-asymptotic results. As showed by the simulations in Section 5, our algorithm yields statistical performances as good as existing methods, and often quite better.

Furthermore, our algorithm never overfits too much because $df(\hat{\lambda})$ is by construction smaller than the effective dimensionality of $\hat{\lambda}_0(\hat{C})$ at which the jump occurs. This is a quite interesting property compared for instance to GCV, which is likely to overfit if it is not corrected because GCV minimizes a criterion proportional to the empirical risk.

Figure 2: Selected degrees of freedom vs. penalty strength $\log(C/\sigma^2)$: note that when penalizing by the minimal penalty, there is a strong jump at $C = \sigma^2$, while when using half the optimal penalty, this is not the case. Left: single kernel case, Right: multiple kernel case.

5 Simulations

Throughout this section, we consider exponential kernels on \mathbb{R}^d , $k(x, y) = \prod_{i=1}^d e^{-|x_i-y_i|}$, with the x's sampled i.i.d. from a standard multivariate Gaussian. The functions f are then selected randomly as $\sum_{i=1}^m \alpha_i k(\cdot, z_i)$, where both α and z are i.i.d. standard Gaussian (i.e., f belongs to the RKHS).

Jump. In Figure 2 (left), we consider data $x_i \in \mathbb{R}^6$, n = 1000, and study the size of the jump in Figure 2 for kernel ridge regression. With half the optimal penalty (which is used in traditional variable selection for linear regression), we do not get any jump, while with the minimal penalty we always do. In Figure 2 (right), we plot the same curves for the multiple kernel learning problem with two kernels on two different 4-dimensional variables, with similar results. In addition, we show two ways of optimizing over $\lambda \in \Lambda = \mathbb{R}^2_+$, by discrete optimization with n different kernel matrices—a situation covered by Theorem 1—or with continuous optimization with respect to η in Eq. (1), by gradient descent—a situation not covered by Theorem 1.

Comparison of estimator selection methods. In Figure 3, we plot model selection results for 20 replications of data (d = 4, n = 500), comparing GCV [7], our minimal penalty algorithm, and cross-validation methods. In the left part (single kernel), we compare to the oracle (which can be computed because we can enumerate Λ), and use for cross-validation all possible values of λ . In the right part (multiple kernel), we compare to the performance of Mallows' C_L when σ^2 is known (i.e., penalty in Eq. 5), and since we cannot enumerate all λ 's, we use the solution obtained by MKL with CV [3]. We also compare to using our minimal penalty algorithm with the sum of kernels.

6 Conclusion

A new light on the slope heuristics. Theorem 1 generalizes some results first proved in [4] where all A_{λ} are assumed to be projection matrices, a framework where assumption (A₃) is automatically satisfied. To this extent, Birgé and Massart's slope heuristics has been modified in a way that sheds a new light on the "magical" factor 2 between the minimal and the optimal penalty, as proved in [4, 2]. Indeed, Theorem 1 shows that for general linear estimators,

$$\frac{\mathrm{pen}_{\mathrm{id}}(\lambda)}{\mathrm{pen}_{\mathrm{min}}(\lambda)} = \frac{2 \operatorname{tr}(A_{\lambda})}{2 \operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})} , \qquad (14)$$

Figure 3: Comparison of various smoothing parameter selection (minikernel, GCV, 10-fold cross validation) for various values of numbers of observations, averaged over 20 replications. Left: single kernel, right: multiple kernels.

which can take any value in (1, 2] in general; this ratio is only equal to 2 when $\operatorname{tr}(A_{\lambda}) \approx \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})$, hence mostly when A_{λ} is a projection matrix.

Future directions. In the case of projection estimators, the slope heuristics still holds when the design is random and data are heteroscedastic [2]; we would like to know whether Eq. (14) is still valid for heteroscedastic data with general linear estimators. In addition, the good empirical performances of elbow heuristics based algorithms (i.e., based on the sharp variation of a certain quantity around good hyperparameter values) suggest that Theorem 1 can be generalized to many learning frameworks (and potentially to non-linear estimators), probably with small modifications in the algorithm, but always relying on the concept of minimal penalty.

Another interesting open problem would be to extend the results of Section 4, where $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$ is assumed, to continuous sets Λ such as the ones appearing naturally in kernel ridge regression and multiple kernel learning. We conjecture that Theorem 1 is valid without modification for a "small" continuous Λ , such as in kernel ridge regression where taking a grid of size n in log-scale is almost equivalent to taking $\Lambda = \mathbb{R}_+$. On the contrary, in applications such as the Lasso with $p \gg n$ variables, the natural set Λ cannot be well covered by a grid of cardinality n^{α} with α small, and our minimal penalty algorithm and Theorem 1 certainly have to be modified.

Appendix

This appendix is mainly devoted to the proof of Theorem 1, which is splitted into two results. First, Proposition 1 shows that $n^{-1}\sigma^2(2\operatorname{tr}(A_\lambda) - \operatorname{tr}(A_\lambda^{\top}A_\lambda))$ is a minimal penalty, so that \widehat{C} defined in the Algorithm of Section 4.1 consistently estimates σ^2 . Second, Proposition 2 shows that penalizing the empirical risk with $2\widehat{C}\operatorname{tr}(A_\lambda)n^{-1}$ and $\widehat{C} \approx \sigma^2$ leads to an oracle inequality. Proving Theorem 1 is straightforward by combining Propositions 1 and 2.

In Section A, we introduce some notation and make some computations that will be used in the following. Proposition 1 is proved in Section B. Proposition 2 is proved in Section C. Concentration inequalities needed for proving Propositions 1 and 2 are stated and proved in Section D. Computations specific to the kernel ridge regression example are made in Section E.

A Notation and first computations

Recall that

$$Y = F + \varepsilon$$

where $F = (f(x_i))_{1 \le i \le n} \in \mathbb{R}^n$ is deterministic, $\varepsilon = (\varepsilon_i)_{1 \le i \le n} \in \mathbb{R}^n$ is centered with covariance matrix $\sigma^2 I_n$ and I_n is the $n \times n$ identity matrix. For every $\lambda \in \Lambda$, $\widehat{F}_{\lambda} = A_{\lambda}Y$ for some $n \times n$ real-valued matrix A_{λ} , so that

$$\left|\widehat{F}_{\lambda} - F\right|_{2}^{2} = \left\| (A_{\lambda} - I_{n})F \right\|_{2}^{2} + \left\| A_{\lambda}\varepsilon \right\|_{2}^{2} + 2\left\langle A_{\lambda}\varepsilon, (A_{\lambda} - I_{n})F \right\rangle \quad , \tag{15}$$

$$\left\|\widehat{F}_{\lambda} - Y\right\|_{2}^{2} = \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + \left\|\varepsilon\right\|_{2}^{2} - 2\left\langle\varepsilon, A_{\lambda}\varepsilon\right\rangle + 2\left\langle\varepsilon, (I_{n} - A_{\lambda})F\right\rangle , \qquad (16)$$

where $\forall t, u \in \mathbb{R}^n$, $\langle t, u \rangle = \sum_{i=1}^n t_i u_i$ and $||t||_2^2 = \langle t, t \rangle$. Now, define, for every $\lambda \in \Lambda$,

$$b(\lambda) = \|(A_{\lambda} - I_n)F\|_2^2$$

$$v_1(\lambda) = \operatorname{tr}(A_{\lambda})\sigma^2$$

$$\delta_1(\lambda) = \langle \varepsilon, A_{\lambda}\varepsilon \rangle - \operatorname{tr}(A_{\lambda})\sigma^2$$

$$v_2(\lambda) = \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\sigma^2$$

$$\delta_2(\lambda) = \|A_{\lambda}\varepsilon\|_2^2 - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\sigma^2$$

$$\delta_3(\lambda) = 2 \langle A_{\lambda}\varepsilon, (A_{\lambda} - I_n)F \rangle$$

$$\delta_4(\lambda) = 2 \langle \varepsilon, (I_n - A_{\lambda})F \rangle ,$$

so that Eq. (15) and (16) can be rewritten

$$\left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} = b(\lambda) + v_{2}(\lambda) + \delta_{2}(\lambda) + \delta_{3}(\lambda)$$
(17)

$$\left\|\widehat{F}_{\lambda} - Y\right\|_{2}^{2} = \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} - 2v_{1}(\lambda) - 2\delta_{1}(\lambda) + \delta_{4}(\lambda) + \|\varepsilon\|_{2}^{2} \quad .$$

$$\tag{18}$$

Note that $b(\lambda)$, $v_1(\lambda)$ and $v_2(\lambda)$ are deterministic, and for all $\lambda \in \Lambda$, all $\delta_i(\lambda)$ are random with zero mean. In particular, we deduce the following expressions of the risk and the empirical risk of \widehat{F}_{λ} :

$$\mathbb{E}\left[\left.n^{-1}\left\|\widehat{F}_{\lambda}-F\right\|_{2}^{2}\right] = n^{-1}\left\|\left(A_{\lambda}-I_{n}\right)F\right\|_{2}^{2} + \frac{\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\sigma^{2}}{n},\qquad(19)$$

$$\mathbb{E}\left[n^{-1}\left\|\widehat{F}_{\lambda}-Y\right\|_{2}^{2}\right]-\sigma^{2}=n^{-1}\left\|(A_{\lambda}-I_{n})F\right\|_{2}^{2}-\frac{\left(2\operatorname{tr}(A_{\lambda})-\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\right)\sigma^{2}}{n}.$$
 (20)

Define

$$||A_{\lambda}|| := \max \operatorname{Sp}(A_{\lambda}) = \sup_{t \in \mathbb{R}^n, t \neq 0} \left\{ \frac{||A_{\lambda}t||_2}{||t||_2} \right\}$$

Since $\operatorname{tr}(A_{\lambda}) \leq \sqrt{n \operatorname{tr}(A_{\lambda}^{\top} A_{\lambda})}$, we have

$$v_1(\lambda) \le \sigma \sqrt{n v_2(\lambda)}$$
 (21)

In addition, if A_{λ} has a spectrum $\text{Sp}(A_{\lambda}) \subset [0, 1]$, then

$$0 \le \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \le \operatorname{tr}(A_{\lambda}) \le 2\operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \le 2\operatorname{tr}(A_{\lambda})$$

so that

$$0 \le v_2(\lambda) \le v_1(\lambda) \le 2v_1(\lambda) - v_2(\lambda) \le 2v_1(\lambda) \quad .$$
(22)

B Minimal penalty

Define

$$\forall C \ge 0, \qquad \widehat{\lambda}_0(C) \in \arg\min_{\lambda \in \Lambda} \left\{ \left\| \widehat{F}_{\lambda} - Y \right\|_2^2 + C \left(2 \operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top} A_{\lambda}) \right) \right\} \quad . \tag{23}$$

We will prove the following proposition in this section.

Proposition 1. Let $\widehat{\lambda}_0$ be defined by Eq. (23). Assume that $\forall \lambda \in \Lambda$, A_{λ} is symmetric with $\operatorname{Sp}(A_{\lambda}) \subset [0, 1]$, that ε_i are *i.i.d.* Gaussian with zero mean and variance $\sigma^2 > 0$, and that

$$\exists \lambda_1 \in \Lambda, \quad \mathrm{df}(\lambda_1) \ge \frac{n}{2} \quad and \quad b(\lambda_1) \le \sigma^2 \sqrt{n \ln(n)}$$
 (A₁)

$$\exists \lambda_2 \in \Lambda, \quad \mathrm{df}(\lambda_2) \le \sqrt{n} \quad and \quad b(\lambda_2) \le \sigma^2 \sqrt{n \ln(n)} \quad . \tag{A2}$$

Then, a numerical constant $C_1 > 0$ exists such that for every $n \ge C_1$, for every $\gamma \ge 1$,

$$\forall 0 \le C < \left(1 - 91\gamma \sqrt{\frac{\ln(n)}{n}}\right) \sigma^2, \quad \mathrm{df}(\widehat{\lambda}_0(C)) \ge \frac{n}{10} \tag{24}$$

and
$$\forall C > \left(1 + \frac{44\gamma\sqrt{\ln(n)}}{n^{1/4}}\right)\sigma^2$$
, $\operatorname{df}(\widehat{\lambda}_0(C)) \le n^{3/4}$ (25)

hold with probability at least $1 - 8 \operatorname{Card}(\Lambda) n^{-\gamma}$.

If $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$, Proposition 1 with $\gamma = \alpha + 2$ proves that with probability at least $1 - 8Kn^{-2}$, \widehat{C} defined in the Algorithm of Section 4.1 exists and

$$\left(1 - 91(\alpha + 2)\sqrt{\frac{\ln(n)}{n}}\right)\sigma^2 \le \widehat{C} \le \left(1 + \frac{44(\alpha + 2)\sqrt{\ln(n)}}{n^{1/4}}\right)\sigma^2 \quad .$$

Remark 1. If (A_1) is replaced by

$$\exists \lambda_1 \in \Lambda, \quad \mathrm{df}(\lambda_1) \ge a_n \quad and \quad b(\lambda_1) \le \sigma^2 \beta_n \tag{A'_1}$$

for some $a_n \ge \ln(n)$ and $\beta_n \ge 0$, then Proposition 1 still holds with Eq. (24) replaced by

$$\forall 0 \le C < \left(1 - \frac{3\beta_n}{a_n} - 62\gamma \sqrt{\frac{\ln(n)}{a_n}}\right) \sigma^2, \quad \mathrm{df}(\widehat{\lambda}_0(C)) \ge \frac{a_n}{5} \quad . \tag{26}$$

Remark 2. If (A_2) is replaced by

$$\exists \lambda_2 \in \Lambda, \quad \mathrm{df}(\lambda_2) \le n^a \quad and \quad b(\lambda_2) \le \sigma^2 \beta_n \tag{A'_2}$$

for some $a \in [1/2, 1)$ and $\beta_n \ge \sqrt{n \ln(n)}$, then for every $\beta \in (a, 1)$ Proposition 1 still holds for $n \ge \max\left\{C_1, 4^{1/(\beta-a)}\right\}$ with Eq. (25) replaced by

$$\forall C > \left(1 + 44\gamma\beta_n n^{-\beta}\right)\sigma^2, \quad \mathrm{df}(\widehat{\lambda}_0(C)) \le n^\beta \quad .$$
(27)

Remark 3. On the event defined in Proposition 1, we can derive from Eq. (17), (53), (62), and $||A_{\lambda}|| \leq 1$, that

$$\forall \lambda \in \Lambda \text{ such that } \mathrm{df}(\lambda) \geq \frac{n}{\ln(n)}, \quad n^{-1} \left\| \widehat{F}_{\lambda} - F \right\|_{2}^{2} \geq \left(\frac{1}{2\ln(n)} - \frac{8\gamma\ln(n)}{n} \right) \sigma^{2}$$

Hence, the blow up of df($\hat{\lambda}_0(C)$) holding when the penalty is below the minimal penalty also implies a blow up of the risk $n^{-1} \| \widehat{F}_{\hat{\lambda}_0(C)} - F \|_2^2$.

Let us now prove Proposition 1.

B.1 General starting point

Combining Eq. (23) with Eq. (17) and (18), for every $C \ge 0$, $\widehat{\lambda}_0(C)$ also minimizes over $\lambda \in \Lambda$

$$\operatorname{crit}_{C}(\lambda) := \left\| \widehat{F}_{\lambda} - Y \right\|_{2}^{2} - \left\| \varepsilon \right\|_{2}^{2} + C \left(2 \operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \right) \\ = b(\lambda) + (\sigma^{-2}C - 1) \left(2v_{1}(\lambda) - v_{2}(\lambda) \right) - 2\delta_{1}(\lambda) + \delta_{2}(\lambda) + \delta_{3}(\lambda) + \delta_{4}(\lambda) \ .$$

We now use the concentration inequalities of Eq. (53), (54), (61) and (62) proved in Section D: For every $\lambda \in \Lambda$ and $x \ge 1$, an event of probability $1 - 8e^{-x}$ exists on which for every $C \ge 0$ and $\theta > 0$,

$$\operatorname{crit}_{C}(\lambda) \ge \frac{b(\lambda)}{3} + (\sigma^{-2}C - 1)(2v_{1}(\lambda) - v_{2}(\lambda)) - 3\theta v_{1}(\lambda) - 6(2 + \theta^{-1})x\sigma^{2}$$
(28)

$$\operatorname{crit}_{C}(\lambda) \leq \frac{5b(\lambda)}{3} + (\sigma^{-2}C - 1)(2v_{1}(\lambda) - v_{2}(\lambda)) + 3\theta v_{1}(\lambda) + 6(2 + \theta^{-1})x\sigma^{2} , \qquad (29)$$

using also that $v_2 \leq v_1$ by Eq. (22) and that $||A_{\lambda}|| \leq 1$.

For every $x \ge 1$, let Ω_x be the event on which the inequalities appearing in Eq. (53), (54), (61) and (62) hold for every $\theta > 0$ and $\lambda \in \Lambda$. The union bound shows that $\mathbb{P}(\Omega_x) \ge 1-8 \operatorname{Card}(\Lambda) e^{-x}$.

B.2 Below the minimal penalty

We assume in this subsection that $C \in [0, \sigma^2)$. We will prove Eq. (26) using assumption $(\mathbf{A'_1})$, since when $a_n = n/2$ and $\beta_n = \sqrt{n \ln(n)}$, Eq. (26) is Eq. (24) and $(\mathbf{A'_1})$ is $(\mathbf{A_1})$.

Using Eq. (22) and taking $\theta = \sqrt{x/\operatorname{df}(\lambda)}$ in Eq. (28) and (29), we get that for every $x \ge 1$, on Ω_x , for every $\lambda \in \Lambda$,

$$\operatorname{crit}_{C}(\lambda) \geq \frac{b(\lambda)}{3} + 2(C - \sigma^{2}) \operatorname{df}(\lambda) - \left(9\sqrt{x \operatorname{df}(\lambda)} + 12x\right)\sigma^{2}$$
(30)

$$\operatorname{crit}_{C}(\lambda) \leq \frac{5b(\lambda)}{3} + (C - \sigma^{2})\operatorname{df}(\lambda) + \left(9\sqrt{x\operatorname{df}(\lambda)} + 12x\right)\sigma^{2} \quad . \tag{31}$$

Let $\lambda \in \Lambda$. Two cases can be distinguished:

1. If $df(\lambda) < a_n/5$, then Eq. (30) implies

$$\operatorname{crit}_{C}(\lambda) \geq \frac{2(C-\sigma^{2})a_{n}}{5} - \left(9\sqrt{\frac{xa_{n}}{5}} + 12x\right)\sigma^{2} \quad .$$

$$(32)$$

2. If $df(\lambda) \ge a_n$, then Eq. (31) implies

$$\operatorname{crit}_{C}(\lambda) \leq \frac{5b(\lambda)}{3} + (C - \sigma^{2})a_{n} + (9\sqrt{xa_{n}} + 12x)\sigma^{2} \quad .$$
(33)

We now take $x = \gamma \ln(n)$ so that $\mathbb{P}(\Omega_x) \ge 1 - 8 \operatorname{Card}(\Lambda) n^{-\gamma}$. On the one hand, Eq. (32) implies

$$\inf_{\lambda \in \Lambda, \,\mathrm{df}(\lambda) < a_n/5} \left\{ \operatorname{crit}_C(\lambda) \right\} \ge \frac{2(C - \sigma^2)a_n}{5} - \left(9\sqrt{\frac{\gamma a_n \ln(n)}{5}} + 12\gamma \ln(n) \right) \sigma^2 \quad . \tag{34}$$

On the other hand, for $\lambda = \lambda_1$ given by assumption (A'_1), Eq. (33) implies

$$\operatorname{crit}_{C}(\lambda_{1}) \leq \frac{5\sigma^{2}\beta_{n}}{3} + (C - \sigma^{2})a_{n} + \left(9\sqrt{\gamma a_{n}\ln(n)} + 12\gamma\ln(n)\right)\sigma^{2} \quad (35)$$

Comparing Eq. (34) and Eq. (35), we get that

$$\operatorname{crit}_{C}(\lambda_{1}) < \inf_{\lambda \in \Lambda, \, \mathrm{df}(\lambda) < a_{n}/5} \left\{ \operatorname{crit}_{C}(\lambda) \right\}$$

hence $df(\widehat{\lambda}_0(C)) \ge a_n/5$ if

$$1 - \sigma^{-2}C > \frac{3\beta_n}{a_n} + 62\gamma \sqrt{\frac{\ln(n)}{a_n}} \quad .$$

B.3 Above the minimal penalty

We assume in this subsection that $C > \sigma^2$. We will prove Eq. (27) using assumption (\mathbf{A}'_2) , since when a = 1/2, $\beta_n = \sqrt{n \ln(n)}$ and $\beta = (1+a)/2 = 3/4$, Eq. (27) is Eq. (25) and (**A'_2**) is (**A_2**). Using Eq. (22) and taking $\theta = \sqrt{x/df(\lambda)}$ in Eq. (28) and (29), we get that for every $x \ge 1$,

on Ω_x , for every $\lambda \in \Lambda$,

$$\operatorname{crit}_{C}(\lambda) \geq \frac{b(\lambda)}{3} + (C - \sigma^{2}) \operatorname{df}(\lambda) - \left(9\sqrt{x \operatorname{df}(\lambda)} + 12x\right)\sigma^{2}$$
(36)

$$\operatorname{crit}_{C}(\lambda) \leq \frac{5b(\lambda)}{3} + 2(C - \sigma^{2})\operatorname{df}(\lambda) + \left(9\sqrt{x\operatorname{df}(\lambda)} + 12x\right)\sigma^{2} \quad . \tag{37}$$

Let $\lambda \in \Lambda$, and $\beta \in (a, 1)$. As in Section B.2, we consider two cases.

1. If $df(\lambda) \leq n^a$, Eq. (37) implies

$$\operatorname{crit}_{C}(\lambda) \leq 2b(\lambda) + 2(C - \sigma^{2})n^{a} + \left(9\sqrt{xn^{a}} + 12x\right)\sigma^{2} \quad . \tag{38}$$

2. If $df(\lambda) \ge n^{\beta}$, Eq. (36) implies

$$\operatorname{crit}_{C}(\lambda) \ge (C - \sigma^{2})n^{\beta} - \left(9\sqrt{xn^{\beta}} + 12x\right)\sigma^{2} \quad . \tag{39}$$

We now take $x = \gamma \ln(n)$ as in Section B.2.

On the one hand, for $\lambda = \lambda_2$ given by assumption (A₂), Eq. (38) implies

$$\operatorname{crit}_{C}(\lambda_{2}) \leq 2\sigma^{2}\beta_{n} + (C - \sigma^{2})\frac{n^{\beta}}{2} + \left(9\sqrt{\gamma \ln(n)n^{a}} + 12\gamma \ln(n)\right)\sigma^{2}$$
(40)

if $n^{\beta-a} \geq 4$.

On the other hand, Eq. (39) implies

$$\inf_{\lambda \in \Lambda, \, \mathrm{df}(\lambda) \ge n^{\beta}} \left\{ \operatorname{crit}_{C}(\lambda) \right\} \ge (C - \sigma^{2})n^{\beta} - \left(9\sqrt{\gamma \ln(n)n^{\beta}} + 12\gamma \ln(n) \right) \sigma^{2} \quad . \tag{41}$$

Comparing Eq. (40) and Eq. (41), we get that

$$\operatorname{crit}_{C}(\lambda_{2}) < \inf_{\lambda \in \Lambda, \, \mathrm{df}(\lambda) \geq n^{\beta}} \left\{ \operatorname{crit}_{C}(\lambda) \right\}$$

hence $df(\widehat{\lambda}_0(C)) < n^\beta$ if

$$n \ge 4^{1/(\beta-a)}$$
, $\sqrt{n/\ln(n)} \ge 12$, and $\sigma^{-2}C - 1 > 44\gamma\beta_n n^{-\beta}$.

C Oracle inequality

Define

$$\forall C \ge 0, \qquad \widehat{\lambda}_{\text{opt}}(C) \in \arg\min_{\lambda \in \Lambda} \left\{ \left\| \widehat{F}_{\lambda} - Y \right\|_{2}^{2} + 2C \operatorname{tr}(A_{\lambda}) \right\}$$
(42)

We will prove the following proposition in this section.

Proposition 2. Let λ_{opt} be defined by Eq. (42). Assume that $\forall \lambda \in \Lambda$, A_{λ} is symmetric with $Sp(A_{\lambda}) \subset [0,1]$, that ε_i are *i.i.d.* Gaussian with zero mean and variance $\sigma^2 > 0$.

Then, a numerical constant $C_2 > 0$ exists such that for every $n \ge C_2$, $\gamma \ge 1$, $\eta^+ \ge (\ln(n))^{-1}$, and C > 0 such that $\sigma^{-2}C \in [1 + (\ln(n))^{-1}, 1 + \eta^+]$,

$$n^{-1} \left\| \widehat{F}_{\widehat{\lambda}_{opt}(C)} - F \right\|_{2}^{2} \leq \left(1 + \frac{3}{\ln(n)} \right) \inf_{\lambda \in \Lambda} \left\{ n^{-1} \left\| \widehat{F}_{\lambda} - F \right\|_{2}^{2} + 4\eta^{+} \frac{\sigma^{2} \operatorname{tr}(A_{\lambda})}{n} \right\} + \frac{14\gamma \left(\ln(n) \right)^{2} \sigma^{2}}{n}$$

$$\tag{43}$$

holds with probability at least $1 - 8 \operatorname{Card}(\Lambda) n^{-\gamma}$.

If in addition

$$\exists \kappa \ge 1, \, \forall \lambda \in \Lambda, \quad v_1(\lambda) \le \kappa \left(v_2(\lambda) + b(\lambda) + (\ln(n))^2 \, \sigma^2 \right) \quad , \tag{A'_3}$$

then a constant $C_3 > 0$ depending only on κ exists such that for every $n \ge C_3$, $\gamma \ge 1$, and C > 0 such that $\sigma^{-2}C \in \left[1 - (\ln(n))^{-1}, 1 + (\ln(n))^{-1}\right]$,

$$n^{-1} \left\| \widehat{F}_{\widehat{\lambda}_{\text{opt}}(C)} - F \right\|_{2}^{2} \leq \left(1 + \frac{40\kappa}{\ln(n)} \right) \inf_{\lambda \in \Lambda} \left\{ n^{-1} \left\| \widehat{F}_{\lambda} - F \right\|_{2}^{2} \right\} + \frac{36(\kappa + \gamma)\ln(n)\sigma^{2}}{n} \quad .$$
(44)

holds with probability at least $1 - 8 \operatorname{Card}(\Lambda) n^{-\gamma}$.

If $\operatorname{Card}(\Lambda) \leq Kn^{\alpha}$, Proposition 2 with $\gamma = \alpha + 2$ proves that with probability at least $1 - 8Kn^{-2}$, $\widehat{\lambda}$ defined in the Algorithm of Section 4.1 satisfies an oracle inequality if assumption $(\mathbf{A}'_{\mathbf{3}})$ holds.

Remark 4. Assumption (\mathbf{A}'_3) holds as soon as (\mathbf{A}'_3) holds, i.e.,

$$\mathbb{E}\left[\left.n^{-1}\left\|\widehat{F}_{\lambda}-F\right\|_{2}^{2}\right]=n^{-1}\left(v_{2}(\lambda)+b(\lambda)\right)\geq\kappa^{-1}\frac{\sigma^{2}\operatorname{tr}(A_{\lambda})}{n},$$

which is the parametric rate of estimation in a model of dimension $tr(A_{\lambda})$.

In the ordinary least-squares regression example, where all A_{λ} are projection matrices, assumption $(\mathbf{A}'_{\mathbf{3}})$ always holds with $\kappa = 1$ because $v_1(\lambda) = v_2(\lambda)$.

In the kernel ridge regression example, a sufficient condition for $(\mathbf{A}'_{\mathbf{3}})$ is that the eigenvalues $(\mu_j)_{1 \leq j \leq n}$ of the kernel matrix K satisfy

$$\exists \alpha, L_1, L_2 > 0, \forall 1 \le j \le n, \quad L_1 j^{-\alpha} \le \mu_j \le L_2 j^{-\alpha} ,$$

which is a classical assumption in kernel ridge regression with a random design; see Section E.2 for details.

Remark 5. When $\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \ll \operatorname{tr}(A_{\lambda})$ for most $\lambda \in \Lambda$, taking C slightly larger than σ^2 as in the first part of Proposition 2 is necessary to obtain an oracle inequality. Indeed, Proposition 1 then shows that

$$\left(2\operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})\right)\sigma^{2}n^{-1} \approx 2\operatorname{tr}(A_{\lambda})\sigma^{2}n^{-1}$$

is a minimal penalty. So, any underestimation of the constant C in the penalty $2C \operatorname{tr}(A_{\lambda})n^{-1}$ may lead to selecting $\widehat{\lambda} = \widehat{\lambda}_{opt}(C)$ with $\operatorname{df}(\widehat{\lambda}) \ge n/(\ln(n))$.

Such a phenomenon holds for instance when $A_{\lambda} = \lambda I_n$ and $\Lambda \subset [0,1]$, since $\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) = \operatorname{tr}(A_{\lambda})^2 n^{-1} \ll \operatorname{tr}(A_{\lambda})$ unless $\operatorname{tr}(A_{\lambda}) \propto n$.

Remark 6. The remainder terms in Eq. (43) and (44), $14\gamma(\ln(n))^2\sigma^2n^{-1}$ and $36(\kappa+\gamma)\ln(n)\sigma^2n^{-1}$, are negligible in front of the risk of the oracle provided that $v_2(\lambda^*)$ tends grows with n faster than $(\ln(n))^2$, since the risk of \hat{F}_{λ^*} is at least of order $v_2(\lambda^*)n^{-1}$. This usually holds when the bias is not exactly zero for some $\lambda \in \Lambda$ with $\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda})$ too small, as often assumed in the model selection literature for proving asymptotic optimality results.

Let us now prove Proposition 2.

C.1 General starting point

Combining Eq. (18) and (42), we obtain that for every C > 0 such that $\sigma^{-2}C \in [1 - \eta^{-}, 1 + \eta^{+}]$ and every $\lambda \in \Lambda$,

$$\left\|\widehat{F}_{\widehat{\lambda}_{opt}(C)} - F\right\|_{2}^{2} - 2\eta^{-}v_{1}(\widehat{\lambda}_{opt}(C)) + \widehat{\Delta}(\widehat{\lambda}_{opt}(C))$$

$$\leq \inf_{\lambda \in \Lambda} \left\{ \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + 2\eta^{+}v_{1}(\lambda) + \widehat{\Delta}(\lambda) \right\} .$$
(45)

where

$$\widehat{\Delta}(\lambda) := -2\delta_1(\lambda) + \delta_4(\lambda)$$
.

Inequality (45) implies an oracle inequality as soon as $\widehat{\Delta}(\lambda)$ is small compared to $\|\widehat{F}_{\lambda} - F\|_{2}^{2}$ and η^{-}, η^{+} are small enough.

C.2 Make use of concentration inequalities

Let Ω_x denote the same event as in Section B. From Eq. (54) and (61), since $||A_{\lambda}|| \leq 1$, we deduce that on Ω_x

$$\forall \lambda \in \Lambda, \, \forall \theta > 0, \quad \left| \widehat{\Delta}(\lambda) \right| \le \theta b(\lambda) + 2\theta v_1(\lambda) + (4 + 5\theta^{-1})x\sigma^2 \ . \tag{46}$$

In addition, combining Eq. (17), (53) and (62) with $\theta = 1/2$, and $||A_{\lambda}|| \leq 1$, we have on Ω_x ,

$$\forall \lambda \in \Lambda, \quad b(\lambda) + v_2(\lambda) \le 2 \left\| \widehat{F}_{\lambda} - F \right\|_2^2 + 16x\sigma^2 \quad .$$
(47)

C.3 First result: with a slightly enlarged penalty

Assume in this subsection that $\sigma^{-2}C \in [1 + (\ln(n))^{-1}; 1 + \eta^+]$ with $\eta^+ \ge (\ln(n))^{-1}$. Then, Eq. (45) and (46) with $\theta = (\ln(n))^{-1}$ imply

$$\left\|\widehat{F}_{\widehat{\lambda}_{\text{opt}}(C)} - F\right\|_{2}^{2} \leq \frac{1 + (\ln(n))^{-1}}{1 - (\ln(n))^{-1}} \inf_{\lambda \in \Lambda} \left\{ \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + 4\eta^{+} v_{1}(\lambda) \right\} + (9 + 12\ln(n))x\sigma^{2} , \quad (48)$$

if $\ln(n) \ge 5$.

Taking $x = \gamma \ln(n)$ with $\gamma \ge 1$, then $\mathbb{P}(\Omega_x) \ge 1 - 8 \operatorname{Card}(\Lambda) n^{-\gamma}$ and Eq. (48) implies Eq. (43) for every $n \ge C_2 = e^5$.

C.4 Second result: with assumption (A'_3)

Assume in this subsection that $\sigma^{-2}C \in [1 - \eta^-; 1 + \eta^+]$ with $0 \le \eta^-, \eta^+ \le (\ln(n))^{-1}$, and that (\mathbf{A}'_3) holds.

Then, Eq. (46) with $\theta = (\ln(n))^{-1}$ and Eq. (47) imply

$$\left\|\widehat{F}_{\widehat{\lambda}_{\text{opt}}(C)} - F\right\|_{2}^{2} - 2\eta^{-} v_{1}(\widehat{\lambda}_{\text{opt}}(C)) + \widehat{\Delta}(\widehat{\lambda}_{\text{opt}}(C))$$

$$\geq \left(1 - \frac{10\kappa}{\ln(n)}\right) \left\|\widehat{F}_{\widehat{\lambda}_{\text{opt}}(C)} - F\right\|_{2}^{2} - \left[\left(4 + \frac{80\kappa}{\ln(n)}\right)x + 9\ln(n)\kappa\right]\sigma^{2} , \qquad (49)$$

and for every $\lambda \in \Lambda$,

$$\left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + 2\eta^{+}v_{1}(\lambda) + \widehat{\Delta}(\lambda)$$

$$\leq \left(1 + \frac{10\kappa}{\ln(n)}\right) \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + \left[\left(4 + \frac{80\kappa}{\ln(n)}\right)x + 9\ln(n)\kappa\right]\sigma^{2} .$$
(50)

Combining Eq. (45), (49) and (50), we get that on Ω_x ,

$$\left\|\widehat{F}_{\widehat{\lambda}_{\text{opt}}(C)} - F\right\|_{2}^{2} \le \left(1 + \frac{40\kappa}{\ln(n)}\right) \left\|\widehat{F}_{\lambda} - F\right\|_{2}^{2} + 4\left[\left(4 + \frac{80\kappa}{\ln(n)}\right)x + 9\ln(n)\kappa\right]\sigma^{2}$$
(51)

if $\ln(n) \ge 20\kappa$.

Now, taking $x = \gamma \ln(n)$ with $\gamma \ge 1$ in Eq. (51) implies Eq. (44) for every $n \ge C_3(\kappa)$.

D Concentration inequalities

The concentration inequalities used for proving Propositions 1 and 2 are proved in this section.

D.1 Linear functions of ε

We here prove concentration inequalities for $\delta_3(\lambda)$ and $\delta_4(\lambda)$. Let us first prove a classical result. **Proposition 3.** Let ξ be a standard Gaussian vector in \mathbb{R}^n , $\alpha \in \mathbb{R}^n$ and

$$Z = \langle \xi, \, \alpha \rangle = \sum_{j=1}^{n} \alpha_j \xi_j$$

Then, for every $x \ge 0$,

$$\mathbb{P}\left(\left|Z\right| \le \sqrt{2x} \left\|\alpha\right\|_{2}\right) \ge 1 - 2e^{-x} \quad .$$

$$(52)$$

Proof. Z is a Lipschitz function of ξ , with Lipschitz constant $\|\alpha\|_2$. Therefore, the Gaussian concentration theorem implies (see for instance Theorem 3.4 in [15]):

$$\forall t \ge 0, \qquad \mathbb{P}\left(|Z| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\|\alpha\|_2^2}\right)$$

The result follows by taking $t = \sqrt{2x} \|\alpha\|_2$.

Now, remark that

$$\delta_3(\lambda) = \left\langle \sigma^{-1}\varepsilon, \, 2\sigma A_{\lambda}^{\top}(I_n - A_{\lambda})F \right\rangle \quad \text{and} \quad \delta_4(\lambda) = \left\langle \sigma^{-1}\varepsilon, \, 2\sigma(I_n - A_{\lambda})F \right\rangle \;\;,$$

where $\sigma^{-1}\varepsilon$ is a standard Gaussian vector. Hence, Proposition 3 shows that for every $x \ge 0$ and $\lambda \in \Lambda$,

$$\mathbb{P}\left(\left|\delta_{3}(\lambda)\right| \leq 2\sigma\sqrt{x} \left\|A_{\lambda}^{\top}(I_{n} - A_{\lambda})F\right\|_{2}\right) \geq 1 - 2e^{-x} \\
\mathbb{P}\left(\left|\delta_{4}(\lambda)\right| \leq 2\sigma\sqrt{x} \left\|(I_{n} - A_{\lambda})F\right\|_{2}\right) \geq 1 - 2e^{-x} ,$$

which implies that

$$\mathbb{P}\left(\forall \theta > 0, \ |\delta_3(\lambda)| \le \theta^{-1} x \, \|A_\lambda\|^2 \, \sigma^2 + \theta \, \|(I_n - A_\lambda)F\|_2^2\right) \ge 1 - 2e^{-x} \tag{53}$$

$$\mathbb{P}\left(\forall \theta > 0, \ |\delta_4(\lambda)| \le \theta^{-1} x \sigma^2 + \theta \left\| (I_n - A_\lambda) F \right\|_2^2 \right) \ge 1 - 2e^{-x} , \qquad (54)$$

since $\forall a, b, \theta > 0$, $2ab \le \theta a^2 + \theta^{-1}b^2$.

D.2 Quadratic functions of ε

We here prove concentration inequalities for $\delta_2(\lambda)$ and $\delta_1(\lambda)$. Let us first prove (recall) a general result.

Proposition 4. Let ξ be a standard Gaussian vector in \mathbb{R}^n , M a real-valued $n \times n$ matrix and

$$Z = \|M\xi\|_{2}^{2} - \operatorname{tr}(M^{\top}M) -$$

Then, for every $x \ge 0$,

$$\mathbb{P}\left(\forall \theta > 0, \ Z \le \theta \operatorname{tr}(M^{\top}M) + 2(1+\theta^{-1}) \|M\|^2 x\right) \ge 1 - e^{-x}$$
(55)

$$\mathbb{P}\left(\forall \theta > 0, \ Z \ge -\theta \operatorname{tr}(M^{\top}M) - \left[2x\left(\theta^{-1} - 1\right) + 1 - \theta\right] \|M\|^2\right) \ge 1 - e^{-x} \ .$$
 (56)

Proof. Define $W = ||M\xi||_2$, and note that $\mathbb{E}[W^2] = \operatorname{tr}(M^{\top}M)$. Since W is a Lipschitz function of ξ with Lipschitz constant ||M||, the Gaussian concentration theorem (see for instance Theorem 3.4 in [15]) shows that for every $x \ge 0$, an event Ω_x^+ of probability at least $1 - \exp(-x)$ exists on which

$$W \le \mathbb{E}\left[W\right] + \sqrt{2x} \left\|M\right\| \quad , \tag{57}$$

and an event Ω_x^- of probability at least $1 - \exp(-x)$ exists on which

$$W \ge \mathbb{E}\left[W\right] - \sqrt{2x} \left\|M\right\| \quad . \tag{58}$$

In addition, Proposition 3.5 in [15] shows that $\operatorname{var}(W) \leq ||M||^2$. Therefore,

$$0 \le \mathbb{E}\left[W^2\right] - \left(\mathbb{E}\left[W\right]\right)^2 = \operatorname{var}(W) \le \|M\|^2 \quad .$$
(59)

We now combine Eq. (59) with the two concentration inequalities above for proving the result. On the one hand, on Ω_x^+ ,

$$W^{2} \leq (\mathbb{E}[W])^{2} + 2\mathbb{E}[W]\sqrt{2x} ||M|| + 2x ||M||^{2}$$

$$\leq \mathbb{E}[W^{2}] + 2\sqrt{2x\mathbb{E}[W^{2}]} ||M|| + 2x ||M||^{2}$$

$$\leq (1+\theta)\mathbb{E}[W^{2}] + 2(1+\theta^{-1})x ||M||^{2}$$

for every $\theta > 0$, using successively Eq. (59) and that $\forall a, b, \theta > 0$, $2\sqrt{ab} \le a\theta + b\theta^{-1}$. This proves Eq. (55).

On the other hand, for every $x \ge 0$ such that $x \le (\mathbb{E}[W^2] - ||M||^2)/(2||M||^2)$, on Ω_x^-

$$W^{2} \geq \left(\sqrt{\mathbb{E}[W^{2}] - \|M\|^{2}} - \sqrt{2x} \|M\|\right)^{2} \\ \geq (1 - \theta)\mathbb{E}[W^{2}] - \left[2x(\theta^{-1} - 1) + 1 - \theta\right] \|M\|^{2} .$$
(60)

This proves Eq. (56), since the lower bound in Eq. (60) is non-positive if $x > (\mathbb{E}[W^2] - ||M||^2)/(2||M||^2)$.

Now, remark that if B_{λ} exists such that $A_{\lambda} = B_{\lambda}^{\top}B_{\lambda}$ —as in the kernel ridge regression example for instance, and more generally when A_{λ} is symmetric real-valued with $\operatorname{Sp}(A_{\lambda}) \subset [0,1]$ —, then

$$\sigma^{-2}\delta_1(\lambda) = \left\| B_{\lambda}(\sigma^{-1}\varepsilon) \right\|_2^2 - \operatorname{tr}(B_{\lambda}^{\top}B_{\lambda}) \quad \text{and} \quad \sigma^{-2}\delta_2(\lambda) = \left\| A_{\lambda}(\sigma^{-1}\varepsilon) \right\|_2^2 - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \ .$$

Hence, Proposition 4 shows that for every $x \ge 0$ and $\lambda \in \Lambda$,

$$\mathbb{P}\left(\forall \theta > 0, \ |\delta_1(\lambda)| \le \theta \sigma^2 \operatorname{tr}(A_\lambda) + 2(1+\theta^{-1})x \, \|A_\lambda\| \, \sigma^2\right) \ge 1 - 2e^{-x} \tag{61}$$

$$\mathbb{P}\left(\forall \theta > 0, \ |\delta_2(\lambda)| \le \theta \sigma^2 \operatorname{tr}(A_{\lambda}^{\top} A_{\lambda}) + 2(1 + \theta^{-1}) x \, \|A_{\lambda}\|^2 \, \sigma^2\right) \ge 1 - 2e^{-x} \ , \tag{62}$$

where we used in particular that $||B_{\lambda}||^2 = ||A_{\lambda}||$.

E Kernel ridge regression example

Finally, let us make some computations that are specific to the kernel ridge regression example.

E.1 Explicit formulas for the deterministic terms

Let K be the $n \times n$ matrix such that $K_{i,j} = k(x_i, x_j)$. Then, the kernel regression estimator with regularization parameter λ is defined by

$$\widehat{F}_{\lambda} = A_{\lambda}Y$$
 with $A_{\lambda} = K(K + n\lambda I_n)^{-1}$.

Then, A_{λ} is symmetric, real-valued (hence diagonalizable by orthogonal matrices) and $\text{Sp}(A_{\lambda}) \subset [0, 1]$.

Let $(e_j)_{1 \le j \le n}$ be the (orthonormal) eigenvectors of K, with eigenvalues $(\mu_j)_{1 \le j \le n}$, assuming that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n \ge 0$. We also assume that $\mu_1 > 0$, that is, K is not the null matrix. We can then decompose F in this basis: $F = \sum_j f_j e_j$.

Therefore, in the orthonormal basis $(e_j)_{1 \leq j \leq n}$, A_{λ} is diagonal with coefficients

$$\left(\frac{\mu_j}{\mu_j + n\lambda}\right)_{1 \le j \le n}$$

Hence,

$$\operatorname{tr}(A_{\lambda}) = \operatorname{df}(\lambda) = \sum_{j=1}^{n} \left(\frac{\mu_{j}}{\mu_{j} + n\lambda}\right)$$
$$\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) = \sum_{j=1}^{n} \left(\frac{\mu_{j}}{\mu_{j} + n\lambda}\right)^{2}$$
$$2\operatorname{tr}(A_{\lambda}) - \operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) = \sum_{j=1}^{n} \left[\frac{2\mu_{j}}{\mu_{j} + n\lambda} - \left(\frac{\mu_{j}}{\mu_{j} + n\lambda}\right)^{2}\right] = \sum_{j=1}^{n} \left[\frac{\mu_{j}(\mu_{j} + 2n\lambda)}{(\mu_{j} + n\lambda)^{2}}\right]$$
$$b(\lambda) = \|(A_{\lambda} - I_{n})F\|_{2}^{2} = \sum_{j=1}^{n} \left(1 - \frac{\mu_{j}}{\mu_{j} + n\lambda}\right)^{2}f_{j}^{2} .$$

Note that $df(\lambda)$ and $tr(A_{\lambda}^{\top}A_{\lambda})$ are decreasing functions of λ , as well as $2tr(A_{\lambda}) - tr(A_{\lambda}^{\top}A_{\lambda})$ since each term of the sum is nonincreasing, and at least one is decreasing. On the contrary, $b(\lambda)$ is an nondecreasing function of λ . Hence, $tr(A_{\lambda}^{\top}A_{\lambda})$ and $2tr(A_{\lambda}) - tr(A_{\lambda}^{\top}A_{\lambda})$ are increasing functions of $df(\lambda)$, and $b(\lambda)$ is a nonincreasing function of $df(\lambda)$.

E.2 Sufficient condition for assumption (A'_3)

Assumption $(\mathbf{A}'_{\mathbf{3}})$ holds in particular when

$$\exists \kappa \ge 1, \, \forall \lambda \in \Lambda, \quad \operatorname{tr}(A_{\lambda}) \le \kappa \operatorname{tr}(A_{\lambda}^{+}A_{\lambda}) \quad .$$

If the eigenvalues of K satisfy

$$\exists \alpha, L_1, L_2 > 0, \, \forall 1 \le j \le n, \quad L_1 j^{-\alpha} \le \mu_j \le L_2 j^{-\alpha} ,$$

then, following [9],

$$\operatorname{tr}(A_{\lambda}) \leq \sum_{j=1}^{n} \frac{L_{2}j^{-\alpha}}{L_{2}j^{-\alpha} + n\lambda} = \sum_{j=1}^{n} \frac{1}{1 + n\lambda L_{2}^{-1}j^{\alpha}}$$
$$\leq \int_{0}^{\infty} \frac{dt}{1 + n\lambda L_{2}^{-1}t^{\alpha}} = \left(\frac{L_{2}}{n\lambda}\right)^{1/\alpha} \int_{0}^{\infty} \frac{du}{1 + u^{\alpha}}$$

and

$$\operatorname{tr}(A_{\lambda}^{\top}A_{\lambda}) \geq \sum_{j=1}^{n} \left(\frac{L_{1}j^{-\alpha}}{L_{1}j^{-\alpha} + n\lambda}\right)^{2} = \sum_{j=1}^{n} \frac{1}{\left(1 + n\lambda L_{1}^{-1}j^{\alpha}\right)^{2}}$$
$$\geq \int_{1}^{\infty} \frac{dt}{\left(1 + n\lambda L_{1}^{-1}t^{\alpha}\right)^{2}} = \left(\frac{L_{1}}{n\lambda}\right)^{1/\alpha} \int_{1}^{\infty} \frac{du}{\left(1 + u^{\alpha}\right)^{2}} .$$

Therefore, $(\mathbf{A'_3})$ holds with

$$\kappa = \left(\frac{L_2}{L_1}\right)^{1/\alpha} \int_0^\infty \frac{du}{1+u^\alpha} \left(\int_1^\infty \frac{du}{\left(1+u^\alpha\right)^2}\right)^{-1} \; .$$

References

- D. M. Allen. The relationship between variable selection and data augmentation and a method for prediction. *Technometrics*, 16:125–127, 1974.
- S. Arlot and P. Massart. Data-driven calibration of penalties for least-squares regression. J. Mach. Learn. Res., 10:245–279 (electronic), 2009.
- F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179–1225, 2008.
- [4] L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields, 138(1-2):33-73, 2007.
- [5] Y. Cao and Y. Golubev. On oracle inequalities related to smoothing splines. Math. Methods Statist., 15(4):398–414 (2007), 2006.
- [6] O. Chapelle and V. Vapnik. Model selection for support vector machines. In Advances in Neural Information Processing Systems (NIPS), 1999.
- [7] P. Craven and G. Wahba. Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. *Numer. Math.*, 31(4):377–403, 1978/79.
- [8] B. Efron. How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc., 81(394):461-470, 1986.
- [9] Z. Harchaoui, F. Bach, and E. Moulines. Testing for homogeneity with kernel fisher discriminant analysis, April 2008. oai:hal.archives-ouvertes.fr:hal-00270806_v1.
- [10] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag, 2001.
- [11] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–72 (electronic), 2003/04.
- [12] É. Lebarbier. Detecting multiple change-points in the mean of a gaussian process by model selection. Signal Proces., 85:717–736, 2005.
- [13] K.-C. Li. Asymptotic optimality for C_p , C_L , cross-validation and generalized cross-validation: discrete index set. Ann. Statist., 15(3):958–975, 1987.
- [14] C. L. Mallows. Some comments on C_p . Technometrics, 15:661–675, 1973.
- [15] P. Massart. Concentration Inequalities and Model Selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by Jean Picard.
- [16] C. Maugis and B. Michel. Slope heuristics for variable selection and clustering via gaussian mixtures. Technical Report 6550, INRIA, 2008.
- [17] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

- [18] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- [19] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.
- [20] M. Stone. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B, 36:111–147, 1974. With discussion by G. A. Barnard, A. C. Atkinson, L. K. Chan, A. P. Dawid, F. Downton, J. Dickey, A. G. Baker, O. Barndorff-Nielsen, D. R. Cox, S. Giesser, D. Hinkley, R. R. Hocking, and A. S. Young, and with a reply by the authors.
- [21] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of The Royal Statistical Society Series B, 58(1):267–288, 1996.
- [22] G. Wahba. Spline Models for Observational Data. SIAM, 1990.
- [23] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of The Royal Statistical Society Series B, 68(1):49–67, 2006.
- [24] T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Comput., 17(9):2077–2098, 2005.