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Abstract

This paper tackles the problem of selecting among several linear estimators in non-
parametric regression; this includes model selection for linear regression, the choice of a
regularization parameter in kernel ridge regression or spline smoothing, and the choice of a
kernel in multiple kernel learning. We propose a new algorithm which first estimates con-
sistently the variance of the noise, based upon the concept of minimal penalty which was
previously introduced in the context of model selection. Then, plugging our variance esti-
mate in Mallows’ CL penalty is proved to lead to an algorithm satisfying an oracle inequality.
Simulation experiments with kernel ridge regression and multiple kernel learning show that
the proposed algorithm often improves significantly existing calibration procedures such as
10-fold cross-validation or generalized cross-validation.

1 Introduction

Kernel-based methods are now well-established tools for supervised learning, allowing to perform
various tasks, such as regression or binary classification, with linear and non-linear predictors [19,
18]. A central issue common to all regularization frameworks is the choice of the regularization
parameter: while most practitioners use cross-validation procedures to select such a parameter,
data-driven procedures not based on cross-validation are rarely used. The choice of the kernel, a
seemingly unrelated issue, is also important for good predictive performance: several techniques
exists, either based on cross-validation, Gaussian processes or multiple kernel learning [6, 17, 3].

In this paper, we consider least-squares regression and cast these two problems as the problem
of selecting among several linear estimators, where the goal is to choose an estimator with a
quadratic risk which is as small as possible. This problem includes for instance model selection
for linear regression, the choice of a regularization parameter in kernel ridge regression or spline
smoothing, and the choice of a kernel in multiple kernel learning (see Section 2).

∗http://www.di.ens.fr/∼arlot/
†http://www.di.ens.fr/∼fbach/
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The main contribution of the paper is to extend the notion of minimal penalty [4, 2] to
all discrete classes of linear operators, and to use it for defining a fully data-driven selection
algorithm satisfying a non-asymptotic oracle inequality. Our new theoretical results presented
in Section 4 extend similar results which were limited to unregularized least-squares regression
(i.e., projection operators). Finally, in Section 5, we show that our algorithm improves the
performances of classical selection procedures, such as GCV [7] and 10-fold cross-validation, for
kernel ridge regression or multiple kernel learning, for moderate values of the sample size.

2 Linear estimators

In this section, we define the problem we aim to solve and give several examples of linear
estimators.

2.1 Framework and notation

Let us assume that one observes

Yi = f(xi) + εi ∈ R for i = 1 . . . n ,

where ε1, . . . , εn are i.i.d. centered random variables with E[ε2
i ] = σ2 unknown, f is an unknown

measurable function X 7→ R and x1, . . . , xn ∈ X are deterministic design points. No assumption
is made on the set X . The goal is to reconstruct the signal F = (f(xi))1≤i≤n ∈ R

n, with some

estimator F̂ ∈ R
n, depending only on (x1, Y1) . . . , (xn, Yn), and having a small quadratic risk

n−1‖F̂ − F‖2
2 , where ∀t ∈ R

n, we denote by ‖t‖2 the ℓ2-norm of t, defined as ‖t‖2
2 :=

∑n
i=1 t2i .

In this paper, we focus on linear estimators F̂ that can be written as a linear function of
Y = (Y1, . . . , Yn) ∈ R

n, that is, F̂ = AY , for some (deterministic) n × n matrix A. Here and in
the rest of the paper, vectors such as Y or F are assumed to be column-vectors. We present in
Section 2.2 several important families of estimators of this form. The matrix A may depend on
x1, . . . , xn (which are known and deterministic), but not on Y , and may be parameterized by
certain quantities—usually regularization parameter or kernel combination weights.

2.2 Examples of linear estimators

In this paper, our theoretical results apply to matrices A which are symmetric positive semi-
definite, such as the ones defined below.

Ordinary least-squares regression / model selection. If we consider linear predictors
from a design matrix X ∈ R

n×p, then F̂ = AY with A = X(X⊤X)−1X⊤, which is a projection
matrix (i.e., A⊤A = A); F̂ = AY is often called a projection estimator. In the variable selection
setting, one wants to select a subset J ⊂ {1, . . . , p}, and matrices A are parameterized by J .

Kernel ridge regression / spline smoothing. We assume that a positive definite
kernel k : X × X → R is given, and we are looking for a function f : X → R in the associated
reproducing kernel Hilbert space (RKHS) F , with norm ‖ · ‖F . If K denotes the n × n kernel
matrix, defined by Kab = k(xa, xb), then the ridge regression estimator—a.k.a. spline smoothing
estimator for spline kernels [22]—is obtained by minimizing with respect to f ∈ F [18]:

1

n

n∑

i=1

(Yi − f(xi))
2 + λ‖f‖2

F .
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The unique solution is equal to f̂ =
∑n

i=1 αik(·, xi), where α = (K + nλI)−1Y . This leads to
the smoothing matrix Aλ = K(K + nλIn)−1, parameterized by the regularization parameter
λ ∈ R+.

Multiple kernel learning / Group Lasso / Lasso. We now assume that we have
p different kernels kj , feature spaces Fj and feature maps Φj : X → Fj, j = 1, . . . , p. The
group Lasso [23] and multiple kernel learning [11, 3] frameworks consider the following objective
function

J(f1, . . . , fp)=
1
n

n∑

i=1

(
yi −

∑p
j=1〈fj,Φj(xi)〉

)2
+ 2λ

p∑

j=1

‖fj‖Fj
= L(f1, . . . , fp) + 2λ

p∑

j=1

‖fj‖Fj
.

Note that when Φj(x) is simply the j-th coordinate of x ∈ R
p, we get back the penalization by

the ℓ1-norm and thus the regular Lasso [21].
Using a1/2 = minb>0

1
2{a

b + b}, we obtain a variational formulation of the sum of norms

2
∑p

j=1 ‖fj‖ = minη∈R
p
+

∑p
j=1

{
‖fj‖

2

ηj
+ ηj

}
. Thus, minimizing J(f1, . . . , fp) with respect to

(f1, . . . , fp) is equivalent to minimizing with respect to η ∈ R
p
+ (see [3] for more details):

min
f1,...,fp

L(f1, . . . , fp) + λ

p∑

j=1

‖fj‖2

ηj
+ λ

p∑

j=1

ηj =
1

n
y⊤
(∑p

j=1 ηjKj + nλIn

)−1
y + λ

p∑

j=1

ηj ,

where In is the n × n identity matrix. Moreover, given η, this leads to a smoothing matrix of
the form

Aη,λ = (
∑p

j=1 ηjKj)(
∑p

j=1 ηjKj + nλIn)−1 , (1)

parameterized by the regularization parameter λ ∈ R+ and the kernel combinations in R
p
+—note

that it depends only on λ−1η, which can be grouped in a single parameter set R
p
+.

Thus, the Lasso/group lasso can be seen as particular (convex) way of optimizing over η.
In this paper, we propose a non-convex alternative with better statistical properties (oracle
inequality in Theorem 1). Note that in our setting, finding the solution of the problem is hard
in general since the optimization is not convex. However, while the model selection problem
is by nature combinatorial, our optimization problems for multiple kernels are all differentiable
and are thus amenable to gradient descent procedures—which only find local optima.

Non symmetric linear estimators. Other linear estimators are commonly used, such as
nearest-neighbor regression or the Nadaraya-Watson estimator [10]; those however lead to non
symmetric matrices A, and are not entirely covered by our theoretical results.

3 Linear estimator selection

In this section, we first describe the statistical framework of linear estimator selection and
introduce the notion of minimal penalty.

3.1 Unbiased risk estimation heuristics

Usually, several estimators of the form F̂ = AY can be used. The problem that we consider
in this paper is then to select one of them, that is, to choose a matrix A. Let us assume that
a family of matrices (Aλ)λ∈Λ is given (examples are shown in Section 2.2), hence a family of
estimators (F̂λ)λ∈Λ can be used, with F̂λ := AλY . The goal is to choose from data some λ̂ ∈ Λ,
so that the quadratic risk of F̂bλ

is as small as possible.
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The best choice would be the oracle:

λ⋆ ∈ arg min
λ∈Λ

{
n−1‖F̂λ − F‖2

2

}
,

which cannot be used since it depends on the unknown signal F . Therefore, the goal is to define
a data-driven λ̂ satisfying an oracle inequality

n−1‖F̂bλ
− F‖2

2 ≤ Cn inf
λ∈Λ

{
n−1‖F̂λ − F‖2

2

}
+ Rn , (2)

with large probability, where the leading constant Cn should be close to 1 (at least for large n)
and the remainder term Rn should be negligible compared to the risk of the oracle.

Many classical selection methods are built upon the “unbiased risk estimation” heuristics:
If λ̂ minimizes a criterion crit(λ) such that

∀λ ∈ Λ, E [crit(λ) ] ≈ E

[
n−1‖F̂λ − F‖2

2

]
,

then λ̂ satisfies an oracle inequality such as in Eq. (2) with large probability. For instance,
cross-validation [1, 20] and generalized cross-validation (GCV) [7] are built upon this heuristics.

One way of implementing this heuristics is penalization, which consists in minimizing the
sum of the empirical risk and a penalty term, i.e., using a criterion of the form:

crit(λ) = n−1‖F̂λ − Y ‖2
2 + pen(λ) .

The unbiased risk estimation heuristics, also called Mallows’ heuristics, then leads to the
ideal (deterministic) penalty

penid(λ) := E

[
n−1‖F̂λ − F‖2

2

]
− E

[
n−1‖F̂λ − Y ‖2

2

]
.

When F̂λ = AλY , we have:

∥∥∥F̂λ − F
∥∥∥

2

2
= ‖(Aλ − In)F‖2

2 + ‖Aλε‖2
2 + 2 〈Aλε, (Aλ − In)F 〉 , (3)

∥∥∥F̂λ − Y
∥∥∥

2

2
=
∥∥∥F̂λ − F

∥∥∥
2

2
+ ‖ε‖2

2 − 2 〈ε, Aλε〉 + 2 〈ε, (In − Aλ)F 〉 , (4)

where ε = Y − F ∈ R
n and ∀t, u ∈ R

n, 〈t, u〉 =
∑n

i=1 tiui . Since ε is centered with covariance
matrix σ2In , Eq. (3) and Eq. (4) imply that

penid(λ) =
2σ2 tr(Aλ)

n
, (5)

up to the term −E[n−1‖ε‖2
2]= −σ2 , which can be dropped off since it does not vary with λ.

Note that df(λ) = tr(Aλ) is called the effective dimensionality or degrees of freedom [24], so
that the ideal penalty in Eq. (5) is proportional to the dimensionality associated to the estimator
Aλ—for projection matrices, we get back the dimension of the subspace, which is classical in
model selection.

The expression of the ideal penalty in Eq. (5) led to several selection procedures, in particular
Mallows’ CL (called Cp in the case of projection estimators) [14], where σ2 is replaced by some

estimator σ̂2. The estimator of σ2 usually used with CL is based upon the value of the empirical
risk at some λ0 with df(λ0) large; it has the drawback of overestimating the risk, in a way which
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Figure 1: Bias-variance decomposition of the generalization error, and minimal/optimal penal-
ties.

depends on λ0 and F [8]. GCV, which implicitly estimates σ2, has the drawback of overfitting if
the family (Aλ)λ∈Λ contains a matrix too close to In [5]; GCV also overestimates the risk even
more than CL for most Aλ (see (7.9) and Table 4 in [8]).

In this paper, we define an estimator of σ2 directly related to the selection task which does
not have similar drawbacks. Our estimator relies on the concept of minimal penalty, introduced
by Birgé and Massart [4] and further studied in [2].

3.2 Minimal and optimal penalties

We deduce from Eq. (3) the bias-variance decomposition of the risk:

E

[
n−1

∥∥∥F̂λ − F
∥∥∥

2

2

]
= n−1 ‖(Aλ − In)F‖2

2 +
tr(A⊤

λ Aλ)σ2

n
= bias + variance , (6)

and from Eq. (4) the expectation of the empirical risk:

E

[
n−1

∥∥∥F̂λ − Y
∥∥∥

2

2
− ‖ε‖2

2

]
= n−1 ‖(Aλ − In)F‖2

2 −
(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
σ2

n
. (7)

Note that the variance term in Eq. (6) is not proportional to the effective dimensionality
df(λ) = tr(Aλ) but to tr(A⊤

λ Aλ). Although several papers argue these terms are of the same
order (for instance, they are equal when Aλ is a projection matrix), this may not hold in general.
If Aλ is symmetric with a spectrum Sp(Aλ) ⊂ [0, 1], as in all the examples of Section 2.2, we
only have

0 ≤ tr(A⊤
λ Aλ) ≤ tr(Aλ) ≤ 2 tr(Aλ) − tr(A⊤

λ Aλ) ≤ 2 tr(Aλ) . (8)

In order to give a first intuitive interpretation of Eq. (6) and Eq. (7), let us consider the
kernel ridge regression example and assume that the risk and the empirical risk behave as their
expectations in Eq. (6) and Eq. (7); see also Fig. 1. Completely rigorous arguments based upon
concentration inequalities are developed in the Appendix and summarized in Section 4, leading
to the same conclusion as the present informal reasoning.

First, as proved in Appendix E, the bias n−1 ‖(Aλ − In)F‖2
2 is a decreasing function of the

dimensionality df(λ) = tr(Aλ), and the variance tr(A⊤
λ Aλ)σ2n−1 is an increasing function of

df(λ), as well as 2 tr(Aλ) − tr(A⊤
λ Aλ). Therefore, Eq. (6) shows that the optimal λ realizes

the best trade-off between bias (which decreases with df(λ)) and variance (which increases with
df(λ)), which is a classical fact in model selection.
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Second, the expectation of the empirical risk in Eq. (7) can be decomposed into the bias and
a negative variance term which is the opposite of

penmin(λ) := n−1
(

2 tr(Aλ) − tr(A⊤
λ Aλ)

)
σ2 . (9)

As suggested by the notation penmin, we will show it is a minimal penalty in the following sense.
If

∀C ≥ 0, λ̂min(C) ∈ arg min
λ∈Λ

{
n−1

∥∥∥F̂λ − Y
∥∥∥

2

2
+ C penmin(λ)

}
,

then, up to concentration inequalities that are detailed in Section 4.2, λ̂min(C) behaves like a
minimizer of

gC(λ) = E

[
n−1‖F̂λ − Y ‖2

2 + C penmin(λ)
]
− n−1σ2 = n−1 ‖(Aλ − In)F‖2

2 + (C − 1) penmin(λ) .

Therefore, two main cases can be distinguished:

• if C < 1, then gC(λ) decreases with df(λ) so that df(λ̂min(C)) is huge: λ̂min(C) overfits.

• if C > 1, then gC(λ) increases with df(λ) when df(λ) is large enough, so that df(λ̂min(C))
is much smaller than when C < 1.

As a conclusion, penmin(λ) is the minimal amount of penalization needed so that a minimizer λ̂
of a penalized criterion is not clearly overfitting.

Following an idea first proposed in [4] and further analyzed or used in several other papers
such as [12, 2, 16], we now propose to use that penmin(λ) is a minimal penalty for estimating σ2

and plug this estimator into Eq. (5). This leads to the algorithm described in Section 4.1.
Note that the minimal penalty given by Eq. (9) is new; it generalizes previous results [4, 2]

where penmin(Aλ) = n−1 tr(Aλ)σ2 because all Aλ were assumed to be projection matrices, i.e.,
A⊤

λ Aλ = Aλ. Furthermore, our results generalize the slope heuristics penid ≈ 2 penmin (only
valid for projection estimators [4, 2]) to general linear estimators for which penid /penmin ∈ (1, 2].

4 Main results

In this section, we first describe our algorithm and then present our theoretical results.

4.1 Algorithm

The following algorithm first computes an estimator of Ĉ of σ2 using the minimal penalty in
Eq. (9), then considers the ideal penalty in Eq. (5) for selecting λ.

Input: Λ a finite set with Card(Λ) ≤ Knα for some K,α ≥ 0, and matrices Aλ.

• ∀C > 0, compute λ̂0(C) ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 + C

(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
} .

• Find Ĉ such that df(λ̂0(Ĉ)) ∈
[
n3/4, n/10

]
.

• Select λ̂ ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 + 2Ĉ tr(Aλ)}.

6



In the steps 1 and 2 of the above algorithm, in practice, a grid in log-scale is used, and our
theoretical results from the next section suggest to use a step-size of order n−1/4. Note that it
may not be possible in all cases to find a C such that df(λ̂0(C)) ∈ [n3/4, n/10]; therefore, our
condition in step 2, could be relaxed to finding a Ĉ such that for all C > Ĉ +δ, df(λ̂0(C)) < n3/4

and for all C < Ĉ − δ, df(λ̂0(C)) > n/10, with δ = n−1/4+ξ, where ξ > 0 is a small constant.
Alternatively, using the same grid in log-scale, we can select Ĉ with maximal jump between

successive values of df(λ̂0(C))—note that our theoretical result then does not entirely hold, as we
show the presence of a jump around σ2, but do not show the absence of similar jumps elsewhere.

4.2 Oracle inequality

Theorem 1. Let Ĉ and λ̂ be defined as in the algorithm of Section 4.1, with Card(Λ) ≤ Knα

for some K,α ≥ 0. Assume that ∀λ ∈ Λ, Aλ is symmetric with Sp(Aλ) ⊂ [0, 1], that εi are i.i.d.
Gaussian with variance σ2 > 0, and that ∃λ1, λ2 ∈ Λ with

df(λ1) ≥
n

2
, df(λ2) ≤

√
n, and ∀i ∈ {1, 2} , n−1 ‖(Aλi

− In)F‖2
2 ≤ σ2

√
ln(n)

n
. (A1−2)

Then, a numerical constant Ca and an event of probability at least 1−8Kn−2 exist on which,
for every n ≥ Ca ,

(
1 − 91(α + 2)

√
ln(n)

n

)
σ2 ≤ Ĉ ≤

(
1 +

44(α + 2)
√

ln(n)

n1/4

)
σ2 . (10)

Furthermore, if

∃κ ≥ 1, ∀λ ∈ Λ, n−1 tr(Aλ)σ2 ≤ κE

[
n−1‖F̂λ − F‖2

2

]
, (A3)

then, a constant Cb depending only on κ exists such that for every n ≥ Cb, on the same event,

n−1
∥∥∥F̂bλ

− F
∥∥∥

2

2
≤
(

1 +
40κ

ln(n)

)
inf
λ∈Λ

{
n−1

∥∥∥F̂λ − F
∥∥∥

2

2

}
+

36(κ + α + 2) ln(n)σ2

n
. (11)

Theorem 1 is proved in the Appendix. The proof mainly follows from the informal arguments
developed in Section 3.2, completed with the following two concentration inequalities: If ξ ∈ R

n

is a standard Gaussian random vector, α ∈ R
n and M is a real-valued n × n matrix, then for

every x ≥ 0,

P

(
|〈α, ξ〉| ≤

√
2x ‖α‖2

)
≥ 1 − 2e−x (12)

P

(
∀θ > 0,

∣∣∣‖Mξ‖2
2 − tr(M⊤M)

∣∣∣ ≤ θ tr(M⊤M) + 2(1 + θ−1) ‖M‖2 x
)
≥ 1 − 2e−x , (13)

where ‖M‖ is the operator norm of M . A proof of Eq. (12) and (13) can be found in Appendix D.

4.3 Discussion of the assumptions of Theorem 1

Gaussian noise. When ε is sub-Gaussian, Eq. (12) and Eq. (13) can be proved for ξ = σ−1ε
at the price of additional technicalities, which implies that Theorem 1 is still valid.

Symmetry. The assumption that matrices Aλ must be symmetric can certainly be relaxed,
since it is only used for deriving from Eq. (13) a concentration inequality for 〈Aλξ, ξ〉. Note
that Sp(Aλ) ⊂ [0, 1] barely is an assumption since it means that Aλ actually shrinks Y .

7



Assumptions (A1−2). (A1−2) holds if maxλ∈Λ {df(λ)} ≥ n/2 and the bias is smaller
than cdf(λ)−d for some c, d > 0, a quite classical assumption in the context of model selection.
Besides, (A1−2) is much less restrictive and can even be relaxed, see Appendix B.

Assumption (A3). The upper bound (A3) on tr(Aλ) is certainly the strongest assumption
of Theorem 1, but it is only needed for Eq. (11). According to Eq. (6), (A3) holds with
κ = 1 when Aλ is a projection matrix since tr(A⊤

λ Aλ) = tr(Aλ). In the kernel ridge regression
framework, (A3) holds as soon as the eigenvalues of the kernel matrix K decrease like j−α—see
Appendix E. In general, (A3) means that F̂λ should not have a risk smaller than the parametric
convergence rate associated with a model of dimension df(λ) = tr(Aλ).

When (A3) does not hold, selecting among estimators whose risks are below the parametric
rate is a rather difficult problem and it may not be possible to attain the risk of the oracle
in general. Nevertheless, an oracle inequality can still be proved without (A3), at the price
of enlarging Ĉ slightly and adding a small fraction of σ2n−1 tr(Aλ) in the right-hand side of
Eq. (11), see Appendix C. Enlarging Ĉ is necessary in general: If tr(A⊤

λ Aλ) ≪ tr(Aλ) for
most λ ∈ Λ, the minimal penalty is very close to 2σ2n−1 tr(Aλ), so that according to Eq. (10),
overfitting is likely as soon as Ĉ underestimates σ2, even by a very small amount.

4.4 Main consequences of Theorem 1 and comparison with previous results

Consistent estimation of σ2. The first part of Theorem 1 shows that Ĉ is a consistent
estimator of σ2 in a general framework and under mild assumptions. Compared to classical
estimators of σ2, such as the one usually used with Mallows’ CL, Ĉ does not depend on the
choice of some model assumed to have almost no bias, which can lead to overestimating σ2 by
an unknown amount [8].

Oracle inequality. Our algorithm satisfies an oracle inequality with high probability, as
shown by Eq. (11): The risk of the selected estimator F̂bλ

is close to the risk of the oracle, up
to a remainder term which is negligible when the dimensionality df(λ⋆) grows with n faster
than ln(n), a typical situation when the bias is never equal to zero, for instance in kernel ridge
regression.

Several oracle inequalities have been proved in the statistical literature for Mallows’ CL with
a consistent estimator of σ2, for instance in [13]. Nevertheless, except for the model selection
problem (see [4] and references therein), all previous results were asymptotic, meaning that n is
implicitly assumed to be larged compared to each parameter of the problem. This assumption
can be problematic for several learning problems, for instance in multiple kernel learning when
the number p of kernels may grow with n. On the contrary, Eq. (11) is non-asymptotic, meaning
that it holds for every fixed n as soon as the assumptions explicitly made in Theorem 1 are
satisfied.

Comparison with other procedures. According to Theorem 1 and previous theoretical
results [13, 5], CL, GCV, cross-validation and our algorithm satisfy similar oracle inequalities
in various frameworks. This should not lead to the conclusion that these procedures are com-
pletely equivalent. Indeed, second-order terms can be large for a given n, while they are hidden
in asymptotic results and not tightly estimated by non-asymptotic results. As showed by the
simulations in Section 5, our algorithm yields statistical performances as good as existing meth-
ods, and often quite better.

Furthermore, our algorithm never overfits too much because df(λ̂) is by construction smaller
than the effective dimensionality of λ̂0(Ĉ) at which the jump occurs. This is a quite interesting
property compared for instance to GCV, which is likely to overfit if it is not corrected because
GCV minimizes a criterion proportional to the empirical risk.
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Figure 2: Selected degrees of freedom vs. penalty strength log(C/σ2): note that when penalizing
by the minimal penalty, there is a strong jump at C = σ2, while when using half the optimal
penalty, this is not the case. Left: single kernel case, Right: multiple kernel case.

5 Simulations

Throughout this section, we consider exponential kernels on R
d, k(x, y) =

∏d
i=1 e−|xi−yi|, with

the x’s sampled i.i.d. from a standard multivariate Gaussian. The functions f are then selected
randomly as

∑m
i=1 αik(·, zi), where both α and z are i.i.d. standard Gaussian (i.e., f belongs to

the RKHS).
Jump. In Figure 2 (left), we consider data xi ∈ R

6, n = 1000, and study the size of
the jump in Figure 2 for kernel ridge regression. With half the optimal penalty (which is used
in traditional variable selection for linear regression), we do not get any jump, while with the
minimal penalty we always do. In Figure 2 (right), we plot the same curves for the multiple kernel
learning problem with two kernels on two different 4-dimensional variables, with similar results.
In addition, we show two ways of optimizing over λ ∈ Λ = R

2
+, by discrete optimization with n

different kernel matrices—a situation covered by Theorem 1—or with continuous optimization
with respect to η in Eq. (1), by gradient descent—a situation not covered by Theorem 1.

Comparison of estimator selection methods. In Figure 3, we plot model selection
results for 20 replications of data (d = 4, n = 500), comparing GCV [7], our minimal penalty
algorithm, and cross-validation methods. In the left part (single kernel), we compare to the
oracle (which can be computed because we can enumerate Λ), and use for cross-validation all
possible values of λ. In the right part (multiple kernel), we compare to the performance of
Mallows’ CL when σ2 is known (i.e., penalty in Eq. 5), and since we cannot enumerate all λ’s,
we use the solution obtained by MKL with CV [3]. We also compare to using our minimal
penalty algorithm with the sum of kernels.

6 Conclusion

A new light on the slope heuristics. Theorem 1 generalizes some results first proved in
[4] where all Aλ are assumed to be projection matrices, a framework where assumption (A3) is
automatically satisfied. To this extent, Birgé and Massart’s slope heuristics has been modified
in a way that sheds a new light on the “magical” factor 2 between the minimal and the optimal
penalty, as proved in [4, 2]. Indeed, Theorem 1 shows that for general linear estimators,

penid(λ)

penmin(λ)
=

2 tr(Aλ)

2 tr(Aλ) − tr(A⊤
λ Aλ)

, (14)
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Figure 3: Comparison of various smoothing parameter selection (minikernel, GCV, 10-fold cross
validation) for various values of numbers of observations, averaged over 20 replications. Left:
single kernel, right: multiple kernels.

which can take any value in (1, 2] in general; this ratio is only equal to 2 when tr(Aλ) ≈ tr(A⊤
λ Aλ),

hence mostly when Aλ is a projection matrix.
Future directions. In the case of projection estimators, the slope heuristics still holds

when the design is random and data are heteroscedastic [2]; we would like to know whether
Eq. (14) is still valid for heteroscedastic data with general linear estimators. In addition, the
good empirical performances of elbow heuristics based algorithms (i.e., based on the sharp
variation of a certain quantity around good hyperparameter values) suggest that Theorem 1 can
be generalized to many learning frameworks (and potentially to non-linear estimators), probably
with small modifications in the algorithm, but always relying on the concept of minimal penalty.

Another interesting open problem would be to extend the results of Section 4, where Card(Λ) ≤
Knα is assumed, to continuous sets Λ such as the ones appearing naturally in kernel ridge regres-
sion and multiple kernel learning. We conjecture that Theorem 1 is valid without modification
for a “small” continuous Λ, such as in kernel ridge regression where taking a grid of size n in
log-scale is almost equivalent to taking Λ = R+. On the contrary, in applications such as the
Lasso with p ≫ n variables, the natural set Λ cannot be well covered by a grid of cardinality nα

with α small, and our minimal penalty algorithm and Theorem 1 certainly have to be modified.

Appendix

This appendix is mainly devoted to the proof of Theorem 1, which is splitted into two results.
First, Proposition 1 shows that n−1σ2(2 tr(Aλ) − tr(A⊤

λ Aλ)) is a minimal penalty, so that Ĉ
defined in the Algorithm of Section 4.1 consistently estimates σ2. Second, Proposition 2 shows
that penalizing the empirical risk with 2Ĉ tr(Aλ)n−1 and Ĉ ≈ σ2 leads to an oracle inequality.
Proving Theorem 1 is straightforward by combining Propositions 1 and 2.

In Section A, we introduce some notation and make some computations that will be used
in the following. Proposition 1 is proved in Section B. Proposition 2 is proved in Section C.
Concentration inequalities needed for proving Propositions 1 and 2 are stated and proved in
Section D. Computations specific to the kernel ridge regression example are made in Section E.

A Notation and first computations

Recall that
Y = F + ε

10



where F = (f(xi))1≤i≤n ∈ R
n is deterministic, ε = (εi)1≤i≤n ∈ R

n is centered with covariance

matrix σ2In and In is the n × n identity matrix. For every λ ∈ Λ, F̂λ = AλY for some n × n
real-valued matrix Aλ, so that

∥∥∥F̂λ − F
∥∥∥

2

2
= ‖(Aλ − In)F‖2

2 + ‖Aλε‖2
2 + 2 〈Aλε, (Aλ − In)F 〉 , (15)

∥∥∥F̂λ − Y
∥∥∥

2

2
=
∥∥∥F̂λ − F

∥∥∥
2

2
+ ‖ε‖2

2 − 2 〈ε, Aλε〉 + 2 〈ε, (In − Aλ)F 〉 , (16)

where ∀t, u ∈ R
n, 〈t, u〉 =

∑n
i=1 tiui and ‖t‖2

2 = 〈t, t〉 .
Now, define, for every λ ∈ Λ,

b(λ) = ‖(Aλ − In)F‖2
2

v1(λ) = tr(Aλ)σ2

δ1(λ) = 〈ε, Aλε〉 − tr(Aλ)σ2

v2(λ) = tr(A⊤
λ Aλ)σ2

δ2(λ) = ‖Aλε‖2
2 − tr(A⊤

λ Aλ)σ2

δ3(λ) = 2 〈Aλε, (Aλ − In)F 〉
δ4(λ) = 2 〈ε, (In − Aλ)F 〉 ,

so that Eq. (15) and (16) can be rewritten

∥∥∥F̂λ − F
∥∥∥

2

2
= b(λ) + v2(λ) + δ2(λ) + δ3(λ) (17)

∥∥∥F̂λ − Y
∥∥∥

2

2
=
∥∥∥F̂λ − F

∥∥∥
2

2
− 2v1(λ) − 2δ1(λ) + δ4(λ) + ‖ε‖2

2 . (18)

Note that b(λ), v1(λ) and v2(λ) are deterministic, and for all λ ∈ Λ, all δi(λ) are random
with zero mean. In particular, we deduce the following expressions of the risk and the empirical
risk of F̂λ:

E

[
n−1

∥∥∥F̂λ − F
∥∥∥

2

2

]
= n−1 ‖(Aλ − In)F‖2

2 +
tr(A⊤

λ Aλ)σ2

n
, (19)

E

[
n−1

∥∥∥F̂λ − Y
∥∥∥

2

2

]
− σ2 = n−1 ‖(Aλ − In)F‖2

2 −
(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
σ2

n
. (20)

Define

‖Aλ‖ := maxSp(Aλ) = sup
t∈Rn, t6=0

{ ‖Aλt‖2

‖t‖2

}
.

Since tr(Aλ) ≤
√

n tr(A⊤
λ Aλ), we have

v1(λ) ≤ σ
√

nv2(λ) . (21)

In addition, if Aλ has a spectrum Sp(Aλ) ⊂ [0, 1], then

0 ≤ tr(A⊤
λ Aλ) ≤ tr(Aλ) ≤ 2 tr(Aλ) − tr(A⊤

λ Aλ) ≤ 2 tr(Aλ) ,

so that
0 ≤ v2(λ) ≤ v1(λ) ≤ 2v1(λ) − v2(λ) ≤ 2v1(λ) . (22)
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B Minimal penalty

Define

∀C ≥ 0, λ̂0(C) ∈ arg min
λ∈Λ

{∥∥∥F̂λ − Y
∥∥∥

2

2
+ C

(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)}

. (23)

We will prove the following proposition in this section.

Proposition 1. Let λ̂0 be defined by Eq. (23). Assume that ∀λ ∈ Λ, Aλ is symmetric with
Sp(Aλ) ⊂ [0, 1], that εi are i.i.d. Gaussian with zero mean and variance σ2 > 0, and that

∃λ1 ∈ Λ, df(λ1) ≥
n

2
and b(λ1) ≤ σ2

√
n ln(n) (A1)

∃λ2 ∈ Λ, df(λ2) ≤
√

n and b(λ2) ≤ σ2
√

n ln(n) . (A2)

Then, a numerical constant C1 > 0 exists such that for every n ≥ C1, for every γ ≥ 1,

∀0 ≤ C <

(
1 − 91γ

√
ln(n)

n

)
σ2, df(λ̂0(C)) ≥ n

10
(24)

and ∀C >

(
1 +

44γ
√

ln(n)

n1/4

)
σ2, df(λ̂0(C)) ≤ n3/4 (25)

hold with probability at least 1 − 8Card(Λ)n−γ .

If Card(Λ) ≤ Knα, Proposition 1 with γ = α + 2 proves that with probability at least
1 − 8Kn−2, Ĉ defined in the Algorithm of Section 4.1 exists and

(
1 − 91(α + 2)

√
ln(n)

n

)
σ2 ≤ Ĉ ≤

(
1 +

44(α + 2)
√

ln(n)

n1/4

)
σ2 .

Remark 1. If (A1) is replaced by

∃λ1 ∈ Λ, df(λ1) ≥ an and b(λ1) ≤ σ2βn (A′
1
)

for some an ≥ ln(n) and βn ≥ 0, then Proposition 1 still holds with Eq. (24) replaced by

∀0 ≤ C <



1 − 3βn

an
− 62γ

√
ln(n)

an



σ2, df(λ̂0(C)) ≥ an

5
. (26)

Remark 2. If (A2) is replaced by

∃λ2 ∈ Λ, df(λ2) ≤ na and b(λ2) ≤ σ2βn (A′
2
)

for some a ∈ [1/2, 1) and βn ≥
√

n ln(n), then for every β ∈ (a, 1) Proposition 1 still holds for
n ≥ max

{
C1, 4

1/(β−a)
}

with Eq. (25) replaced by

∀C >
(

1 + 44γβnn−β
)

σ2, df(λ̂0(C)) ≤ nβ . (27)

Remark 3. On the event defined in Proposition 1, we can derive from Eq. (17), (53), (62), and
‖Aλ‖ ≤ 1, that

∀λ ∈ Λ such that df(λ) ≥ n

ln(n)
, n−1

∥∥∥F̂λ − F
∥∥∥

2

2
≥
(

1

2 ln(n)
− 8γ ln(n)

n

)
σ2 .

Hence, the blow up of df(λ̂0(C)) holding when the penalty is below the minimal penalty also

implies a blow up of the risk n−1
∥∥∥F̂bλ0(C)

− F
∥∥∥

2

2
.

Let us now prove Proposition 1.
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B.1 General starting point

Combining Eq. (23) with Eq. (17) and (18), for every C ≥ 0, λ̂0(C) also minimizes over λ ∈ Λ

critC(λ) :=
∥∥∥F̂λ − Y

∥∥∥
2

2
− ‖ε‖2

2 + C
(

2 tr(Aλ) − tr(A⊤
λ Aλ)

)

= b(λ) + (σ−2C − 1) (2v1(λ) − v2(λ) ) − 2δ1(λ) + δ2(λ) + δ3(λ) + δ4(λ) .

We now use the concentration inequalities of Eq. (53), (54), (61) and (62) proved in Section D:
For every λ ∈ Λ and x ≥ 1, an event of probability 1 − 8e−x exists on which for every C ≥ 0
and θ > 0,

critC(λ) ≥ b(λ)

3
+ (σ−2C − 1)(2v1(λ) − v2(λ)) − 3θv1(λ) − 6(2 + θ−1)xσ2 (28)

critC(λ) ≤ 5b(λ)

3
+ (σ−2C − 1)(2v1(λ) − v2(λ)) + 3θv1(λ) + 6(2 + θ−1)xσ2 , (29)

using also that v2 ≤ v1 by Eq. (22) and that ‖Aλ‖ ≤ 1.

For every x ≥ 1, let Ωx be the event on which the inequalities appearing in Eq. (53), (54), (61)
and (62) hold for every θ > 0 and λ ∈ Λ. The union bound shows that P(Ωx) ≥ 1−8Card(Λ)e−x.

B.2 Below the minimal penalty

We assume in this subsection that C ∈ [0, σ2). We will prove Eq. (26) using assumption (A′
1
),

since when an = n/2 and βn =
√

n ln(n), Eq. (26) is Eq. (24) and (A′
1
) is (A1).

Using Eq. (22) and taking θ =
√

x/df(λ) in Eq. (28) and (29), we get that for every x ≥ 1,
on Ωx, for every λ ∈ Λ,

critC(λ) ≥ b(λ)

3
+ 2(C − σ2) df(λ) −

(
9
√

xdf(λ) + 12x
)

σ2 (30)

critC(λ) ≤ 5b(λ)

3
+ (C − σ2) df(λ) +

(
9
√

xdf(λ) + 12x
)

σ2 . (31)

Let λ ∈ Λ. Two cases can be distinguished:

1. If df(λ) < an/5, then Eq. (30) implies

critC(λ) ≥ 2(C − σ2)an

5
−
(

9

√
xan

5
+ 12x

)
σ2 . (32)

2. If df(λ) ≥ an, then Eq. (31) implies

critC(λ) ≤ 5b(λ)

3
+ (C − σ2)an + (9

√
xan + 12x )σ2 . (33)

We now take x = γ ln(n) so that P (Ωx ) ≥ 1 − 8Card(Λ)n−γ .
On the one hand, Eq. (32) implies

inf
λ∈Λ, df(λ)<an/5

{critC(λ)} ≥ 2(C − σ2)an

5
−
(

9

√
γan ln(n)

5
+ 12γ ln(n)

)
σ2 . (34)
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On the other hand, for λ = λ1 given by assumption (A′
1
), Eq. (33) implies

critC(λ1) ≤
5σ2βn

3
+ (C − σ2)an +

(
9
√

γan ln(n) + 12γ ln(n)
)

σ2 . (35)

Comparing Eq. (34) and Eq. (35), we get that

critC(λ1) < inf
λ∈Λ, df(λ)<an/5

{critC(λ)}

hence df(λ̂0(C)) ≥ an/5 if

1 − σ−2C >
3βn

an
+ 62γ

√
ln(n)

an
.

B.3 Above the minimal penalty

We assume in this subsection that C > σ2. We will prove Eq. (27) using assumption (A′
2
), since

when a = 1/2, βn =
√

n ln(n) and β = (1 + a)/2 = 3/4, Eq. (27) is Eq. (25) and (A′
2
) is (A2).

Using Eq. (22) and taking θ =
√

x/df(λ) in Eq. (28) and (29), we get that for every x ≥ 1,
on Ωx, for every λ ∈ Λ,

critC(λ) ≥ b(λ)

3
+ (C − σ2) df(λ) −

(
9
√

xdf(λ) + 12x
)

σ2 (36)

critC(λ) ≤ 5b(λ)

3
+ 2(C − σ2) df(λ) +

(
9
√

xdf(λ) + 12x
)

σ2 . (37)

Let λ ∈ Λ, and β ∈ (a, 1). As in Section B.2, we consider two cases.

1. If df(λ) ≤ na, Eq. (37) implies

critC(λ) ≤ 2b(λ) + 2(C − σ2)na +
(

9
√

xna + 12x
)

σ2 . (38)

2. If df(λ) ≥ nβ, Eq. (36) implies

critC(λ) ≥ (C − σ2)nβ −
(

9
√

xnβ + 12x
)

σ2 . (39)

We now take x = γ ln(n) as in Section B.2.
On the one hand, for λ = λ2 given by assumption (A′

2
), Eq. (38) implies

critC(λ2) ≤ 2σ2βn + (C − σ2)
nβ

2
+
(

9
√

γ ln(n)na + 12γ ln(n)
)

σ2 (40)

if nβ−a ≥ 4 .
On the other hand, Eq. (39) implies

inf
λ∈Λ, df(λ)≥nβ

{critC(λ)} ≥ (C − σ2)nβ −
(

9
√

γ ln(n)nβ + 12γ ln(n)

)
σ2 . (41)

Comparing Eq. (40) and Eq. (41), we get that

critC(λ2) < inf
λ∈Λ, df(λ)≥nβ

{critC(λ)}

hence df(λ̂0(C)) < nβ if

n ≥ 41/(β−a) ,
√

n/ ln(n) ≥ 12 , and σ−2C − 1 > 44γβnn−β .
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C Oracle inequality

Define

∀C ≥ 0, λ̂opt(C) ∈ arg min
λ∈Λ

{∥∥∥F̂λ − Y
∥∥∥

2

2
+ 2C tr(Aλ)

}
. (42)

We will prove the following proposition in this section.

Proposition 2. Let λ̂opt be defined by Eq. (42). Assume that ∀λ ∈ Λ, Aλ is symmetric with
Sp(Aλ) ⊂ [0, 1], that εi are i.i.d. Gaussian with zero mean and variance σ2 > 0.

Then, a numerical constant C2 > 0 exists such that for every n ≥ C2, γ ≥ 1, η+ ≥ ( ln(n))−1,

and C > 0 such that σ−2C ∈
[
1 + (ln(n))−1 , 1 + η+

]
,

n−1
∥∥∥F̂bλopt(C)

− F
∥∥∥

2

2
≤
(

1 +
3

ln(n)

)
inf
λ∈Λ

{
n−1

∥∥∥F̂λ − F
∥∥∥

2

2
+ 4η+ σ2 tr(Aλ)

n

}
+

14γ ( ln(n) )2 σ2

n
.

(43)

holds with probability at least 1 − 8Card(Λ)n−γ .
If in addition

∃κ ≥ 1, ∀λ ∈ Λ, v1(λ) ≤ κ
(

v2(λ) + b(λ) + (ln(n))2 σ2
)

, (A′
3
)

then a constant C3 > 0 depending only on κ exists such that for every n ≥ C3, γ ≥ 1, and C > 0

such that σ−2C ∈
[
1 − ( ln(n) )−1 , 1 + (ln(n) )−1

]
,

n−1
∥∥∥F̂bλopt(C)

− F
∥∥∥

2

2
≤
(

1 +
40κ

ln(n)

)
inf
λ∈Λ

{
n−1

∥∥∥F̂λ − F
∥∥∥

2

2

}
+

36(κ + γ) ln(n)σ2

n
. (44)

holds with probability at least 1 − 8Card(Λ)n−γ .

If Card(Λ) ≤ Knα, Proposition 2 with γ = α + 2 proves that with probability at least
1− 8Kn−2, λ̂ defined in the Algorithm of Section 4.1 satisfies an oracle inequality if assumption
(A′

3
) holds.

Remark 4. Assumption (A′
3
) holds as soon as (A′

3
) holds, i.e.,

E

[
n−1

∥∥∥F̂λ − F
∥∥∥

2

2

]
= n−1 (v2(λ) + b(λ) ) ≥ κ−1 σ2 tr(Aλ)

n
,

which is the parametric rate of estimation in a model of dimension tr(Aλ).
In the ordinary least-squares regression example, where all Aλ are projection matrices, as-

sumption (A′
3
) always holds with κ = 1 because v1(λ) = v2(λ).

In the kernel ridge regression example, a sufficient condition for (A′
3
) is that the eigenvalues

(µj)1≤j≤n of the kernel matrix K satisfy

∃α,L1, L2 > 0, ∀1 ≤ j ≤ n, L1j
−α ≤ µj ≤ L2j

−α ,

which is a classical assumption in kernel ridge regression with a random design; see Section E.2
for details.
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Remark 5. When tr(A⊤
λ Aλ) ≪ tr(Aλ) for most λ ∈ Λ, taking C slightly larger than σ2 as in

the first part of Proposition 2 is necessary to obtain an oracle inequality. Indeed, Proposition 1
then shows that (

2 tr(Aλ) − tr(A⊤
λ Aλ)

)
σ2n−1 ≈ 2 tr(Aλ)σ2n−1

is a minimal penalty. So, any underestimation of the constant C in the penalty 2C tr(Aλ)n−1

may lead to selecting λ̂ = λ̂opt(C) with df(λ̂) ≥ n/(ln(n)).
Such a phenomenon holds for instance when Aλ = λIn and Λ ⊂ [0, 1], since tr(A⊤

λ Aλ) =
tr(Aλ)2n−1 ≪ tr(Aλ) unless tr(Aλ) ∝ n.

Remark 6. The remainder terms in Eq. (43) and (44), 14γ(ln(n))2σ2n−1 and 36(κ+γ) ln(n)σ2n−1,
are negligible in front of the risk of the oracle provided that v2(λ

⋆) tends grows with n faster than
(ln(n))2, since the risk of F̂λ⋆ is at least of order v2(λ

⋆)n−1. This usually holds when the bias
is not exactly zero for some λ ∈ Λ with tr(A⊤

λ Aλ) too small, as often assumed in the model
selection literature for proving asymptotic optimality results.

Let us now prove Proposition 2.

C.1 General starting point

Combining Eq. (18) and (42), we obtain that for every C > 0 such that σ−2C ∈ [1 − η−, 1 + η+ ]
and every λ ∈ Λ,

∥∥∥F̂bλopt(C)
− F

∥∥∥
2

2
− 2η−v1(λ̂opt(C)) + ∆̂(λ̂opt(C))

≤ inf
λ∈Λ

{∥∥∥F̂λ − F
∥∥∥

2

2
+ 2η+v1(λ) + ∆̂(λ)

}
.

(45)

where
∆̂(λ) := −2δ1(λ) + δ4(λ) .

Inequality (45) implies an oracle inequality as soon as ∆̂(λ) is small compared to
∥∥∥F̂λ − F

∥∥∥
2

2
and η−, η+ are small enough.

C.2 Make use of concentration inequalities

Let Ωx denote the same event as in Section B. From Eq. (54) and (61), since ‖Aλ‖ ≤ 1, we
deduce that on Ωx

∀λ ∈ Λ, ∀θ > 0,
∣∣∣∆̂(λ)

∣∣∣ ≤ θb(λ) + 2θv1(λ) + (4 + 5θ−1)xσ2 . (46)

In addition, combining Eq. (17), (53) and (62) with θ = 1/2, and ‖Aλ‖ ≤ 1, we have on Ωx,

∀λ ∈ Λ, b(λ) + v2(λ) ≤ 2
∥∥∥F̂λ − F

∥∥∥
2

2
+ 16xσ2 . (47)

C.3 First result: with a slightly enlarged penalty

Assume in this subsection that σ−2C ∈
[
1 + (ln(n))−1; 1 + η+

]
with η+ ≥ (ln(n))−1. Then,

Eq. (45) and (46) with θ = (ln(n))−1 imply

∥∥∥F̂bλopt(C)
− F

∥∥∥
2

2
≤ 1 + (ln(n))−1

1 − (ln(n))−1
inf
λ∈Λ

{∥∥∥F̂λ − F
∥∥∥

2

2
+ 4η+v1(λ)

}
+ (9 + 12 ln(n))xσ2 , (48)
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if ln(n) ≥ 5 .
Taking x = γ ln(n) with γ ≥ 1, then P(Ωx) ≥ 1−8Card(Λ)n−γ and Eq. (48) implies Eq. (43)

for every n ≥ C2 = e5.

C.4 Second result: with assumption (A′
3
)

Assume in this subsection that σ−2C ∈ [1 − η−; 1 + η+ ] with 0 ≤ η−, η+ ≤ (ln(n))−1 , and that
(A′

3
) holds.
Then, Eq. (46) with θ = (ln(n))−1 and Eq. (47) imply

∥∥∥F̂bλopt(C)
− F

∥∥∥
2

2
− 2η−v1(λ̂opt(C)) + ∆̂(λ̂opt(C))

≥
(

1 − 10κ

ln(n)

)∥∥∥F̂bλopt(C)
− F

∥∥∥
2

2
−
[(

4 +
80κ

ln(n)

)
x + 9 ln(n)κ

]
σ2 , (49)

and for every λ ∈ Λ,
∥∥∥F̂λ − F

∥∥∥
2

2
+ 2η+v1(λ) + ∆̂(λ)

≤
(

1 +
10κ

ln(n)

)∥∥∥F̂λ − F
∥∥∥

2

2
+

[(
4 +

80κ

ln(n)

)
x + 9 ln(n)κ

]
σ2 . (50)

Combining Eq. (45), (49) and (50), we get that on Ωx,

∥∥∥F̂bλopt(C)
− F

∥∥∥
2

2
≤
(

1 +
40κ

ln(n)

)∥∥∥F̂λ − F
∥∥∥

2

2
+ 4

[(
4 +

80κ

ln(n)

)
x + 9 ln(n)κ

]
σ2 (51)

if ln(n) ≥ 20κ.
Now, taking x = γ ln(n) with γ ≥ 1 in Eq. (51) implies Eq. (44) for every n ≥ C3(κ).

D Concentration inequalities

The concentration inequalities used for proving Propositions 1 and 2 are proved in this section.

D.1 Linear functions of ε

We here prove concentration inequalities for δ3(λ) and δ4(λ). Let us first prove a classical result.

Proposition 3. Let ξ be a standard Gaussian vector in R
n, α ∈ R

n and

Z = 〈ξ, α〉 =

n∑

j=1

αjξj .

Then, for every x ≥ 0,

P

(
|Z| ≤

√
2x ‖α‖2

)
≥ 1 − 2e−x . (52)

Proof. Z is a Lipschitz function of ξ, with Lipschitz constant ‖α‖2. Therefore, the Gaussian
concentration theorem implies (see for instance Theorem 3.4 in [15]):

∀t ≥ 0, P ( |Z| ≥ t) ≤ 2 exp

(
− t2

2 ‖α‖2
2

)
.

The result follows by taking t =
√

2x ‖α‖2.
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Now, remark that

δ3(λ) =
〈
σ−1ε, 2σA⊤

λ (In − Aλ)F
〉

and δ4(λ) =
〈
σ−1ε, 2σ(In − Aλ)F

〉
,

where σ−1ε is a standard Gaussian vector. Hence, Proposition 3 shows that for every x ≥ 0 and
λ ∈ Λ,

P

(
|δ3(λ)| ≤ 2σ

√
x
∥∥∥A⊤

λ (In − Aλ)F
∥∥∥

2

)
≥ 1 − 2e−x

P
(
|δ4(λ)| ≤ 2σ

√
x ‖(In − Aλ)F‖2

)
≥ 1 − 2e−x ,

which implies that

P

(
∀θ > 0, |δ3(λ)| ≤ θ−1x ‖Aλ‖2 σ2 + θ ‖(In − Aλ)F‖2

2

)
≥ 1 − 2e−x (53)

P

(
∀θ > 0, |δ4(λ)| ≤ θ−1xσ2 + θ ‖(In − Aλ)F‖2

2

)
≥ 1 − 2e−x , (54)

since ∀a, b, θ > 0, 2ab ≤ θa2 + θ−1b2.

D.2 Quadratic functions of ε

We here prove concentration inequalities for δ2(λ) and δ1(λ). Let us first prove (recall) a general
result.

Proposition 4. Let ξ be a standard Gaussian vector in R
n, M a real-valued n × n matrix and

Z = ‖Mξ‖2
2 − tr(M⊤M) .

Then, for every x ≥ 0,

P

(
∀θ > 0, Z ≤ θ tr(M⊤M) + 2(1 + θ−1) ‖M‖2 x

)
≥ 1 − e−x (55)

P

(
∀θ > 0, Z ≥ −θ tr(M⊤M) −

[
2x
(
θ−1 − 1

)
+ 1 − θ

]
‖M‖2

)
≥ 1 − e−x . (56)

Proof. Define W = ‖Mξ‖2, and note that E
[
W 2

]
= tr(M⊤M) . Since W is a Lipschitz func-

tion of ξ with Lipschitz constant ‖M‖, the Gaussian concentration theorem (see for instance
Theorem 3.4 in [15]) shows that for every x ≥ 0, an event Ω+

x of probability at least 1− exp(−x)
exists on which

W ≤ E [W ] +
√

2x ‖M‖ , (57)

and an event Ω−
x of probability at least 1 − exp(−x) exists on which

W ≥ E [W ] −
√

2x ‖M‖ . (58)

In addition, Proposition 3.5 in [15] shows that var(W ) ≤ ‖M‖2. Therefore,

0 ≤ E
[
W 2

]
− (E [W ] )2 = var(W ) ≤ ‖M‖2 . (59)

We now combine Eq. (59) with the two concentration inequalities above for proving the result.
On the one hand, on Ω+

x ,

W 2 ≤ (E [W ] )2 + 2E [W ]
√

2x ‖M‖ + 2x ‖M‖2

≤ E
[
W 2

]
+ 2
√

2xE [W 2 ] ‖M‖ + 2x ‖M‖2

≤ (1 + θ)E
[
W 2

]
+ 2(1 + θ−1)x ‖M‖2
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for every θ > 0, using successively Eq. (59) and that ∀a, b, θ > 0, 2
√

ab ≤ aθ + bθ−1. This proves
Eq. (55).

On the other hand, for every x ≥ 0 such that x ≤ (E
[
W 2

]
− ‖M‖2)/(2 ‖M‖2), on Ω−

x

W 2 ≥
(√

E [W 2 ] − ‖M‖2 −
√

2x ‖M‖
)2

≥ (1 − θ)E
[
W 2

]
−
[
2x
(
θ−1 − 1

)
+ 1 − θ

]
‖M‖2 . (60)

This proves Eq. (56), since the lower bound in Eq. (60) is non-positive if x > (E
[
W 2

]
−

‖M‖2)/(2 ‖M‖2) .

Now, remark that if Bλ exists such that Aλ = B⊤
λ Bλ—as in the kernel ridge regression

example for instance, and more generally when Aλ is symmetric real-valued with Sp(Aλ) ⊂
[0, 1]—, then

σ−2δ1(λ) =
∥∥Bλ(σ−1ε)

∥∥2

2
− tr(B⊤

λ Bλ) and σ−2δ2(λ) =
∥∥Aλ(σ−1ε)

∥∥2

2
− tr(A⊤

λ Aλ) .

Hence, Proposition 4 shows that for every x ≥ 0 and λ ∈ Λ,

P
(
∀θ > 0, |δ1(λ)| ≤ θσ2 tr(Aλ) + 2(1 + θ−1)x ‖Aλ‖σ2

)
≥ 1 − 2e−x (61)

P

(
∀θ > 0, |δ2(λ)| ≤ θσ2 tr(A⊤

λ Aλ) + 2(1 + θ−1)x ‖Aλ‖2 σ2
)
≥ 1 − 2e−x , (62)

where we used in particular that ‖Bλ‖2 = ‖Aλ‖.

E Kernel ridge regression example

Finally, let us make some computations that are specific to the kernel ridge regression example.

E.1 Explicit formulas for the deterministic terms

Let K be the n × n matrix such that Ki,j = k(xi, xj). Then, the kernel regression estimator
with regularization parameter λ is defined by

F̂λ = AλY with Aλ = K(K + nλIn)−1 .

Then, Aλ is symmetric, real-valued (hence diagonalizable by orthogonal matrices) and Sp(Aλ) ⊂
[0, 1].

Let (ej)1≤j≤n be the (orthonormal) eigenvectors of K, with eigenvalues (µj)1≤j≤n, assuming
that µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0. We also assume that µ1 > 0, that is, K is not the null matrix.
We can then decompose F in this basis: F =

∑
j fjej .

Therefore, in the orthonormal basis (ej)1≤j≤n, Aλ is diagonal with coefficients

(
µj

µj + nλ

)

1≤j≤n

.
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Hence,

tr(Aλ) = df(λ) =

n∑

j=1

(
µj

µj + nλ

)

tr(A⊤
λ Aλ) =

n∑

j=1

(
µj

µj + nλ

)2

2 tr(Aλ) − tr(A⊤
λ Aλ) =

n∑

j=1

[
2µj

µj + nλ
−
(

µj

µj + nλ

)2
]

=

n∑

j=1

[
µj(µj + 2nλ)

(µj + nλ)2

]

b(λ) = ‖(Aλ − In)F‖2
2 =

n∑

j=1

(
1 − µj

µj + nλ

)2

f2
j .

Note that df(λ) and tr(A⊤
λ Aλ) are decreasing functions of λ, as well as 2 tr(Aλ) − tr(A⊤

λ Aλ)
since each term of the sum is nonincreasing, and at least one is decreasing. On the contrary,
b(λ) is an nondecreasing function of λ. Hence, tr(A⊤

λ Aλ) and 2 tr(Aλ)− tr(A⊤
λ Aλ) are increasing

functions of df(λ), and b(λ) is a nonincreasing function of df(λ).

E.2 Sufficient condition for assumption (A′
3
)

Assumption (A′
3
) holds in particular when

∃κ ≥ 1, ∀λ ∈ Λ, tr(Aλ) ≤ κ tr(A⊤
λ Aλ) .

If the eigenvalues of K satisfy

∃α,L1, L2 > 0, ∀1 ≤ j ≤ n, L1j
−α ≤ µj ≤ L2j

−α ,

then, following [9],

tr(Aλ) ≤
n∑

j=1

L2j
−α

L2j−α + nλ
=

n∑

j=1

1

1 + nλL−1
2 jα

≤
∫ ∞

0

dt

1 + nλL−1
2 tα

=

(
L2

nλ

)1/α ∫ ∞

0

du

1 + uα

and

tr(A⊤
λ Aλ) ≥

n∑

j=1

(
L1j

−α

L1j−α + nλ

)2

=
n∑

j=1

1
(
1 + nλL−1

1 jα
)2

≥
∫ ∞

1

dt
(
1 + nλL−1

1 tα
)2 =

(
L1

nλ

)1/α ∫ ∞

1

du

(1 + uα )2
.

Therefore, (A′
3
) holds with

κ =

(
L2

L1

)1/α ∫ ∞

0

du

1 + uα

(∫ ∞

1

du

(1 + uα )2

)−1

.
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