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Turbo-like Iterative Thresholding for SAR Image

Recovery from Compressed Measurements
Lei YU, Yi YANG and Hong SUN Member, IEEE,

Abstract—Compressive sensing (CS) has attracted many re-
searchers since it offers a novel paradigm that one can acquire
signals at a sub-Nyquist rate, and provides an implicit application
of imaging and compressing simultaneously for SAR. This paper
focuses on the recovery algorithms for compressed measurements
of SAR data. Considering the characteristics of the SAR images,
leading their not-very-sparsity in common representation space,
a Turbo-like Iterative Thresholding algorithm based on Residual
shrinkage operator (RTIT) is proposed. This algorithm aims at
recovering signals which can not be very sparsely represented
through some representation spaces. Some numerical results are
presented to illustrate the performance of the proposed RTIT
algorithm.

Index Terms—Compressive Sensing, Iterative Thresholding,
Turbo.

I. INTRODUCTION

The recently developed technology - Compressive Sensing

(CS), attracts many researchers. Unlike the traditional sam-

pling methods, CS is a procedure with both sampling and

compression, which permits signals being sampled at sub-

Nyquist rate and can be reconstructed from the compressed

data [1] [2] [3]. The simple non-adaptive sampling principle

and the high compressibility invoke a lot of potential applica-

tions in many different fields. In [4] [5] [6], authors have made

a move to apply CS on remote sensing and obtained some

great results in this field. Playing an important role on remote

sensing, SAR has been widely used on earth observation,

because of its properties of all weather and day-night imaging.

However, the high-resolution and dynamic wide-range SAR

images inevitably lead to enormous amount of data, which

prescribes great burden on the limited-storage and low-speed

sensors. In [6], a CS based SAR imaging system is addressed

and the authors has given some preliminary results about the

CS application on SAR.

However, sparsity, required as a prerequisite for CS theory

[3], leads to a challenge of finding the sparse representation

space for natural signals. Even more, the complicated structure

of SAR images leads that the typical sparse representation

space such as wavelet transform does not guarantee good

sparse approximations in SAR images [6]. That is to say, the

coefficients of SAR images over wavelet transform is not very

sparse.

To date, many recovery algorithms based on convex opti-

mization such as BP [7], and greedy algorithms such as OMP
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[8], CoSaMP [9], are proposed, of which the hypothesis of

known sparsity lever is requested. Whilst the natural signals

may not satisfy this hypothesis even without noisy corruption.

This results in the incomplete recovery if signals are not very

sparse over a certain representation space.

In this paper, the improvements are considered simultane-

ously in two aspects. First, we apply shrinkage operator on

the residual instead of the updated estimation to relax the

constraint on the sparsity, and then use an iterative refinement

of residual (RIT for abbreviation) to approximate the estima-

tion. Theoretically and experimentally, this modification makes

the recoveries for the not-very-sparse signals, including SAR

images, much better.

Second, we turn to an over-complete dictionary to capture

the complex structure of signals, i.e. to more sparsely represent

signals. A turbo-like iterative scheme is adopted, where two

RITs respectively with two irrelated representation spaces are

introduced. The principle of RTIT is to use the compensation

of one’s to the other, to promote the information exchanges

between the two RIT schemes, such as wavelet preserving

smooth cartoons while curvelet preserving textures.

The following sections are organized as below. In section

II, Compressive Sensing theory is briefly introduced. The

classical Iterative Thresholding (IT) is introduced in section

III. Section IV mainly discusses the scheme of Residual

based Iterative Thresholding (RIT), based on which Turbo-

like Residual based Iterative Thresholding (RTIT) algorithm

is proposed. In section V, some numerical simulations are

implemented to illustrate the proposed algorithms and exper-

imentally prove their efficiency on SAR images. The paper

is ended with a conclusion which gives some hints on the

possible future works.

II. COMPRESSIVE SENSING

According to compressive sensing theory (eg. [1]), a discrete

signal or image expressed as a vector f ∈ ℜn can be

exactly recovered with reduced measurements compared to the

Nyquist rate provided that it is sparse in some basis, i.e. f can

be expressed as f = Ψxs, where Ψ ∈ ℜn×n is a matrix whose

columns are basis vectors and x ∈ ℜn is a s-sparse vector with

only s non-zero entries, s ≪ n.

In CS framework, the measurements of images or signals

are acquired from linear projections: y = Φf , where Φ ∈
ℜm×n is measurement matrix with m ≪ n and y ∈ ℜm is the

measurements. Given an arbitrary signal or image f with s-

Sparse representation xs over space Ψ, then the measurements

y of f can be written as

y = Φf = ΦΨxs (1)
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In CS, the measurement matrix Φ can be randomly generated

and then normalized by columns, such as Φ ∼ N (0, 1). To

recover signals from measurements y, one needs at least m
measurements with m ≥ O(s log n/s)1 [1]. Then the recovery

of the signal or image f is to find a sparsest signal f∗ in some

basis Ψ that matches the sensed measurements y = Φf , i.e.

f∗ = argg∈ℜn min ‖Ψg‖l0 subject to Ψg = y (2)

The combinatorial optimization (2) is a NP-hard problem. And

the convexification of the objective function is as the following

formulation

f∗ = argg∈ℜn min ‖Ψg‖l1 subject to Ψg = y (3)

Consider the noisy measurements y = Φf + w, where w is a

Gaussian noise of variance δ2, one can turn to the constrained

form to solve (3)

f∗ = argg∈ℜn min
1

2
‖Φg − y‖2

l2 + δ‖Ψg‖l1 (4)

where the first part is in some sense to be the error constraint

and the second part is the sparsity constraint.

III. ITERATIVE THRESHOLDING FOR SPARSITY

MINIMIZATION

Iterative Thresholding (IT) is a fast way to recover the

signal from compressed measurements [11] [12], which aims

at minimizing (4). This algorithm proceeds as follows, let

f (0) = 0 and use the iteration

f (i+1) = Hσ(f (i) + λΦT (y − Φf (i))) (5)

where λ is the normalized parameter and Hδ(∗) is the non-

linear shrinkage operator that keeps the larger coefficients, i.e.

Hσ(a) = ΨPruneσ(Ψ−1(f)) (6)

where Ψ−1(f) represents the inverse transformation,

Pruneσ(t) is a nonlinear operator that keeps the

entries of t larger than σ and set the others to zero,

i.e. Pruneσ(t) = sign(t)(|t| − σ)+. The algorithm is given

in Algorithm 1.

Algorithm 1 Iterative Thresholding Algorithm

Input: measurements y ∈ ℜm and measurement matrix Φ ∈
ℜm×n, m ≪ n;

Output: The recovery image f∗ = f (smax)

Initial: f (0) = 0, max iteration smax, and λ;

for i = 0 to smax do

Updating the estimate f (i+1) = f (i) + λ ·ΦT (y −Φf (i))
Compute sparse coefficients x of estimation f (i+1) over

some space Ψ;

Pruning x by variant thresholds corresponding to each

coefficients level, xs ← Pruneσ(x);
Inverse transform f (i+1) = Ψ(xs);

end for

1This result is for Gaussian Random Measurements, but for Fourier
Ensemble, it must be m ≥ O(s(log n/s)6), see [10] for details.

Fig. 1. [Top-left] The representation coefficients of a s−Sparse signal; [top-
right] The representation coefficients of a not-very-sparse signal; [bottom] the
representation coefficients of the residual at iteration i of RIT.

Remark 1: In Algorithm 1, the threshold σ of the pruning

function Pruneσ(∗) can be set as a descending variable to

obtain better performance. And if the original signal is strictly

sparse over a fixed representation space, the recovery of IT

will be very good, as shown in Fig. 1.

IV. PROPOSED ALGORITHM

A. Motivations

The existed algorithms for CS recovery such as BP, OMP

are based on the s − Sparse hypothesis of signals. However,

the noise-like properties and wide dynamical range data of

SAR images leads that typical representation space such as

wavelet transform does not guarantee good sparse approxima-

tion for SAR images. That is to say SAR images are not very

sparse over the existed typical representation spaces, as shown

in top-right of Fig. 1. Thus, the first problem of recovery for

SAR from compressed measurements is how to reconstruct

through not-very-sparse representation.

On the other hand, fixed representation space are not flexible

enough to capture the complex redundancy of natural images.

For instance the wavelet transform lacks of translation and

rotation invariance and is not efficient to compress geometric

images [12]. Here is the second problem that how to capture

information as completely as it can.

In the rest of this section, respectively, two modifications

for IT are taken into account targeting on solving the above

two problems.

B. Residual Based Iterative Thresholding algorithm

First, we give the notation of Residual r(i) = ΦT (y−Φf (i))
which represents the remained information of each iteration.

Then some variations on (5) are presented, written as

f (i+1) = f (i) + λHσ(r(i)) (7)
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where the nonlinear shrinkage operator is just over the residual

r(i), instead of the updated estimation f (i) and λ is the weight

of each refinement that can be constant value or a variant

parameter. The detailed algorithm is given in Algorithm 2.

Obviously, the main difference between IT and RIT is the

shrinkage object - shrink on estimation for IT and shrink

on residual (Importance Refinement) for RIT. Here is the

comparison of the two shrinkage operators.

Commonness:

Both shrinkage operators aim at keeping the impor-

tant information while eliminating the less important

information (noises), which is reflected on the value

of the coefficients.

Differences:

For IT, the shrinkage operator works on updated

estimation at each iteration, shown in top figures of

Fig. 1. The coefficients larger than threshold σ are

preserved while ones smaller than σ are eliminated.

This kind of procedure will result in fast convergence

and good results for signals, when signals are strictly

s − Sparse, as shown in top-left of Fig. 1. But for

some signals with coefficients like the top-right of

Fig. 1, some minor information will be omitted.

However, for RIT, the shrinkage operator is on resid-

ual at each iteration, shown in bottom figure of Fig. 1.

Since the larger coefficients at the previous iteration

are subtracted, the relatively minor large coefficients

(shown as the red line in bottom figure of Fig. 1),

which may contain some important information, will

be preserved at the current iteration.

From above analysis, we can make a conclusion that RIT

works much better than IT for recovery of not-very-sparse

signals, because in some instances, the most significant coef-

ficients of the image may not correspond to the largest values.

In RIT, it may then happen that the image possesses significant

coefficient inside the cut-off, whilst it will not happen in IT.

Remark 2: The convergence of RIT will be slower than IT,

since the refinement cannot be very coarse in case of the over-

refinement (see Fig 4).

Algorithm 2 Residual Based Iterative Thresholding Algorithm

Input: measurements y ∈ ℜm and measurement matrix Φ ∈
ℜm×n, m ≪ n;

Output: The recovery image f∗ = f (smax)

Initial: f (0) = 0, max iteration smax, and λ;

for i = 0 to smax do

Calculate the residual r(i) = ΦT (y − Φf (i))
Compute sparse coefficients x of residual r(i) over some

space Ψ;

Pruning x by variant thresholds corresponding to each

coefficients level, xs ← Pruneσ(x);
Inverse transform r(i+1) = Ψ(xs);
Updating the estimate f (i+1) = f (i) + λ · r(i+1);

end for

Fig. 2. The Scheme of Residual based Turbo-like Iterative Thresholding
Algorithm

Algorithm 3 Residual based Turbo-like Iterative Thresholding

Algorithm

Input: measurements y ∈ ℜm and measurement matrix Φ ∈
ℜm×n, m ≪ n;

Output: The recovery image f∗ = f (smax)

Initial: f (0) = 0, max iteration smax, λ and flag = 0
for i = 0 to smax do

Compute residual r(i) = ΦT (y − Φf (i))
if flag then {Smooth Preserve}

r(i+1) = RITdwt(r
(i))

flag = 0;

else {Texture Preserve}
r(i+1) = RITdcurvt(r

(i))
flag = 1;

end if

f (i+1) = f (i) + λ · r(i+1);

end for

C. Residual based Turbo-like Iterative Thresholding (RTIT)

To solve the second problem, we turn to choosing an

over-complete dictionary [13], which contains at least two

irrelated representation spaces. And then, turbo-like iterative

scheme is adopted to combine the multi-RIT iterative scheme.

In [14] [15] [16], the authors have proposed a turbo itera-

tive signal processing paradigm, which has been applied in

speech enhancement[14], image filter[15], and radar image

processing[15]. From the global view, turbo iterative enforces

the propagation of the information exchange between the two

irrelated models [14], which promotes the performance of

recovery. 2

As shown in Fig. 2, obviously, the information exchanges

are carried out through tubo-like procedure. And for instance,

wavelet shrinkage and curvelet shrinkage are chosen as the two

irrelated model, of which the former preserves the smooth car-

toons but omits the textures, while the later works oppositely.

The iterative process can be considered as compensations

between the two irrelative models. The detailed algorithm of

RTIT is addressed in Algorithm. 3.

V. NUMERICAL RESULTS

In order to evaluate the performance of the proposed al-

gorithm, the numerical simulations are carried out on optical

images. And then, we implement RTIT on raw SAR data,

2It will not be proven here, but intuitively and experimentally, it is true.
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which contains some special features, for instance bright point,

regular grids, and complex structural urban areas.

The compressed measurements in the following experiments

are generated through Furier ensemble3, and then corrupted by

a Gaussian noise w ∼ N (0, δ), where δ = 5(5%) for optical

images4. In Algorithm 1 and 2, the sparse representation space

is chosen as wavelet. For the initialization of 3 algorithms,

the thresholds are variant with the sparse coefficients, where

σ = median(x)/0.6745 ∗ ν for wavelet coefficients in Algo-

rithm 1 and σ = median(x)/0.6745 ∗ 2.5 for coefficients in

Algorithm 2 and 3, where ν is a descending value variant from

0.5 to 0.1. λ is fixed as 1 in all experiments.

A. Experiments on Optical Images

The objective of this experiment is to illustrate the out-

standing performance of RIT and RTIT. As shown in Fig. 4,

with the same sample rate (48.83%), all 3 algorithms can

approximately recover the original image very well. However,

the residual error, obtained through the difference between

the original image and its recovery, shows that almost all

texture information is preserved at the RTIT recovery, the RIT

performs little worse but the IT just can preserve the smooth

cartoons and some very simple textures. Furthermore, the

PSNR of the recovery also shows the outstanding performance

of RIT and RTIT, of which RTIT converges much faster than

RIT due to the Turbo-like information exchanges.

Fig. 5 shows the performances of the 3 algorithms with

different sampling rates, which are 12.21%, 24.41%, 48.83%

and 73.24%. Without loss of generality, the test image is

also extracted from the Barbara image. All experiments are

proceeded the same 200 iterations. Obviously, the results

shows that with the same sampling rate, RTIT can converge

to the most optimal solution among the 3 algorithms, RIT

performs little worse, and IT is worst.

B. Experiments on SAR Images

In this simulation, the test SAR images are extracted from

the TerreSAR-X data and all the test images are with size

of 512 × 512. Referred to [6], the Fourier Ensemble random

sampling is adapted to obtain the synthesis measurements,

with the sampling rate 38.15%(10,0000 samples). Since the

restriction of the paper, the comparison between the algorithms

will not be presented, instead of the recovery results of RTIT,

as shown in Fig. 6. Respectively, SAR images with bright

point, regular grid, and complex urban areas are considered in

this simulation. Visually, RTIT is with very good performance,

where almost all information of the original SAR images

are preserved. To evaluate the performance of the recovery

qualitatively, the pseudo-PSNR is introduced as

PSNRpseudo = 10 log
‖f‖2

2

‖f − f∗‖2
2

(8)

where f is the original SAR image and f∗ is its corresponding

recovery. Tab. I presents the pseudo-PSNR of four different

3That’s why DCT can’t be used here for sparse representation matrix.
4There is no noise corruption on the measurement of SAR images, since

the data itself is with noisy property.

Fig. 3. The original Barbara image.
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Fig. 4. [Top]The recovery of the partial image shown in Fig 3 through IT,
RIT and RTIT respectively; [middle] the residual error between the original
image and its recovery; [bottom] the iterations versus PSNR.(with sample rate
48.83%.)

types of SAR images along with the iterations, where the

complex urban areas are with the best recovery performance.

TABLE I
THE PSEUDO-PSNR OF RECOVERIES FOR SAR IMAGES(DB).

Iterative numbers 10 20 50 100 200

Bright point 7.629 10.53 14.23 16.9 19.42

Block areas 5.876 7.904 10.92 13.49 17.58

Regular grids 9.158 12.4 16.38 19.05 21.21

Complex urban 11.08 14.49 18.58 21.52 23.44
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Fig. 5. The recoveries for the partial of the image Fig 3. From left to right,
IT, RIT and RTIT algorithms are implemented with the sample rate 12.21%,
24.41%, 48.83% and 73.24%

Fig. 6. RTIT algorithm implemented on SAR images. From top to bottom,
each level of images respectively represent a class of scenes, i.e., bright point,
block areas, regular grids and complex urban areas. From left to right, the
columns are respectively original SAR images, recoveries, and residual errors.

VI. CONCLUSION

The main contribution of this paper is that a Turbo-like

Iterative Thresholding based on Residual shrink (RTIT) is

proposed. And we experimentally prove the better performance

of RTIT when recovering the not-very-sparse images over

wavelet transform. Meanwhile, the preliminary results on SAR

images show the potential application of Compressive Sensing

(CS) on SAR compression.

In the numerical simulation, only two sparse representation

spaces are used - wavelet and curvelet. It might be much better

to use more sparse representation spaces such as Bandelets

[17], Countourlets [18], Directionlet [19], inside the RTIT to

preserve more features. The other open problem of this paper

is the proof of the convergency of RIT and RTIT, which will

be the future work.
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