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Abstract − This paper is dedicated to the estimation of extreme quantiles and
tail index from heavy-tailed distributions when a covariate is recorded simul-
taneously with the quantity of interest. A nearest neighbor approach is used
to construct our estimators. Their asymptotic normality is established under
mild regularity conditions. An application to the estimation of return periods
of extreme rainfalls in the Cévennes-Vivarais region is provided.

Keywords − Conditional extreme quantiles, heavy-tailed distribution, nearest
neighbor estimator, extreme rainfalls.

AMS Subject classifications − 62G32, 62G05, 62E20.

1 Introduction

An important literature is dedicated to the estimation of extreme quantiles, i.e.
quantiles of order 1 − α with α tending to zero as the sample size increases.
The most popular estimator was proposed by Weissman [31], in the context of
heavy-tailed distributions, and adapted to Weibull-tail distributions in [14, 17].
We also refer to [13] for the general case.

When some covariate x is recorded simultaneously with the quantity of in-
terest Y , the extreme quantile thus depends on the covariate and is referred in
the sequel to as the conditional extreme quantile. In our real data study, we are
interested in the estimation of return periods associated to extreme rainfalls as
a function of the geographical location. In this case, x is a three-dimensional
covariate involving the longitude, latitude and altitude.

Parametric models for conditional extremes are proposed in [12, 29] whereas
semi-parametric methods are considered in [2, 22]. Fully non-parametric esti-
mators have been first introduced in [11], where a local polynomial modelling
of the extreme observations is used. Similarly, spline estimators are fitted in [6]
through a penalized maximum likelihood method. In both cases, the authors
focus on univariate covariates and on the finite sample properties of the estima-
tors. These results are extended in [3] where local polynomials estimators are
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proposed for multidimensional covariates and where their asymptotic properties
are established.

We propose here to estimate the conditional extreme quantile by a near-
est neighbor approach. We refer to [25] for the first asymptotic properties of
the nearest neighbor density estimator and to [30] for the regression case. As
an illustration, in the above mentioned climatology study, the estimation of
the return period at a given geographical point is based on rainfalls measured
at the nearest raingauges. Once the selection of the nearest observations is
achieved, extreme-value methods are used to estimate the conditional quantile.
Whereas no parametric assumption is made on the covariate x, we assume that
the conditional distribution of Y given x is heavy-tailed. This semi-parametric
assumption amounts to supposing that the conditional survival function de-
creases at a polynomial rate. The conditional tail index γ(x) drives this rate of
convergence and has to be estimated before conditional extreme quantiles. In
our real data study, the estimation of γ(x) permits to assess the tail-heaviness
of the rainfall distribution at each geographical point x, indicating which areas
are more likely to suffer from extreme climate events.

Nearest neighbor estimators of the conditional tail-index and conditional
extreme quantiles are defined in Section 2. Their asymptotic distributions are
derived in Section 3. Some examples are provided in Section 4 and the ap-
plication to the extreme rainfall study is presented in Section 5. Proofs are
postponed to Section 6.

2 Nearest neighbor estimators

Let E be a metric space associated to a metric d. For y > 0 and x ∈ E, denote
by F (y, x) the conditional distribution function of Y given x. For instance, in
the case where E is finite dimensional, each coordinate of x may represent a
geographical coordinate. At the opposite, when x is a time series or a curve, E is
infinite dimensional. We assume that for all x ∈ E, the conditional distribution
function of Y is heavy-tailed. More specifically, we have for all y > 0,

1 − F (y, x) = y−1/γ(x)L(y, x), (1)

or equivalently, for all α ∈ (0, 1],

q(α, x) = F←(1 − α, x) = α−γ(x)`(α−1, x), (2)

where F←(1 − α, x) = sup{y > 0, F (y, x) ≤ 1 − α} denotes the generalized
inverse of F (., x). Here, γ(.) is an unknown positive function of the covariate x
referred to as the conditional tail index. The larger γ(x) is, the heavier is the
tail at point x. Besides, for all x ∈ E fixed, L(., x) and `(., x) are slowly varying
functions, i.e. for all v > 0,

lim
y→∞

L(vy, x)

L(y, x)
= lim

y→∞

`(vy, x)

`(y, x)
= 1. (3)

Let (Y1, x1), . . . , (Yn, xn) be a sample of independent observations from (1). For
a given t ∈ E, our aim is to build an estimator of γ(t) and, for a sequence
αn,t tending to 0 as n goes to infinity, an estimator of q(αn,t, t). In the sequel,
q(αn,t, .) is referred to as a conditional extreme quantile. As an example, if
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Y1, . . . , Yn are independent rainfalls collected during a period of T years in n sites
characterized by their geographical positions x1, . . . , xn, then, q(T/(nT ′), t) is
the T ′ years return period at position t. In other words, q(T/(nT ′), t) represents
the rainfall observed approximatively every T ′ years. Here, we focus on the case
where the design points x1, . . . , xn are non random. Let mn,t be a sequence of
integers such that 1 < mn,t < n and let {x∗1, . . . , x

∗
mn,t

} be the mn,t nearest
covariates of t (with respect to the distance d). The associated observations
taken from {Y1, . . . , Yn} are denoted by {Z1, . . . , Zmn,t

}. The corresponding
order statistics are denoted Z1,mn,t

≤ . . . ≤ Zmn,t,mn,t
and the rescaled log-

spacings are defined as:

Ci,n,t
def
= i log

(

Zmn,t−i+1,mn,t

Zmn,t−i,mn,t

)

.

Our estimators of γ(t) are linear combinations of these rescaled log-spacings:

γ̂n(t, a, λ) =

kn,t
∑

i=1

p

(

i

kn,t
, a, λ

)

Ci,n,t

/kn,t
∑

i=1

p

(

i

kn,t
, a, λ

)

, (4)

where kn,t is a sequence of integers such that 1 < kn,t < mn,t and the weights
are defined for all s ∈ (0, 1), a ≥ 1, 0 < λ ≤ 1 by

p(s, a, λ) =
λ−a

Γ(a)
s1/λ−1(− log(s))a−1. (5)

Note that p(., a, λ) is the density function on (0, 1) introduced as the log-gamma
distribution by [9]. Examples of such densities are provided in Section 4 and
illustrated on Figure 1. Four main behaviors can be exhibited: (i) p(., 1, 1) is
constant, (ii) p(., 1, λ) is increasing for all 0 < λ < 1, (iii) p(., a, 1) is decreasing
for all a > 1 and (iv) p(s, a, λ) has an unique mode at s = exp{λ(1−a)/(1−λ)}
for a > 1 and 0 < λ < 1.
In the same spirit as the quantile estimator proposed by Weissman [31], the
following estimator of q(αn,t, t) can be derived from (4):

q̂(αn,t, t) = Zmn,t−kn,t+1,mn,t

(

kn,t
mn,tαn,t

)γ̂n(t,a,λ)

, (6)

where αn,t is a sequence in (0, 1). The limiting distributions of these estimators
are established in the next section.

3 Asymptotic results

We first give all the conditions and notations required to obtain the asymptotic
normality of our estimators. In the sequel, we fix t ∈ E such that γ(t) > 0.

(A.1) The slowly varying function `(., t) is normalized.

Assumption (A.1) is equivalent to supposing that, for α ∈ (0, 1), the Karamata
representation of q(α, t) can be simplified as:

q(α, t) = c(t) exp

{

∫ α−1

1

γ(t) + ∆(v, t)

v
dv

}

, (7)
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with c(t) > 0 and where ∆(v, t) converges to 0 as v goes to infinity. Note also
that condition (A.1) implies (1), see for instance [4] or [18]. The next two
assumptions control the rate of convergence of the function ∆(., t) to zero.

(A.2) The function ∆(., t) is regularly varying with index ρ(t) < 0, i.e. for all
v > 0,

lim
y→∞

∆(vy, t)

∆(y, t)
= vρ(t).

Conditions (A.1) and (A.2) imply that for all v > 0,

log

(

`(vy, t)

`(y, t)

)

= ∆(y, t)
1

ρ(t)
(vρ(t) − 1)(1 + o(1)),

which is the so-called second-order condition classically used to establish the
asymptotic normality of tail-index estimators. The second-order parameter ρ(t)
controls the rate of convergence of ∆(v, t) to 0 i.e. the rate of convergence of
`(vy, t)/`(y, t) to 1 in equation (3). If ρ(t) is close to 0, this convergence is
slow and thus the estimation of the conditional tail index and of the conditional
extreme quantile are difficult.

(A.3) The function |∆(., t)| is ultimately decreasing.

In the following, we denote by Vn,t the set {t, x∗1, . . . , x
∗
mn,t

} ⊂ E. The largest
oscillation of the log-quantile function with respect to its second variable is
defined for all β ∈ (0, 1/2) as

ωn(β) = sup

{∣

∣

∣

∣

log

(

q(α, x)

q(α, x′)

)∣

∣

∣

∣

, α ∈ (β, 1 − β) , (x, x′) ∈ V2
n,t

}

.

We also assume that kn,t is an intermediate sequence which is a classical as-
sumption in extreme value theory.

(B) mn,t/kn,t → ∞ and kn,t → ∞ as n→ ∞.

We are now in position to state our asymptotic normality result for γ̂n(t, a, λ).

Theorem 1. Suppose (A.1), (A.2), (A.3) and (B) hold. If, moreover, for
some δ > 0,

k
1/2
n,t ∆(mn,t/kn,t, t) → ξ(t) ∈ R and k2

n,tωn(m
−(1+δ)
n,t ) → 0 (8)

then

k
1/2
n,t

(

γ̂n(t, a, λ) − γ(t) − ∆

(

mn,t

kn,t
, t

)

AB(a, λ, ρ(t))

)

converges in distribution to a N
(

0, γ2(t)AV(a, λ)
)

random variable where

AB(a, λ, ρ(t)) = (1 − λρ(t))−a and AV(a, λ) =
Γ(2a− 1)

λΓ2(a)
(2 − λ)1−2a.
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The first part of condition (8) is standard in the extreme-value theory. It pre-
vents the bias of the estimate from being too large compared to the standard-
deviation. The second part of the condition is due to our conditional framework.
It is dedicated to the control of the variations with respect to the covariate. For
instance, if the slowly varying function ` does not depend on the covariate, the
second part of condition (8) reduces to a regularity condition on the tail-index:

k2
n,t log(mn,t) sup

(x,x′)∈V2
n,t

|γ(x) − γ(x′)| → 0 as n→ ∞.

The following result establishes that q̂(αn,t, t) inherits its asymptotic distribu-
tion from γ̂n(t, a, λ).

Theorem 2. Suppose (A.1), (A.2), (A.3), (B) and (8) hold. If, moreover,
αn,t < kn,t/mn,t then

k
1/2
n,t

log
(

kn,t

mn,tαn,t

)

(

log

(

q̂(αn,t, t)

q(αn,t, t)

)

− log

(

kn,t
mn,tαn,t

)

∆

(

mn,t

kn,t
, t

)

AB(a, λ, ρ(t))

)

converges in distribution to a N
(

0, γ2(t)AV(a, λ)
)

random variable.

The asymptotic bias of estimators γ̂n(., a, λ) and q̂(αn,t, .) are both proportional
to AB(a, λ, ρ(t)) while their asymptotic variances are proportional to AV(a, λ).
These quantities can be controlled by an appropriate choice of a and λ, see
Section 4 for a discussion on this topic. Concerning the asymptotic variance,
the proportionality factor is γ2(t). Hence, the heavier the tail is, the larger
the asymptotic variance is. Moreover, the asymptotic variance can be lower
bounded since

AV(a, λ) − 1 =

∫ 1

0

(p(s, a, λ) − 1)2ds ≥ 0

which entails that AV(a, λ) ≥ 1 for all a ≥ 1 and λ ∈ (0, 1]. It is thus clear
that the minimum variance estimator is obtained with the uniform distribution
(a = λ = 1). Let us also highlight that AB(a, λ, ρ(t)) is an increasing function of
ρ(t). Thus, the closer ρ(t) is to zero, the larger is the asymptotic bias. However,
the second-order parameter ρ(t) is unknown in practice making difficult the
comparison of asymptotic bias associated to different log-gamma weights. We
refer to [20, 21] for estimators of the second-order parameter in the unconditional
case. To overcome this problem, one can define the mean-squared bias as:

MSB(a, λ) =

∫ 0

−∞

AB2(a, λ, ρ)dρ =
1

λ(2a− 1)
.

Note that the mean-squared bias converges to 0 as a tends to infinity. It it thus
not possible to define in our family a minimum mean-squared bias estimator.
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4 Choice of log-gamma parameters

4.1 Nearest neighbor Hill estimator

As remarked in the previous section, the minimum variance estimator is ob-
tained by letting a = λ = 1 in (5). This choice yields

γ̂H

n(t) = γ̂n(t, 1, 1) =
1

kn,t

kn,t
∑

i=1

Ci,n,t.

which is an adaptation of the classical Hill estimator [23] to our conditional
framework. In the following, this estimator is referred to as the nearest neigh-
bor Hill estimator. The asymptotic normality of γ̂H

n(t) is a direct consequence
of Theorem 1 with MSB(1, 1) = 1 and AV(1, 1) = 1. The associated condi-
tional quantile estimator q̂H(αn,t, t) admits the same limiting distribution as in
Theorem 2.

4.2 Nearest neighbor Zipf estimator

The Zipf estimator, initially introduced in the unconditional case [24, 28], can
be adapted to our framework by remarking that the pairs

(

log
(mn,t

i

)

, log(Zmn,t−i+1,mn,t
)
)

, i = 1, . . . , kn,t,

are approximatively distributed on a line of slope γ(t). Then, a least-squares
estimation yields the following estimator of γ(t):

kn,t
∑

i=1

µi,n,tCi,n,t

/

kn,t
∑

i=1

µi,n,t ,

where

µi,n,t =
1

i

i
∑

j=1

log(mn,t/j) −
1

kn,t

kn,t
∑

j=1

log(mn,t/j).

Remarking that µi,n,t is asymptotically equivalent to log(kn,t/i), the nearest
neighbor Zipf estimator is defined as

γ̂Z

n(t) = γ̂n(t, 2, 1) =

kn,t
∑

i=1

log(kn,t/i)Ci,n,t

/kn,t
∑

i=1

log(kn,t/i) .

Theorem 1 holds for this estimator with MSB(2, 1) = 1/3 and AV(2, 1) = 2.
Similarly, Theorem 2 also holds for the conditional quantile estimator q̂Z(αn,t, t)
derived from the nearest neighbor Zipf estimator.

4.3 Controlling the asymptotic mean-squared error

Following Theorem 1, the asymptotic mean-squared error of the estimator γ̂n(t, a, λ)
can be defined as

AMSE(a, λ) = ∆2

(

mn,t

kn,t
, t

)

MSB(a, λ) +
γ2(t)AV(a, λ)

kn,t
,
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One way to choose the log-gamma parameters could be to find the ones minimiz-
ing the asymptotic mean-squared error. In practice, the function ∆ is unknown
and thus the asymptotic mean-squared error cannot be evaluated. To over-
come this problem, it is possible to introduce an upper bound on AMSE(a, λ).
Introducing π(a, λ) = MSB(a, λ)AV(a, λ), we obtain for all λ ∈ (0, 1] and
a ∈ [1, amax],

AMSE(a, λ) =
π(a, λ)

kn,t

{

ξ2(t) + o(1)

AV(a, λ)
+

γ2(t)

MSB(a, λ)

}

≤
π(a, λ)

kn,t

{

ξ2(t) + o(1) + γ2(t)(2amax − 1)
}

.

We thus propose to consider the log-gamma parameters defined as:

(aπ, λπ) = argmin
a,λ

π(a, λ),

leading to the estimator γ̂πn(t, a, λ) = γ̂n(t, aπ, λπ). Annulling the partial deriva-
tive of π(a, λ) with respect to λ yields λπ = 4/(1+2aπ) whereas it is not possible
to find an explicit value for aπ. A numerical optimization yields aπ ≈ 2.19. The-
orem 1 holds with MSB(aπ, λπ) ≈ 0.40 and AV(aπ, λπ) ≈ 1.51, and Theorem 2
holds for the corresponding conditional quantile estimator q̂π(αn,t, t).

4.4 Discussion

The three previously introduced log-gamma densities are represented on Fig-
ure 1. The nearest neighbor Hill estimator gives the same weight to all the
kn,t largest observations. The nearest neighbor Zipf estimator corresponds to
a decreasing log-gamma density. Finally, the log-gamma density used in γ̂πn(.)
has a mode in (0, 1). A heavy left tail for the log-gamma distribution (5) gives
large weights to large observations in (4) and yields large asymptotic variances:

AV(2, 1) > AV(aπ, λπ) > AV(1, 1).

Asymptotic bias have an opposite behavior:

MSB(2, 1) <MSB(aπ , λπ) <MSB(1, 1).

It is thus not possible to find log-gamma parameters giving rise to the best
estimator both in terms of asymptotic bias and variance. However, for a given
mean-squared bias, it is possible to compute the best asymptotic variance. Let-
ting MSB(a, λ) = b, we obtain λ(a, b) = 1/(b(2a− 1)) and consequently

AV(a, λ(a, b)) = b
Γ(2a)

Γ2(a)

{

2 −
1

b(2a− 1)

}1−2a

,

where a ≥ max{1, (1 + b)/(2b)} in order to ensure 0 < λ(a, b) ≤ 1. The op-
timal asymptotic variance for a fixed mean-squared bias b can be obtained by
minimizing this quantity with respect to a:

OAV(b) = min
a≥max{1,(1+b)/(2b)}

AV(a, λ(a, b)).
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Here again, an explicit solution is not available. The graph of the function OAV
obtained by numerical optimization is depicted on Figure 2. Some level curves
of π(a, λ) are also represented. It appears that γ̂πn and γ̂H

n can be considered as
optimal estimators since, for a fixed value of mean-squared bias, they have the
optimal asymptotic variance. In contrast, the nearest neighbor Zipf estimator is
not optimal. It is possible to build an estimator with same mean-squared bias
(= 1/3) and smaller asymptotic variance (≈ 1.85).

5 An application to rainfall data

Extreme rainfall statistics are often used when a flood occurred to assess the
rarity of such an event. A typical question is to estimate what is the amount of
rain on one hour that is exceeded once in 10 years. Mathematically speaking,
the problem is to estimate the 10-years quantile of rainfall on one hour.

In [10], a Bayesian approach is used to model extreme precipitations in Front
Range of Colorado. The excess distribution is represented by a Generalized
Pareto Distribution whose parameters are stochastic processes depending on
some geographical variables. An alternative approach consists in modelling the
rainfall process itself by a max-stable process. We refer to [5, 27] for applications
to the daily rainfalls in the Netherlands and in the USA respectively. Here, we
consider hourly rainfall observations at 142 stations in the Cévennes-Vivarais
region (southern part of France) during 7 years. In this context, the variable
of interest Y is the hourly rainfall and the covariate x is the three dimensional
geographical location (x1 is the longitude, x2 is the latitude and x3 is the al-
titude). The set of coordinates S = {(x1,j , x2,j , x3,j), j = 1, . . . , 142} of the
raingauge stations is depicted on Figure 3. The total number of observations is
n = 264056.

Let us first focus on the estimation of the conditional tail index γ(x) as a
function of x. To this aim, the three previously described estimators γ̂H

n , γ̂Z

n and
γ̂πn are used. All of them depend on the choice of mn,t and kn,t. For the sake
of simplicity, these parameters are chosen to be independent of the location
t. They are selected by minimizing some dissimilarity measure between the
estimators:

(k̂, m̂) = arg min
kn,t,mn,t

max
t∈S

D(γ̂H

n(t), γ̂Z

n(t), γ̂πn(t))

with D(u1, u2, u3)
def
= max{|u1 − u2|, |u2 − u3|, |u3 − u1|}. This heuristics is

sometimes used in nonparametric estimation. It relies on the idea that, for a
properly chosen pair (k̂, m̂), all three estimates should approximatively give the

same tail index. This procedure yields m̂/n = 55% and k̂/m̂ = 5.5%. Note that
the graphical representation of the estimated tail index as a function of a three
dimensional covariate is not possible. The role of the altitude x3 is illustrated
on Figure 4 while the role of the planar coordinates (x1, x2) is represented
on Figure 5. The shapes of the three curves representing the estimated tail
index as a function of the altitude are qualitatively the same. The tail index
is a decreasing function of the altitude till x3 = 800 meters and is constant for
altitudes ranging from 800 and 1600 meters. This phenomena can be interpreted
since extreme hourly rainfalls are more likely to occur in the plains than in
the mountains. This result is confirmed by Figure 5 where γ̂πn is represented
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as a function of the longitude and latitude. For the visualization sake, the
pointwise estimations obtained on the set S are interpolated by kriging. Here
again, one can observe that heavy tails are obtained in the plains (Rhône Valley
and Mediterranean coast). Similar results are obtained concerning the 10-years
return level. It appears on Figure 6 that the considered return level is globally
decreasing with the altitude. However, the observed variability indicates that
altitude is not the unique factor. Indeed, one can see on Figure 7 that the
Valence area of Rhône Valley does not suffer from high return levels whereas
the southern part does.

The drift of the rainfall rate as a function of the altitude is in agreement
with the rainfall descriptive statistics in the region [26]. Since in this region
low altitude areas are flat areas and are closed to the sea, the deconvolution of
physical processes involved in such an altitude-rainfall rate relationship is not
trivial. Therefore, the enhancement of extreme rainfall rates could be either
a regional specificity: it could be due the supply of warm and moist air by
northward low level winds over the Mediterranean sea; or a more universal
phenomena: flat areas are the more efficient in capturing the solar energy which
is in turn available to involve deep convective clouds.

Finally, let us emphasize that these results are obtained under a temporal
stationarity assumption of the rainfalls. Indeed, the short observation period (7
years) does not allow to discern any trend in the time series. However, it would
be interesting to take into account seasonal effects. To this end, our further
work will consist in splitting the data into homogeneous time periods. Such
seasonal approaches have already been considered in Bayesian models [7, 8].

6 Proofs

Some preliminary results are given in paragraph 6.1. Their proofs are postponed
to paragraph 6.3 while main results are proved in paragraph 6.2. For the sake of
simplicity, in the sequel, we note kt for kn,t, ∆t for ∆(mn,t/kn,t, t), αt for αn,t
and mt for mn,t. Letting Jkt

= {1, . . . , kt} and Jmt
= {1, . . . ,mt}, we finally

introduce

• {Vi, i ∈ Jmt
} a set of independent standard uniform variables,

• V1,mt
≤ . . . ≤ Vmt,mt

the associated order statistics,

• {Fi, i ∈ Jkt
} a set of independent standard exponential random variables.

6.1 Preliminary results

The first lemma provides a representation in distribution of the logarithm of
the observations whose covariate is in the neighborhood of t.

Lemma 1. Under (A.1) and (A.3), if kt/mt → 0 and k2
tωn(m

−(1+δ)
t ) → 0

for some δ > 0, then, there exists an event An with P(An) → 1 as n→ ∞ such
that {(logZmt−i+1,mt

, i ∈ Jkt
) |An} has the same distribution as

{(

log q(Vi,mt
, t) +OP(ωn(m

−(1+δ)
t )), i ∈ Jkt

)

|An

}

.
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In order to be self-contained, we quote a lemma proved in [1]. This result
provides an exponential regression model for rescaled log-spacings.

Lemma 2. Suppose (A.1), (A.2) and (B) hold. Then, the random vector

{

i log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

, i ∈ Jkt

}

has the same distribution as
{(

γ(t) + ∆

(

i

kt + 1
, t

)−ρ(t)
)

Fi + βi,n(t) + oP (∆t) , i ∈ Jkt

}

,

where
kt
∑

j=1

(

1

j

∫ j/kt

0

u(ν)dν

)

βi,n(t) = oP(∆t),

for every function u defined on (0, 1) satisfying

∣

∣

∣

∣

∣

kt

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤ g

(

j

kt + 1

)

, (9)

for some fixed positive continuous function g(., t) defined on (0, 1) and satisfying

∫ 1

0

max(1, log(1/s))g(s)ds <∞. (10)

The following lemma states that p(j/kt, a, λ) can be rewritten as 1
j

∫ j/kt

0 u(ν)dν

where u is a function satisfying (9) and (10).

Lemma 3. Let a ≥ 1 and 0 < λ ≤ 1. There exists a function u satisfying (9)
and (10) such that for all j ∈ Jkt

,

p(j/kt, a, λ) =
1

j

∫ j/kt

0

u(ν)dν.

Finally, the following lemma is a simple unconditioning tool for determining the
asymptotic distribution of a random variable.

Lemma 4. Let (Xn) and (Yn) be two sequences of real random variables. Sup-

pose there exists an event An such that (Xn|An)
d
= (Yn|An) with P(An) → 1.

Then, Yn
d
→ Y implies Xn

d
→ Y .

6.2 Proofs of main results

The following result is a consequence of Lemmas 1–3. It establishes a repre-
sentation of the log-spacings in terms of standard exponential random variables
which is the cornerstone of the proof of Theorem 1. We refer to [15], Theo-
rem 3.5.2, for the approximation of the nearest neighbors distribution using the
Hellinger distance and to [16] for the study of their asymptotic distribution.

10



Proposition 1. Suppose (A.1), (A.2), (A.3) and (B) hold. If, moreover,

k2
tωn(m

−(1+δ)
t ) → 0 for some δ > 0 then

{Ci,n,t, i ∈ Jkt
|An}

d
= {C

(1)
i,n,t + C

(2)
i,n,t, i ∈ Jkt

|An}

where

{C
(1)
i,n,t, i ∈ Jkt

}
d
=

{(

γ(t) + ∆

(

i

kt + 1
, t

)−ρ(t)
)

Fi + βi,n(t) + oP (∆t) , i ∈ Jkt

}

C
(2)
i,n,t = OP

(

ktωn(m
−(1+δ)
t )

)

uniformly in i ∈ Jkt
.

and with

1

kt

kt
∑

i=1

p(i/kt, a, λ)βi,n(t) = oP(∆t). (11)

Proof of Proposition 1 − From Lemma 1,

{Ci,n,t, i ∈ Jkt
|An}

d
=

{

i log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

+ iOP

(

ωn(m
−(1+δ)
t )

)

, i ∈ Jkt
|An

}

= {C
(1)
i,n,t + C

(2)
i,n,t, i ∈ Jkt

|An},

where

C
(1)
i,n,t = i log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

and C
(2)
i,n,t = iOP

(

ωn(m
−(1+δ)
t )

)

.

From Lemmas 2 and 3, {C
(1)
i,n,t, i ∈ Jkt

} has the same distribution as

{(

γ(t) + ∆t

(

i

kt + 1

)−ρ(t)
)

Fi + βi,n(t) + oP (∆t) , i ∈ Jkt

}

,

with

1

kt

kt
∑

i=1

p(i/kt, a, λ)βi,n(t) = oP(∆t).

Finally, for all i ∈ Jkt
,

C
(2)
i,n,t = OP

(

ktωn(m
−(1+δ)
t )

)

,

and the result is proved.

Proof of Theorem 1 − Let us consider the random variables defined as

Λ(1)
n = k

1/2
t {γ̂n(t, a, λ) − γ(t) − ∆tAB(a, λ, ρ(t))}

Λ(2)
n = k

1/2
t











kt
∑

i=1

p(i/kt, a, λ)(C
(1)
i,n,t + C

(2)
i,n,t)

kt
∑

i=1

p(i/kt, a, λ)

− γ(t) − ∆tAB(a, λ, ρ(t))
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Proposition 1 states that {Λ
(1)
n |An}

d
= {Λ

(2)
n |An}. From Lemma 4, to prove

Theorem 1, it is sufficient to show that Λ
(2)
n converges in distribution to a

N (0, γ2(t)AV(a, λ)) random variable. Introducing

T1,n =

kt
∑

i=1

p(i/kt, a, λ)(Fi − 1), T2,n =

kt
∑

i=1

p(i/kt, a, λ)

(

i

kt + 1

)−ρ(t)

(Fi − 1),

T3,n =

kt
∑

i=1

p(i/kt, a, λ)βi,n(t), T4,n = ∆t

kt
∑

i=1

p(i/kt, a, λ)

(

i

kt + 1

)−ρ(t)

,

T5,n =

kt
∑

i=1

p(i/kt, a, λ), T6,n =

(

kt
∑

i=1

p2(i/kt, a, λ)

)1/2

,

Proposition 1 entails the following expansion:

T5,n

T6,n











kt
∑

i=1

p(i/kt, a, λ)C
(1)
i,n,t

kt
∑

i=1

p(i/kt, a, λ)

− γ(t) −
T4,n

T5,n











d
= γ(t)

T1,n

T6,n
+ ∆t

T2,n

T6,n
+
T3,n

T6,n

+
T5,n

T6,n
oP(∆t). (12)

From Lindeberg theorem, a sufficient condition for T1,n/T6,n
d
→ N (0, 1) is

kt
∑

i=1

p3(i/kt, a, λ)/T
3
6,n → 0. (13)

Since for any integrable function ϕ, the following convergence of Riemann sum
holds,

1

kt

kt
∑

i=1

ϕ

(

i

kt

)

→

∫ 1

0

ϕ(s)ds (14)

it follows that T6,n = k
1/2
t AV(a, λ)1/2(1 + o(1)). Thus, using (14), we have

1

kt

kt
∑

i=1

p3(i/kt, a, λ) =
Γ(3a)

Γ3(a)
(3 − 2λ)−3a(1 + o(1)),

and therefore
kt
∑

i=1

p3(i/kt, a, λ)/T
3
6,n = O(k

−1/2
t ),

showing that condition (13) is satisfied and

T1,n/T6,n
d
→ N (0, 1). (15)

Next, let us focus on T2,n/T6,n. Remarking that this term is centered with finite
variance, it follows that

T2,n/T6,n = OP(1). (16)

Equation (11) in Proposition 1 yields

T3,n/T6,n = oP(k
1/2
t ∆t) = oP(1). (17)

12



Finally, from (14) we obtain,

T4,n/T5,n = ∆tAB(a, λ, ρ(t))(1 + o(1)), (18)

T5,n/T6,n = k
1/2
t AV(a, λ)−1/2(1 + o(1)). (19)

Replacing (15)–(19) in (12) shows that

k
1/2
t











kt
∑

i=1

p(i/kt, a, λ)C
(1)
i,n,t

kt
∑

i=1

p(i/kt, a, λ)

− γ(t) − ∆tAB(a, λ, ρ(t))











converges in distribution to a N (0, γ2(t)AV(a, λ)) random variable. Taking
account of

k
1/2
t

kt
∑

i=1

p(i/kt, a, λ)C
(2)
i,n,t

kt
∑

i=1

p(i/kt, a, λ)

= OP(k
3/2
t ωn(m

−(1+δ)
t )) = oP(1)

concludes the proof.

Proof of Theorem 2 − Observing that

log q̂(αt, t) = logZmt−kt+1,mt
+ γ̂n(t, a, λ) log

(

kt
mtαt

)

,

leads to the following expansion:

log

(

q̂(αt, t)

q(αt, t)

)

− log

(

kt
mtαt

)

∆tAB(a, λ, ρ(t))

= log

(

Zmt−kt+1,mt

q(kt/mt, t)

)

+ {γ̂n(t, a, λ) − γ(t) − ∆tAB(a, λ, ρ(t))} log

(

kt
mtαt

)

−

{

log

(

q(αt, t)

q(kt/mt, t)

)

− γ(t) log

(

kt
mtαt

)}

= ζ1,n + ζ2,n + ζ3,n.

First, from Lemma 1,

ζ1,n
d
= log

(

q(Vkt,mt
, t)

q(kt/mt, t)

)

+OP(ωn(m
−(1+δ)
t )),

and assumptions (A.1), (A.3) imply that
∣

∣

∣

∣

log

(

q(Vkt,mt
, t)

q(kt/mt, t)

)∣

∣

∣

∣

= OP(∆t)

∣

∣

∣

∣

log

(

mt

kt
Vkt,mt

)∣

∣

∣

∣

.

Moreover, under (B), it is well-known that

k
1/2
t

(

mt

kt
Vkt ,mt

− 1

)

d
→ N (0, 1),
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(see for instance [19]) and thus

ζ1,n = OP(∆tk
−1/2
t ) +OP(ωn(m

−(1+δ)
t )). (20)

Besides, from Theorem 1, we have

k
1/2
t / log(kt/(mtαt))ζ2,n

d
→ N (0, γ2(t)AV(a, λ)), (21)

and, finally, (7) entails that

log

(

q(αt, t)

q(kt/mt, t)

)

= γ(t) log

(

kt
mtαt

)

+

∫ α−1
t

mt/kt

∆(u, t)

u
du.

Since αt < kt/mt, (A.3) yields

|ζ3,n| ≤

∫ α−1
t

mt/kt

|∆(u, t)|

u
du ≤ ∆t log

(

kt
mtαt

)

(22)

and collecting (20)-(22) concludes the proof.

6.3 Proofs of auxiliary results

Proof of Lemma 1 − Under (A1) the function q(., t) is continuous. Since the
random variables {Zi, i ∈ Jmt

} are independent, we have:

{logZi, i ∈ Jmt
}
d
= {log q(Vi, x

∗
i ) i = 1 ∈ Jmt

},

where x∗i is the covariate associated to Zi. Denoting by ψ(i) the random index
of the covariate associated to the observation Zmt−i+1,mt

, we obtain

{logZmt−i+1,mt
, i ∈ Jmt

}
d
= {log q(Vψ(i), x

∗
ψ(i)) i ∈ Jmt

}.

Let us consider the event An = A1,n ∩ A2,n where

A1,n =

{

min
i∈Jkt

\{kt}
log

(

q(Vi,mt
, ui)

q(Vi+1,mt
, ui+1)

)

> 0, ∀(u1, . . . , ukt
) ∈ Vn,t

}

and

A2,n =

{

min
i∈Jmt

\Jkt

log

(

q(Vkt ,mt
, ukt

)

q(Vi,mt
, ui)

)

> 0, ∀(ukt+1, . . . , umt
) ∈ Vn,t

}

.

Conditionally to A1,n, the random variables q(Vi,mt
, ui), i ∈ Jkt

are ordered as

q(Vkt ,mt
, ukt

) ≤ q(Vkt−1,mt
, ukt−1) ≤ · · · ≤ q(V1,mt

, u1),

and, conditionally to A2,n, the remaining random variables q(Vi,mt
, ui), i ∈

Jmt
\ Jkt

are smaller since

max
i∈Jmt

\Jkt

q(Vi,mt
, ui) ≤ q(Vkt ,mt

, ukt
).

Thus, conditionally to An, the kt largest random values taken from the set
{log q(Vψ(i), x

∗
ψ(i)), i ∈ Jmt

} are {log q(Vi,mt
, x∗ψ(i)), i ∈ Jkt

}. Consequently,

letting Ti
def
= x∗ψ(i), we have:

{logZmt−i+1,mt
, i ∈ Jkt

|An}
d
= {log q(Vi,mt

, Ti), i ∈ Jkt
|An} .
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To conclude the proof, it remains to show that

log

(

q(Vi,mt
, Ti)

q(Vi,mt
, t)

)

= OP(ωn(m
−(1+δ)
t )), (23)

uniformly in i ∈ Jkt
and that

P(An) → 1, (24)

as n→ ∞. Let us define δmt
= m

−(1+δ)
t and consider the event

A3,n = {V1,mt
> δmt

} ∩ {Vmt,mt
< 1 − δmt

}

Under A3,n, we have δmt
< Vi,mt

< 1 − δmt
for all i ∈ Jmt

. Hence,

P

(∣

∣

∣

∣

log

(

q(Vi,mt
, Ti)

q(Vi,mt
, t)

)∣

∣

∣

∣

> ωn(m
−(1+δ)
t )

)

≤ P

(∣

∣

∣

∣

log

(

q(Vi,mt
, Ti)

q(Vi,mt
, t)

)∣

∣

∣

∣

> ωn(m
−(1+δ)
t )

∣

∣

∣

∣

A3,n

)

P(A3,n) + P(AC
3,n),

where AC
3,n is the complementary event associated to A3,n. Since under A3,n,

∣

∣

∣

∣

log

(

q(Vi,mt
, Ti)

q(Vi,mt
, t)

)∣

∣

∣

∣

≤ ωn(m
−(1+δ)
t ),

for all i ∈ Jkt
, it is clear that

P

(∣

∣

∣

∣

log

(

q(Vi,mt
, Ti)

q(Vi,mt
, t)

)∣

∣

∣

∣

> ωn(m
−(1+δ)
t )

∣

∣

∣

∣

A3,n

)

= 0.

Remarking that

P(A3,n) ≥ P(V1,mt
> δmt

)+P(Vmt,mt
< 1−δmt

)−1 = 2P(V1,mt
> δmt

)−1 → 1,

since Vmt,mt

d
= 1 − V1,mt

and P(V1,mt
> δmt

) = (1 − δmt
)mt → 1 concludes the

proof of (23). Furthermore, for all (ui, uj) ∈ V2
n,t, we have, on the one hand

log

(

q(Vj,mt
, uj)

q(Vi,mt
, ui)

)

= log

(

q(Vj,mt
, t)

q(Vi,mt
, t)

)

+ log

(

q(Vj,mt
, uj)

q(Vj,mt
, t)

)

+ log

(

q(Vi,mt
, t)

q(Vi,mt
, ui)

)

≥ log

(

q(Vj,mt
, t)

q(Vi,mt
, t)

)

− 2ωn(δmt
),

and on the other hand,

min
i∈Jmt

\Jkt

log

(

q(Vkt ,mt
, ukt

)

q(Vi,mt
, ui)

)

≥ min
i∈Jmt

\Jkt

log

(

q(Vkt ,mt
, t)

q(Vi,mt
, t)

)

− 2ωn(δmt
)

≥ log

(

q(Vkt ,mt
, t)

q(Vkt+1,mt
, t)

)

− 2ωn(δmt
).

Consequently, considering the event

A4,n =

{

min
i∈Jkt

log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

> 2ωn(δmt
)

}

,
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it is clear that A3,n ∩A4,n ⊂ An. It thus remains to prove that P(A4,n) → 1 to
show (24). From (A.1), for all α ∈ (0, 1),

q(α, t) = c(t) exp

{

∫ α−1

1

γ(t) + ∆(u, t)

u
du

}

.

Hence, for all i ∈ Jkt
,

log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

=

∫ V −1

i,mt

V −1

i+1,mt

γ(t) + ∆(u, t)

u
du.

Since V −1
1,mt

≥ . . . ≥ V −1
kt+1,mt

= (mt/kt)(1 + oP(1))
P
→ ∞, it follows from (A.3)

that

log

(

q(Vi,mt
, t)

q(Vi+1,mt
, t)

)

≥ (γ(t) − |∆(V −1
kt+1,mt

, t)|) log

(

Vi+1,mt

Vi,mt

)

,

leading to

P(A4,n) ≥ P

(

(γ(t) − |∆(V −1
kt+1,mt

, t)|) min
i∈Jkt

log

(

Vi+1,mt

Vi,mt

)

> 2ωn(δmt
)

)

≥ P

({

min
i∈Jkt

log

(

Vi+1,mt

Vi,mt

)

≥
4ωn(δmt

)

γ(t)

}

∩
{

|∆(V −1
kt+1,mt

, t)| < γ(t)/2
}

)

≥ P

(

min
i∈Jkt

log

(

Vi+1,mt

Vi,mt

)

≥
4ωn(δmt

)

γ(t)

)

+ P

(

|∆(V −1
kt+1,mt

, t)| < γ(t)/2
)

− 1

def
= P1,mt

+ P2,mt
− 1.

In view of Rényi representation for uniform ordered random variables,

{i log(V −1
i,mt

/V −1
i+1,mt

), i ∈ Jkt
}
d
= {Fi, i ∈ Jkt

},

we have

P1,mt
= P

(

min
i∈Jkt

Fi
i

≥
4ωn(δmt

)

γ(t)

)

=

kt
∏

i=1

exp

(

−
4iωn(δmt

)

γ(t)

)

= exp

(

−
2

γ(t)
kt(kt + 1)ωn(δmt

)

)

→ 1,

since k2
tωn(δmt

) → 0. Furthermore, Vkt+1,mt

P
→ 0 and ∆(α−1, t) → 0 as α → 0

entail P2,mt
→ 1. The conclusion follows.

Proof of Lemma 3 − Letting

u(s) =
d

ds
(sp(s, a, λ)) =

λ−a

Γ(a)
s1/λ−1

(

(− log(s))a−1

λ
− (a− 1)(− log(s))a−2

)

,

it is easily seen that

p(j/kt, a, λ) =
1

j

∫ j/kt

0

u(ν)dν.
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Note that, if a = 1, then |u(s)| is a bounded function and thus it is easy to verify
that (9) and (10) are satisfied. Let us now consider the case a 6= 1. Introducing
τ = (2 − a)I{a ∈ (1, 2]}, we have:

|u(s)| ≤
λ−a

Γ(a)
(− log(s))−τ

(

(− log(s))a−1+τ

λ
+ (a− 1)(− log(s))a−2+τ

)

≤ g̃(s)
def
=

{

λ−a/Γ(a)(λ−1 + a− 1)(− log(s))a−1 if s ∈ [0, e−1],
λ−a/Γ(a)(λ−1 + a− 1)(− log(s))−τ if s ∈ [e−1, 1].

Three situations are considered:

Situation a) − If j < kte
−1, we have:

∣

∣

∣

∣

∣

kt

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤

{

λ−a/Γ(a)(λ−1 + a− 1)(log(kt/(j − 1)))a−1 for j 6= 1,
λ−a/Γ(a)(log(kt))

a−1 for j = 1.

Besides, straightforward calculations lead to

(

log

(

kt
j − 1

))a−1

≤ 2a−1

(

log

(

kt + 1

j

))a−1

and (log(kt))
a−1 < (log(kt+1))a−1.

Hence,
∣

∣

∣

∣

∣

k

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤ c1(a, λ)g̃

(

j

kt + 1

)

,

where c1(a, λ) is a positive constant.

Situation b) − If j > (kt + 1)e−1, then

∣

∣

∣

∣

∣

kt

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤







λ−a

Γ(a)

(

1
λ + a− 1

)

(

log
(

kt

j

))−τ

for j 6= kt,

λ−a

Γ(a) (kt − 1)
(

log
(

kt

kt−1

))a−1+τ (

log
(

kt

kt−1

))−τ

for j = kt.

Since log(kt/(kt − 1)) < 1/(kt − 1) and a− 2 + τ ≥ 0, it follows that

(kt − 1)

(

log

(

kt
kt − 1

))a−1+τ

<

(

1

kt − 1

)a−2+τ

≤ 1,

and thus
∣

∣

∣

∣

∣

kt

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤

{

λ−a/Γ(a)(λ−1 + a− 1)(log(kt/j))
−τ for j 6= kt,

λ−a/Γ(a)(log(kt/(kt − 1)))−τ for j = kt.

Remarking that

(

log

(

kt
j

))−τ

≤ 3τ
(

log

(

kt + 1

j

))−τ

and

(

log

(

kt
kt − 1

))−τ

<

(

log

(

kt + 1

kt

))−τ

,

we have
∣

∣

∣

∣

∣

k

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤ c2(a, λ)g̃

(

j

kt + 1

)

,

17



where c2(a, λ) is a positive constant.

Situation c) − If kte
−1 < j < (kt + 1)e−1, then

∣

∣

∣

∣

∣

k

∫ j/kt

(j−1)/kt

u(ν)dν

∣

∣

∣

∣

∣

≤ max

(

g̃

(

j

kt

)

; g̃

(

j − 1

kt

))

and one can show that

max

(

g̃

(

j

kt

)

; g̃

(

j − 1

kt

))

≤ c3(a, λ)g̃

(

j

kt + 1

)

,

where c3(a, λ) is a positive constant.

As a conclusion, for all j ∈ Jkt
, (9) is satisfied with

g(s) =

{

c4(a, λ)(− log(s))a−1 if s ∈ [0, e−1],
c4(a, λ)(− log(s))−τ if s ∈ [e−1, 1],

where c4(a, λ) = λ−a/Γ(a)(λ−1 +a− 1) max(c1(a, λ); c2(a, λ); c3(a, λ)). Finally,
we have:

∫ 1

0

max(1,− log(s))g(s)ds = c4(a, λ)

{

∫ e−1

0

(− log(s))a−1ds

+

∫ 1

e−1

(− log(s))−τds

}

≤ c4(a, λ)(Γ(a + 1) + Γ(1 − τ)) <∞,

since τ < 1, and (10) is proved.

Proof of Lemma 4 − For all x ∈ R, the well-known expansion

P(Xn ≤ x) = P({Xn ≤ x}|An)P(An) + P({Xn ≤ x}|AC
n )P(AC

n )

leads to the following inequalities:

P({Xn ≤ x}|An)P(An) ≤ P(Xn ≤ x) ≤ P({Xn ≤ x}|An)P(An) + P(AC
n ).

Since (Xn|An)
d
= (Yn|An), it follows that:

P({Yn ≤ x} ∩ An) ≤ P(Xn ≤ x) ≤ P({Yn ≤ x} ∩ An) + P(AC
n ).

Taking into account of

P(Yn ≤ x) − P(AC
n ) ≤ P({Yn ≤ x} ∩ An) ≤ P(Yn ≤ x)

leads to:

P(Yn ≤ x) − P(AC
n ) ≤ P(Xn ≤ x) ≤ P(Yn ≤ x) + P(AC

n ).

The conclusion is then straightforward since P(Yn ≤ x) → P(Y ≤ x) and
P(AC

n ) → 0.
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Figure 1: Log-gamma densities associated to γ̂H

n (full line), γ̂Z

n (dashed line) and
γ̂πn (dotted line).
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Figure 2: Optimal asymptotic variance (OAV) as a function of the mean-
squared bias (MSB) (full line). Dashed lines represent some level curves of
π = AV × MSB. The points represent the positions of the estimators γ̂H

n

(HILL), γ̂Z

n (ZIPF) and γ̂πn (PI).
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Figure 3: Geographical coordinates (longitude, latitude and altitude) of the 142
raingauges stations.
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Figure 4: Estimated tail-index as a function of the altitude: γ̂H

n(· · · ), γ̂πn(×××)
and γ̂Z

n(• • •).
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Figure 6: Estimated 10 years- return level (in meters) as a function of the
altitude: q̂H(· · · ), q̂π(×××) and q̂Z(• • •).
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Figure 7: Representation of the 10 years- return level (in meters), estimated
with q̂π, as a function of the longitude and latitude.
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