
HAL Id: inria-00369432
https://inria.hal.science/inria-00369432

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electric current density imaging via an accelerated
iterative algorithm with joint sparsity constraints

Gabriella Bretti, Massimo Fornasier, Francesca Pitolli

To cite this version:
Gabriella Bretti, Massimo Fornasier, Francesca Pitolli. Electric current density imaging via an accel-
erated iterative algorithm with joint sparsity constraints. SPARS’09 - Signal Processing with Adaptive
Sparse Structured Representations, Inria Rennes - Bretagne Atlantique, Apr 2009, Saint Malo, France.
�inria-00369432�

https://inria.hal.science/inria-00369432
https://hal.archives-ouvertes.fr


Electric current density imaging via an accelerated

iterative algorithm with joint sparsity constraints

Gabriella Bretti

Me.Mo.Mat Department of the

University “La Sapienza” of Rome,

Via A. Scarpa, 00161 Rome, Italy

Email: gab.bretti@gmail.com

Massimo Fornasier

Johann Radon Institute for Computational

and Applied Mathematics of Linz

Altenbergerstrasse 69 A-4040 Linz, Austria

Email: massimo.fornasier@oeaw.ac.at

Francesca Pitolli

Me.Mo.Mat Department of the

University “La Sapienza” of Rome,

Via A. Scarpa, 00161 Rome, Italy

Email: pitolli@dmmm.uniroma1.it

Abstract—Many problems in applied sciences require to spa-

tially resolve an unknown electrical current distribution from

its external magnetic field. Electric currents emit magnetic fields

which can be measured by sophisticated superconducting devices

in a noninvasive way. Applications of this technique arise in

several fields, such as medical imaging and non-destructive

testing, and they involve the solution of an inverse problem.

Assuming that each component of the current density vector

possesses the same sparse representation with respect to a pre-

assigned multiscale basis, allows us to apply new regularization

techniques to the magnetic inverse problem.

The solution of linear inverse problems with sparsity constraints

can be efficiently obtained by iterative algorithms based on

gradient steps intertwined with thresholding operations. We test

this algorithms to numerically solve the magnetic inverse problem

with a joint sparsity constraint.

I. INTRODUCTION

Many problems in applied sciences require to map the

spatial distribution of electric currents flowing through a given

sample. For example, in neuroscience studies the brain activity

can be localized by detecting the regions where neural currents

flow. Similarly, in nondestructive testing cracks and corrosion

damage in a structure result in perturbations of the current

flow.

A given electric current distribution produces a characteris-

tic magnetic field which provides information on the process

occurring within the object. Since the magnetic field decreases

fast as the distance from the current source to the sensor

position increases, the magnetic data can be affected by a

high noise. Usually, the measurements are obtained by SQUID

magnetometers, that can detect magnetic fields generated by

deep currents in a noninvasive way [14].

Of course the magnetic data do not give an immediate

image of the current distribution, hence we have to solve the

associated inverse problem and regularization techniques are

needed [1],[13]. The Tikhonov regularization with quadratic

constraint, gives good results when the quantities under obser-

vation are equally distributed in time or space [7]. However,

in the applications we are interested in, the regions where the

currents flow are usually small, hence the current distribution

is spatially inhomogeneous, and can be represented as a sum

of weighted basic currents with only few relevant terms.

To promote a sparse representation regularization techniques

based on ℓ1-minimization have been introduced, see, e.g., [6].

In the case the quantity of interest can be modelled as a

vector-valued signal with jointly sparse components, then the

regularizations introduced in [9], [10] are more suited, see also

[2], [8], [12].

Iterative thresholding algorithms have been proposed for

the solution of inverse problems with sparsity constraints, but

they have shown rather slow performances in the magnetic



tomography problem. In this paper we would like to proposed

also for the joint-sparsity constraints a modification inspired

by [5] where the thresholding operations are substituted with

suitable projections onto convex sets. These projections turn

out to be simply adaptive thresholding steps. For classical

sparsity constraints based on ℓ1-minimization this approach

has shown significant speed improvements in practice.

II. THE FORWARD AND INVERSE MAGNETIC PROBLEMS

From the quasi-static Maxwell’s equations it follows that

the magnetic field ~B generated by a current density ~J obeys

the Biot-Savart law:

~B(~J,~r) =
µ0

4π

∫

V0

~J(~r ′) ×
(~r −~r ′)

|~r −~r ′|3
d~r ′, (2.1)

where µ0 is the magnetic permeability in the vacuum and V0 is

the region where the current flows. Usually, the magnetometers

measure just the normal component of the magnetic field,

whose expression is given by

Be(~J,~r) =
µ0

4π

∫

V0

~e(~r) × (~r ′ −~r)

|~r ′ −~r|3
· ~J(~r ′) d~r ′ , (2.2)

where ~r is a point outside V0 and ~e(~r) is the unit normal

vector w.r.t. the surface where the magnetometer is located. We

remark that the knowledge of the normal component uniquely

determines the magnetic field in the outer space [11].

Now, let ~ql, l = 1, . . . , N , be the magnetometer loca-

tions and let M = {m1, . . . ,mN} be the corresponding

measurements. In order to reconstruct the current distribution

~J we would like to minimize the discrepancy ∆(~J) :=
∥

∥

∥
G(~J) − M

∥

∥

∥

2

RN
, with G(~J) = {Be(~J, ~q1), ..., Be(~J, ~qN )}.

Unfortunately, there exist silent currents, so that non unique

solutions can be expected. Moreover, the magnetic data can be

affected by high noise. A regularization mechanism is required

both to identify uniquely the solution by taking advantage of

possible prior knowledge (in this case the spatial joint-sparsity

of the currents) and to remove the noise.

III. THE MAGNETIC INVERSE PROBLEM WITH SPARSITY

CONSTRAINTS

We are interested in applications where the current density

is spatially inhomogeneous so that it can be represented as

a sum of weighted basic currents with only few significant

terms. This means that we can assume ~J = (J1, J2, J3) ∈

L2(V0;R
3) sparsely represented by a suitable dictionary D :=

(ψλ)λ∈Λ, i.e.

Jℓ ≈
∑

λ∈ΛS

jℓ
λ ψλ , jℓ

λ = 〈Jℓ, ψλ〉 , ℓ = 1, 2, 3, (3.3)

where ΛS ⊂ Λ, the small set of significant coefficients, is the

same for all the components. As a dictionary we can choose a

stable multiscale basis, for instance a wavelet basis or frame

[3], [4].

Thus, the magnetic inverse problem with the sparsity con-

straint ΨD consists in minimizing the functional

JΨ(~j, v) = ∆(~j) + ΨD(~j, v), (3.4)

with respect to both ~j = (jℓ
λ)λ∈Λ,ℓ=1,2,3 and an auxiliary

weight v, restricted to vλ ≥ 0.

We use as sparsity constraint the joint sparsity measure

introduced in [9], i.e.

ΨD(~j, v) =
∑

λ∈Λ

vλ ‖~jλ‖p +
∑

λ∈Λ

ωλ‖~jλ‖
2
2 +

∑

λ∈Λ

θλ(ρλ − vλ)2,

(3.5)

where p ≥ 1 and (θλ)λ∈Λ, (ρλ)λ∈Λ, (ωλ)λ∈Λ are positive

parameter sequences. Here, ‖·‖p denotes the usual p-norm for

vectors in R3. In this way, the minimization of JΨ promotes

that all the entries of the vector ~jλ = (jℓ
λ)ℓ=1,2,3 have the

same sparsity pattern.

By using the decomposition (3.3), the minimum problem

reduces to minimization of the functional

JΨ(~j, v) =
∥

∥

∥
T~j − M

∥

∥

∥

2

RN
+ ΨD(~j, v), (3.6)

where the entries of T~j are given by

(T~j)l =

3
∑

ℓ=1

∑

λ∈Λ

jℓ
λ

µ0

4π

∫

V0

(

~e(~ql) × (~r ′ − ~ql)

|~r ′ − ~ql|3

)

ℓ

ψλ(~r ′) d~r ′.

(3.7)



An efficient iterative algorithm to numerically solve this

minimum problem will be illustrated in the following Section.

IV. AN ACCELERATED ITERATIVE THRESHOLDING

ALGORITHM

The minimizer of the functional JΨ can be approximated

by an accelerated projected gradient method, deduced by

combining the iterative thresholding algorithm given in [10],

with the accelerated projected gradient method proposed in

[5].

The iterative thresholding algorithm is as follows (cf.

[2],[12]).

Algorithm JS






























Choose the sequences θ, ρ, ω

Pick an arbitrary ~j(0) ∈ ℓ2(Λ;R3)

For 0 ≤ k ≤ K do

~j(k+1) = S
(p)
θ,ρ,ω

(

~j(k) + T ∗M − T ∗T~j(k)
)

The operator S
(p)
θ,ρ,ω is a vector-valued thresholding operator

whose explicit expression depending on the parameters can

be found in [10].

Following the approach in [5] we define the set

Cθ,ρ,ω(R) := {~j ∈ ℓ2(Λ;R3) : ΨD(~j, v) ≤ R,

for some 0 ≤ v ≤ ρ}.

The set Cθ,ρ,ω(R) is convex whenever ωλθλ ≥ κ
4 for all λ ∈

Λ, where κ = 3 for p = 1, and κ = 1 for p ∈ {2,∞},

compare [9, Proposition 2.1]. See Figure IV for examples of

these sets for different parameters, also in case of violation of

the convexity.

The projected gradient iteration has the form:

Algorithm PG






























Pick an arbitrary ~j(0) ∈ ℓ2(Λ;R3)

For 0 ≤ k ≤ K do

Choose the descent parameter β(k)

~j(k+1) = PCθ,ρ,ω(R)

(

~j(k) + β(k)(T ∗M − T ∗T~j(k))
)
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Fig. 1. The sets Cθ,ρ,ω(R) in R
2 (no vector components are considered

and Λ contains two indexes only) for different parameters θ, ρ, ω, R.

where PCθ,ρ,ω(R) is the orthogonal projection onto Cθ,ρ,ω(R).

This projection can be computed in practice by an adaptive

thresholding choice: for any ~j ∈ ℓ2(Λ;R3) there exists a η :=

η(~j, θ, ρ, ω, R) > 0 such that

PCθ,ρ,ω(R)(~j) = S
(p)
θ
η

,ηρ,ηω
(~j). (4.8)

This relationship is promptly seen by using the defini-

tion of S
(p)
θ,ρ,ω: choose η > 0 such that S

(p)
θ
η

,ηρ,ηω
(~j) ∈

∂Cθ,ρ,ω(R), i.e., ΨD(S
(p)
θ
η

,ηρ,ηω
(~j), v) = R for some v and

ΨD(S
(p)
θ
η

,ηρ,ηω
(~j), v′) ≥ R for all v′. Then

S
(p)
θ
η

,ηρ,ηω
(~j) = arg min

~j′,v′

‖~j −~j′‖2
R3 + ηΨD(~j′, v)

= arg min
~j′∈Cθ,ρ,ω(R),v′

‖~j −~j′‖2
R3 + ηΨD(~j′, v)

= arg min
~j′∈Cθ,ρ,ω(R)

‖~j −~j′‖2
R3 + ηR

= PCθ,ρ,ω(R)(~j).

The fast convergence of Algorithm PG depends on a suit-

able choice of the adaptive descent parameter: following the

arguments in [5] it is possible to show that the sequence (~j(k))

weakly converges to the minimizer of JΨ which lies on the

set Cθ,ρ,ω(R) if the sequence β(k) satisfies the conditions



















β̄ := sup{β(k), k ∈ N} < ∞ ,

inf{β(k), k ∈ N} ≥ 1 ,

β(k)‖T (~j(k+1) −~j(k))‖2 ≤ r‖~j(k+1) −~j(k)‖2 , k ≥ k0 ,

(4.9)

where r := ‖T ∗T‖ℓ2→ℓ2 < 1 and k0 is a suitable index.



Since at each iteration the evaluation of the action of T ∗T

is requested, we wonder whether such evaluation can be

compressed and performed in a fast way.

Let M be the matrix whose entries are the coordinates of

T ∗T in the multiscale basis (ψλ)λ∈Λ, i.e.

(

T ∗T~j
)

λ,ℓ
=

∑

µ∈Λ

3
∑

m=1

jm
µ M(λ,ℓ),(µ,m), (4.10)

for λ ∈ Λ, ℓ = 1, 2, 3. From (3.7) it follows

M(λ,ℓ),(µ,m) :=

N
∑

l=1

(Aℓ,lψλ)(Am,lψµ), (4.11)

λ, µ ∈ Λ, ℓ, m = 1, 2, 3,

where

Ai,l ψλ =
µ0

4π

∫

V0

(

~e(~ql) × (~r ′ − ~ql)

|~r ′ − ~ql|3

)

ℓ

ψλ(~r ′) d~r ′. (4.12)

It can be shown that M has compressibility properties w.r.t. a

compactly supported wavelet basis (see [8]) so that T ∗T~j(k)

can be efficiently evaluated.

V. A BIDIMENSIONAL TEST

In the numerical tests the magnetic data are generated by

three horizontal bidimensional current dipoles located in the

plane Π0 = {x, y ∈ R, z = 0}. The magnetic field is sampled

by 400 magnetometers located on a regular horizontal grid at

height δ = 1. Note that we use adimensional measure units

in the tests.

This setting can be used to model both the problem of

localizing shallow neural sources and non destructive testing of

thin structures. In fact, the current dipoles can be viewed both

as sources of brain activity and as discontinuities in a given

current distribution. We remark that in the bidimensional case

the inverse problem has a unique solution, nevertheless, it can

be ill-conditioned for the presence of noise.

As a multiscale basis, we choose the Daubechies orthonor-

mal wavelets with d = 4 vanishing moments and discretize

the plane Π0 with 32 pixels for each dimension. Finally, 2

multiscale levels are used for the current decomposition.

We performed some preliminary tests on Algorithm JS

with the thresholding parameter tuned following [9], [10]. In
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Fig. 2. The magnetic field produced by three current dipoles located in

(−0.5,−0.4, 0), (−0.1,−0.4, 0), (0.3,−0.4, 0). The black points represent

the magnetometer sites.

particular, for all λ ∈ Λ we choose ρλ = 10−4 in the noiseless

case, and ρλ = 4 · 10−3 in the noisy case. As for the other

parameters, we fix θλ = 10−4 and ωλ = 0 for all λ ∈ Λ,

thus in the sequel we will suppress the indexes θ, ω from the

thresholding operator, that will be simply addressed as S
(p)
ρ . In

Fig. 3 the reconstructed current distribution after 100 iterations

by soft-thresholding, i.e. Algorithm JS with p = 1, is shown.

In Fig. 5 the current distribution reconstructed is displayed

when high white Gaussian noise with linear signal to noise

ratio equal to 0.1 is added to the magnetic field (see Fig. 4).

In spite of the high level of noise and of the poor discretization

of the plane, 32 linear pixels, it is still possible to localize the

current sources.

As a comparison, in Fig. 6 we show localization results

obtained by means of quadratic Tikhonov regularization in

the case when the data are distorted by high noise. In real

fact, quadratic Tikhonov regularization is not able to give

a satisfactory localization of the current sources: when the

regularization parameter is low (equal to 10−3 in the example)

the current is not reconstructed at all (Fig. 6, left), while

a greater regularization parameter blurres the image (Fig. 6,

right, where the regularization parameter is chosen by means

of the discrepancy principle and is equal to 356).
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Fig. 3. The current intensity reconstructed starting from the magnetic field

displayed in Fig. 2 by using soft-thresholding with τ = 10−4.
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Fig. 4. The noisy magnetic field produced by three current dipoles located

in (−0.5,−0.4, 0), (−0.1,−0.4, 0), (0.3,−0.4, 0). The magnetometer dis-

tribution is represented by black points.

VI. CONCLUSIONS

The numerical tests presented in the previous Section show

that Algorithm JS behaves better than classical quadratic

Tikhonov regularization in case of high noise, and represent

promising results for the reconstruction of current sources,

in spite of the poor discretization with just 32 linear pixels.

We proposed further Algorithm PG as an acceleration of

Algorithm JS generalizing the approach introduced in [5] to

the case of a joint-sparsity constraint.
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Fig. 5. The current intensity reconstructed starting from the magnetic field

displayed in Fig. 4 by using soft-thresholding with τ = 4 · 10−3.
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Fig. 6. The current distribution reconstructed by using the quadratic Tikhonov

regularization starting from the noisy magnetic field displayed in Fig. 4. Two

different values of the regularization parameter have been used: 0 (right) and

356 (right).
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