N

HAL

open science

The Semantics of Kalah Game

Kaninda Musumbu

» To cite this version:

Kaninda Musumbu. The Semantics of Kalah Game. ACM International conference Proceeding series,

2005, ISBN 0-9544145-6-X, pp.191 - 196. hal-00362005

HAL Id: hal-00362005
https://hal.science/hal-00362005
Submitted on 17 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00362005
https://hal.archives-ouvertes.fr

The Semantics of Kalah Game

Kaninda Musumbu
LaBRI (UMR 5800 du CNRS),
Université Bordeaux I, France
351, cours de la Libération, F-33.405 TALENCE Cedex,
e-mail: musumbu@Ilabri.fr

Abstract

The present work consisted in developing a plateau game. There are the traditional ones
(monopoly, cluedo, ect.) but those which interest us leave less place at the chance (luck) than to
the strategy such that the chess game. Kallah is an old African game, its rules are simple but
the strategies to be used are very complex to implement. Of course, they are based on a strongly
mathematical basis as in the film "Rain-Man" where one can see that gambling can be payed
with strategies based on mathematical theories. The Artificial Intelligence gives the possibility
"of thinking" to a machine and, therefore, allows it to make decisions. In our work, we use it
to give the means to the computer choosing its best movement.

1 Introduction

The present work consisted in developing a plateau game. There are the traditional ones (monopoly,
cluedo, long course...) but those which interest us leave less place to random than to the strategy.
There are the plays of simulation like:

e "The age of the rebirth". Historical reconstitution from 750 to 1350 (of the Middle Ages to
the rebirth) highly strategic Play, basing itself on the commercial conquests (and not soldiers).
The play advances thanks to discoveries, inventions, etc.

e "Rigk". It is a military play of strategy, consisting in conquering the world. The plate
represents the chart of the world. Each team must fight, or link itself to remove the opposing
armies.

e "Dune". Who doesn’t know the Dune planet, with his spice, vital for all the protagonists?
Find the environment of Franck Herbbert, while using of diplomacy, strategy and bluff to be
the Master of spice.

One finds also sets of rules simple but "effective". In which we can integrate the Kalah game. These
rules are simple but the strategies to be used are very complex to implement. Of course, they are
based on a strongly mathematical basis.with calculations of the differences of pawns, empty holes...
as in the film "Rain-Man" where we can see that gambling can be played with strategies based on
mathematical theories. The Kalah game is one of oldest African plays. It is a mathematical play
and the most complex versions can be compared with the chess game.

The play of Kalah is appeared as table, composed of two lines of six holes plus two called "special"
holes Kalahs . At the beginning of the game, each hole contains six pawns and the Kalahs are
empty. The game’s goal is to collect more than half of the total number of pawns in its Kalah .
We have developed the Kalah game on the computer with four modes of play:

e Two players on the same machine.
e a player counters the computer.

e Two players in network.

e Two computers.

Paragraph 2 is a general presentation of work with a recall of rules of the game. In paragraph 3,
we state the problem posed by the taking into account the modification of the apron following a
movement of one of the players. In paragraph 4, we explain the problem arising from the comput-
ing time necessary to make play the computer and the solutions brought to really make the play
interactive and acceptable the latency.

2 General Presentation

For our implementation we decide to put two lines made up of six holes plus two "special" holes
called Kalahs . Each hole contains six pawns at the beginning of the play and the Kalahs are
empty. The Kalahs are used to store the pawns collected by each player. The player can choose
between four modes of play: two computers, a player counters the computer, two players on the
same machine, two players in network. The course of the play can be followed using the messages
posted to the medium of the screen after each modification made on the table

3 Functionalities of Game Engine

This module is used for the direct interaction with all the structures of data necessary for storage
and modifications of the states of the play. It manages four modes different of game:

e Two players on the same machine. With each turn, the computer lets to the user click on one
of his holes. Once the choice makes the engine carries out the movement(the distribution of
pawns) on the structures of definite data and informs with the interface to refresh the screen.

e A player counters the computer. The human player always takes the hand at the beginning
of the play. He chooses a hole, the engine will carry out this movement and will give the hand
to the computer which will make its movements of continuation with a direct interaction with
the Strategies module. Once all the finished movements, the graphic interface will start to
post the movement of human then all the movements of the computers for this blow.

e Two players in network. The course of the play is exactly the same one as for two players on
the same machine, except that the engine with each movement sending on the distant machine
the movement made by the local machine in order to post on two sides the same apron of

play.

e Two computers. For each computer the Strategy module will return the best hole for the state
of the current apron by using the strategy and the level of currents difficulty. With this hole
the engine will make the movement and the storage of the apron and will pass the hand to
the other computer or will remain on itself if it replays.

This module uses in the same way the Gamelogic class. This class contains all information
concerning the rules of the game implemented (including the determination of the winner). The
structures used most significant are for example: The BoardState class which represents an apron of
play storing all the values of the pawns in the holes and the kalahs , data-processing representation
of an apron of Kalah . We also used a variable containing all the history of a play, with a succession
of aprons corresponding to the movements carried out, i.e. the first component represents the initial
apron and then each component point out the apron reached according to each movement. This
structure of history enabled us to implement the following functionalities easily: To make preceding
blows: This option makes it possible to the user to reconsider his last blows. At the level of data
structure, it is enough to use before last apron stored in the history as being the current apron. To
make following blows: Just as to retrogress, to advance it is enough to seek the aprons which are
on the right current and to shift in this direction of the number of following blows.

4 Artificial Intelligence

The artificial intelligence is a concept about which, generally, everyone intended to speak. The
artificial intelligence gives the possibility "of thinking" of a machine and, therefore, allows him to
make decisions. In our work, we used it to be able player against the computer and which it can
choose his movement. This intelligence is called artificial because it is based on calculations of the
algorithms.

4.1 Strategy

The module Strategy is the module which manages the artificial intelligence of the computer.
It is the most significant part of our work. It gives the possibility "of thinking", i.e., to choose its
next movement "grace" mainly with the algorithm MiniMax (in concrete terms, an alternative of
this algorithm) described below. For recall, we present initially the operation of the traditional
MiniMax then the variations that we have introduce.

4.2 Algorithm MiniMax

The algorithm MiniMax is a universal algorithm, which is used in the plays with two players, to
decide which is the best movement to be made, at a given time, starting from the current state. In
our case one considers the current state as the apron of the game(pawns which are in each hole and
in the kalahs), and the player who has the hand. One will use this algorithm preferably to allow
the computer to choose his movement or to be able to give to human council in the play of the type
a player against the computer. Proposed in 1928, by John Von Neumann, this technique leads the
computer to review all the possibilities for a limited number of blows and to assign a value to them
which takes into account the benefit for the player who has the hand and for his adversary. The
best choice being then that which maximizes its benefit (one it calls player M AX) while minimizing
those of sound adversary(player MIN). This algorithm must be able to return a value which will
correspond to the movement chosen by the player M AX. The basic idea consist to create a tree
which will have as many levels as that indicated by a value passed in parameter. Each node of
the tree can have more than one number of wire equal to the number of possible movements. For
example this number will be six for Kalah game with six holes by player. The algorithm MiniMax
is a depth search algorithm, with a limited depth.

It requires to use:

e a generation function of the legal blows starting from a position
e a evaluation function of a position of play

From a position of the play, the algorithm explores the tree of all legal blows until the required
depth. The scores of the tree’s sheets are then calculated by the evaluation function. A positive
score indicates a good position for the player M AX and a negative score a bad position for him,
therefore a good position for the player MIN. According to one who plays, the passage of a position
to another is maximizing (for the player M AX) or minimizing for the player MIN. The players
try to play the most advantageous blows for themselves. By seeking the best blow for M AX, the
depth search for level 1 will seek to determine the immediate blow which maximizes the score of
the new position.

3 {0 {4 {0y {3 {7 {4 {1 {&8

For example, on the figure, the player M AX leaves position 0, determines four legal blows,
builds these new configurations and evaluates them. Of these scores, its best position is (of score
8). It propagates this value with position 0, indicating speak with this pleasing position in a blow
with a new position about score 8 by playing the blow C2. in-depth exploration about level 1 is
in general not sufficient, because it does not take account of the response of the adversary. That
produced of the programs seeking the immediate profit (like the catch of a queen to the chess board),
without realizing that the parts are protected or that the position becomes losing (gambit of the
queen to make checkmate). An exploration of depth 2 makes it possible to realize by-effect. Figure
2 shows an additional level of development of the tree by taking account of the answer of the player
MIN. This one to also seek its best blow. For that, the algorithm MiniMax will minimize the
scores of the nodes of depth 2. The blow who brought to a position immediately score 8 goes, in
made, to indeed bring the position of the play to a score of -3. if B plays the blow D5, then the
score of the position @5 is worth -3. We can see that the blow C1 limits the dégats with a score
of -1. It will thus be preferred. In the majority of the plays, it is possible to make lanterns its
adversary, by making it play forced blows, with an aim of muddling the situation by hoping that
it will make a fault. For that the search for depth 2 is very insufficient for the tactical aspect of
the play. The strategic aspect is seldom well exploited by a program because it does not have the
vision probable evolution of the position at the end of the part. The difficulty larger depth comes
from the combinator explosion. For example, to the failures, the additional exploration 2 depths
brings a factor of approximately thousand times of combinations (30*30). Therefore, if one seeks
to calculate a depth of 10, one will obtain approximately 514 position, which is of course too. For
that, one tries to prune the tree of research to reduce this complexity.

4.3 Alphabeta Pruning

One can note that it is not forcing useful to explore the branch in ol measurement the score of
this position to depth 1 is already with less good than that found in the branch In the same way
the branch need does not have completely to be explored. As of the calculation of Q7, we obtain
a score lower than that of (always completely explored). Calculates @8 and @9 will not be able to
improve this situation even if their respective score is better than Q7. In a minimizing stage, the
weakest score went up. Already is known that it will not bring anything again. The alternative
alphabeta of the MiniMax uses this pruning to decrease the number of branches to be explored.
This reduction causes an increase in the performances in time and in space. With the alphabeta
pruning, we generate only a number of nodes necessary to decide if each branch will bring us to a
better value of that already exist.

4.4 Algorithm MiniMax Revisited

The MiniMax algorithm with alphabeta pruning is created for games with two players in which, after
each turn the hand changes. By the specificity of the Kalah game, there is a rule which allows to
keep the hand (replay again), then it was necessary to make modifications on this algorithm. In the
traditional exploration tree, one makes the maximization of the wire values to the root (one wants
the value the greatest value for the player M AX who is, by definition, that calls the algorithm. In
the following level, one makes minimization because it is the turn of the adversary (player MIN .
One continues thus while alternating until the end. In the play of Kalah, the problem comes from
the fact, that by generating the depth tree of game, it is necessary to store the information which
says if the player who made the last movement must replay or not. Alternation is not systematic
any more, one looks at initially if that which has just played owes replay. In this case, if the player is
the M AX, it will again be necessary to maximize in the following level. If not, it will be necessary
to minimize. This modification implies that alphabeta pruning cannot be bracket in all the cases.
It will be able to apply it only in the following cases:

e One is in a node MAX and his/her father is MIN
e One is in a node MIN and his/her father is M AX

The reason is rather obvious. Indeed, let us consider the example of figure 3, First of all, one goes
down, in-depth, by the first branch, when we go up, we obtain value 2 out of B, then in A, like
temporal value. Now, we go down by the second branch to the sheet, we go up -1, whatever the
values which can be obtained they will not exceed -1 is thus will be always lower than 2. We can
prune these branches, because they will not bring additional information.

Let us consider the case where the player M AX keep the hand, and suppose that the node C is
of type MAX. A priori it is not known if one of wire of C will not be able to go up a higher value.
They will thus have to be go through all. For example in figure 4, the last wire has value 5 and this
one is finally the gone up value with A.

With this alternative that appears clear that one loses because each time that a player keep the
hand, our algorithm generates more nodes and consequently, more time. But the nature of Kalah
game does not make it possible to optimize more than what we did.

4.5 Levels of difficulty

In the program, we introduced four levels of difficulties which can be chosen by the user when it
asks a play against the computer. More the selected level is more high, the difficulty increases and

more the possibilities of gaining decreases. There is a direct correspondence between each one of
the levels and the size of the exploration tree generated by the algorithm MiniMAx . The easy
level corresponds to a tree of depth 2, the mean level with 4, the difficult level with 6 and the very
difficult level with 8. We used a parameter which is used as coefficient. In our case this parameter
is worth 2. We obtain levels of depth 2,4, 6 and 8. It can be changed, for example into 3, and in
this case one obtains depths 3, 6, 9 and 12. However, it should not be forgotten that the number of
nodes generated by the algorithm believes in an exponential way in each increase of a unit of level.
For level 8, with 6 branches(game with 6 holes), the complete tree contains more than two billion
nodes. For reason of response time of the machine, we decided not to go beyond. With eight levels,
we obtain an acceptable response time.

4.6 Comparison MiniMax and our algorithm

We measure the number of nodes generated by the exploration tree, instead of time, because, in
this way, we will obtain a measurement which is always independent on the computer which serves
the tests. For the algorithm without pruning alphabeta, the number of generated nodes is equal

", 6% We tested with various states of the apron and various levels. The computed value is
the number of nodes generated on average. To measure the improvement, we give the percentage
of nodes generated by our algorithm compared to the traditional one. The improvement is very
considerable especially with regard to the highest levels.

Level | traditional Minimax | Our algorithm | Percentage
2 43 17,2 40%

4 1555 226,4 15%

6 55987 3402,7 6%

8 2015539 44471,1 2%

5 Conclusion

We used a universal algorithm, the MiniMax, that one uses for the games with two players. It is a
question of creating a tree of a limited depth containing all possible blows for this depth. In exploring
the tree, the machine can decide its next movement. The computing time to generate this tree posed
a serious problem. To reduce this computing time we implemented a more efficiency version of this
algorithm. We limited ourselves to the presentation of our MiniMax algorithm without speaking
about various implemented strategies.

References

1] E. Rich Intelligence Artificial. Ed. Masson 1987

2| J.P. Delahaye. Outils logiques pour lintelligence artificielle. Ed Eyrolles 1988

[1]

2]

[3] Bruce Eckel. Thinking in Java. Printice Hall Inc. 1988

[4] M. Fowler.Refactoring :Improving the Design of Ezxisting Code Addison-Wesley Sept 2000
[5]

5] J.L. Lauriere. Intelligence Artificielle. Résolution de problémes par ’homme et la machine. Ed
Eyrolles 1987.

