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Abstract: In the context of synthetic aperture radar (SAR) image processing a crucial
problem is represented by the need to develop accurate models for the statistics of the pixel
intensities. In the current research report, we address the problem of parametric proba-
bility density function (pdf) estimation for modeling the amplitude distribution for high
resolution SAR images. Hitherto, several theoretical and heuristic models for the pdfs of
SAR data have been proposed in the literature, most of them being highly e�ective for
some particular land-cover typologies. Thus, given some SAR image with no prior infor-
mation about the typology, the choice of a single optimal SAR parametric pdf becomes a
hard task. In this report, we develop an estimation algorithm addressing the problem of
pdf selection by adopting a �nite mixture model (FMM) for the amplitude pdf, by mixing
components belonging to a given dictionary of SAR-speci�c pdfs. The proposed method
automatically integrates the procedures of selection of the optimal model for each compo-
nent, of parameter estimation, along with the optimization of the number of components,
by combining the Stochastic Expectation Maximization (SEM) iterative methodology and
the recently proposed �method-of-log-cumulants� (MoLC) for parametric pdf estimation for
non-negative random variables. Experimental results on several real COSMO-SkyMed and
RAMSES sensor images are presented, showing the capabilities of the proposed method to
accurately model the statistics of SAR amplitude data.
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Modélisation des statistiques des images radar (RSO)
haute résolution

Résumé : En télédétection, un problème vital est le besoin de développer des modèles précis
pour représenter les statistiques des intensités des images. Dans ce rapport de recherche,
nous traitons le problème d'estimation de la densité de probabilité pour la modélisation
d'amplitude d'une image haute résolution de type Radar à Synthèse d'Ouverture (RSO).
Précédemment, plusieurs modèles théoriques et heuristiques ont été ultilisés pour représenter
l'amplitude d'un signal du type RSO et ils ont montré leur e�cacité pour certains types
d'occupation du sol, rendant ainsi di�cile le choix d'un seul modèle de densité de probabilité
paramétrique.

Dans ce rapport de recherche, nous introduisons un algorithme d'estimation fondé sur un
modèle de mélange �ni de densités de probabilité d'amplitude dont les composantes appar-
tiennent à un dictionnaire spéci�que. La mèthode proposée intègre, de façon automatique:
les procédures de sélection d'un modèle optimal pour chaque composante, l'estimation des
paramètres, l'optimisation du nombre de composantes. Pour ce faire, nous utilisons simulta-
nément l'algorithme EM stochastique et la méthode des log-cumulants en vue de l'estimation
de la densité de probabilité paramétrique. Des résultats expérimentaux sur plusieurs images
RSO réelles (issues des capteurs COSMO-SkyMed et RAMSES) sont présentés montrant
que la méthode proposée est su�samment précise pour modéliser des statistiques d'images
d'amplitude RSO.

Mots-clés : image radar à synthèse d'ouverture (RSO), densité de probabilité, estimation
paramétrique, modèles de mélange �ni, EM stochastique (SEM).
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1 Introduction

Synthetic aperture radar (SAR) is an active imagery system that can be operational re-
gardless of the weather conditions and time of the day. SAR images are becoming widely
used nowadays in various applications, e.g. in �ood/�re monitoring, agriculture assessment,
urban mapping. Modern SAR systems are often capable of providing very high resolution
images (above 50 cm of land resolution). In the context of remotely sensed data analysis,
a crucial problem is represented by the need to develop accurate models for the statistics
of the pixel intensities. Focusing on Synthetic Aperture Radar (SAR) [10][11][40][47] data,
this modeling process turns out to be a crucial task, for instance, for classi�cation [15] or
for denoising [40].

In this research report, we address the problem of probability distribution function (pdf)
estimation in the context of SAR amplitude data analysis. Speci�cally, several di�erent
theoretic and heuristic models for the pdfs of SAR data have been proposed in the literature,
and have proved to be e�ective for speci�c land-cover typologies. We further present the
overview of the existing models.

Due to the variety of parametric pdf families each of them being e�cient for some speci�c
type of landcover the choice of a single optimal SAR amplitude pdf becomes a hard task.
A remotely sensed image, in general, can depict a varied scene, jointly presenting several
distinct land cover typologies. In addition, we aim to work with high resolution data that
is likely to present additional complications in form of more complex histograms.

In this report, an innovative SAR amplitude parametric estimation algorithm is proposed,
which addresses these problems by adopting a �nite mixture model (FMM) [45][46] for the
amplitude pdf, i.e., by postulating the unknown amplitude pdf to be a linear combination
of parametric components, each one corresponding to a speci�c land cover type [13][44]. In
order to take explicitly into account the possible di�erences in the statistics of the mixture
components, we avoid choosing a priori a speci�c parametric family for each component,
but we allow each of them to belong to a given dictionary of SAR-speci�c pdfs. The method
extends to high resolution SAR an e�ective technique developed for lower resolution [34].

Speci�cally, the proposed algorithm automatically integrates the procedures of selec-
tion of the optimal model for each component and of parameter estimation, by combin-
ing the stochastic expectation Maximization (SEM) algorithm [4][8][30] and the method-of-
log-cumulants (MoLC) [38][39]. The former is a stochastic iterative parametric estimation
methodology, dealing with problems of data incompleteness and developed as an improve-
ment of the standard expectation-maximization (EM) algorithm [14][45], in order to increase
its capability to compute maximum likelihood (ML) estimates [53]. MoLC [38] is a recently
proposed estimation approach originating from the adoption of the Mellin transform [49] (in-
stead of the usual Fourier transform) in the computation of characteristic functions, and from
the corresponding generalization of the concepts of moment and of cumulant [43]. We adopt
this method both for its good estimation properties [37][38][51] and because it turns out to
be feasible and fast for all the parametric families in the dictionary [35][37]. On the contrary,
the well-known ML and it method-of-moments (MoM) estimation strategies [25][38] involve
numerical di�culties for several of parametric families from the dictionary [35][38][40]. Ad-

INRIA



Modeling the statistics of high resolution SAR images 5

ditionally, the developed method automatically performs an optimal choice of the number
K of mixture components, by allowing K to decrease during the iterative process in order
to �nd the best estimate, starting from initial upper bound value.

The proposed parametric approach is validated using an image acquired by the RAMSES
airborne sensor and several real COSMO-SkyMed images. The experimental results show
the developed algorithm to accurately model the amplitude distribution of all the consid-
ered images, both from a qualitative viewpoint (i.e., visual comparison between the data
histogram and the estimated pdf) and from a quantitative viewpoint (i.e., correlation coef-
�cient, Kolmogorov-Smirnov distance between the data histogram and the estimated pdf),
thus showing its e�ectiveness and �exibility.

The research report is organized as follows. In Section 2 we present the state of the art
overview of the existing SAR-speci�c pdf models. In Section 3, the proposed FMM-based
estimation scheme is presented and the SEM and the MoLC methods are described. Section
4 reports the results of the application of the proposed approach to the statistical modeling
of the grey-level of several real SAR images, showing the method to �t the amplitude distri-
bution more e�cient than previously proposed parametric models for SAR amplitude data.
Finally, conclusions are drawn in Section 5.

RR n° 6722
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2 Overview of the SAR-speci�c pdf models

In this section, we present an overview of the parametric models proposed for modeling
SAR statistics. The list of models would not be exhaustive: we will only present the main
statistical families; some other models, based on or with similar properties to more basic
ones have been deduced. For the application purposes most of the models will be endowed
with the method-of-log-cumulants (MoLC) equations [52], a recently proposed scheme for
parametric estimation.

Looking from the methodological point of view, for the task of estimation one can ap-
ply either parametric or nonparametric strategies. A parametric approach postulates a
prede�ned mathematical model in the form of the probability density function (pdf) and
presents the estimation problem as a parameter estimation problem. Several classical sta-
tistical schemes are usually applied to deal with parameter estimation; these are, e.g., the
maximum-likelihood methodology (ML) [40] and the method of moments (MoM) [40]. Non-
parametric pdf estimation approaches on the other hand do not assume any speci�c form for
the unknown pdf, thus providing a higher �exibility, although usually involving an additional
�ne tuning to be done manually by the user [15]. In particular, several nonparametric kernel-
based estimation and regression schemes have been described in the literature, that have
been proven to be e�ective estimation tools, such as, for instance, standard Parzen window
estimators [15], arti�cial neural networks [5] [7] and support vector machines [29] [54].

This section will be organized as follows: �rst we describe the construction of the most
basic theoretical model, then we present several heuristic models and, �nally, we go to the
class of theoretical, or better to say theoretically based, SAR statistical models.

A standard model of the complex signal statistics for the case of singlelook SAR is
derived as follows: the signal is backscattered by a given ground area, being illuminated by a
singlelook SAR sensor; we also assume that the number of scatterers is large, the scatterers
are independent and small (compared to the ground area), the scattering instantaneous
phases are independent of the amplitudes and uniformly distributed in [0, 2π], and there
is no single scatterer dominating the scene [40] [25]. We denote by z the complex signal
received by the SAR sensor from the ground area corresponding to a given pixel, so that:

z = x+ iy =
√
v exp(iθ),

where x, y, v and θ are the real part, the imaginary part, the intensity, and the phase
of the complex signal, respectively. The model assumes the presence of a �nite set of n
independent scattering entities in the observed area, thus interpreting z as the result of the
interference of the corresponding contributions. This interference phenomenon motivates
the usual noise-like granular aspect of SAR images, known as speckle [40]. In particular,
assuming the number of scatterers to be large, according to the central limit theorem, the
real and imaginary parts of the backscattered signal are assumed to be jointly Gaussian.
As a matter of fact they turn out to be independent, zero-mean Gaussian random variables
with equal variances, thus yielding an exponential distribution for the signal intensity and
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a Rayleigh distribution for the signal amplitude (we call r =
√
v the amplitude) [40]:

p(v) = λ exp(−λv)

p(r) = 2λr exp(−λr2),

where λ is a distribution parameter to be estimated according to the image data by using,
for example, ML or MoM. Here r, v > 0, their pdfs are zero on (−∞, 0) and from now on
we shall explicitly de�ne their pdfs only on [0,+∞). However, real SAR amplitude data
often present signi�cantly non-Rayleigh empirical distributions by, for instance, exhibiting
heavier distribution tails and, thus, requiring a more accurate pdf characterization.

2.1 Heuristic models

Several heuristic models have been proposed in order to overcome the descriptive weakness
of Rayleigh distribution in some cases. The log normal and Weibull, the two-parametric
distributions, have shown good results in particular cases. For instance, the amplitude
of low-resolution sea clutter has been �tted to the one-parameter Rayleigh distribution,
corresponding to pure speckle, while the log normal has been applied at a higher resolution.
A wide range of ocean measurements at di�erent resolutions were shown to be consistent with
the Weibull distribution. Land clutter was found to be Rayleigh distributed over uniform
region, but log normal over built-up areas. The Weibull distribution has also been applied
extensively to land and sea-ice clutter [40].

The log normal distribution is given by:

p(x) =
1

x
√

2πV
exp

[
− (lnx− β)2

2V

]
,

where β and V are the mean and the variance of lnx respectively; here x can stand for
either v or r. Its MoLC equations are written as follows:{

κ1 = β

κ2 = V,

where κ1 and κ2 are the �rst and the second log-cumalants respectively as de�ned in [52].
The log normal distribution predicts zero probability of the observable having a zero value,
thus being far from the ideal representation of a single-look intensity speckle.

The Weibull distribution is given by:

p(x) =
cxc−1

bc
exp

[
−
(x
b

)c]
,

where b is a scaling parameter and c controls the shape. Its MoLC equations are:{
κ1 = ln b+ Ψ(1)c−1

κ2 = Ψ(1, 1)c−2.

RR n° 6722



8 V. Krylov, G. Moser, S. Serpico, J. Zerubia

Here Ψ(·) is the digamma function [6] and Ψ(ν, ·) is the νth order polygamma function [6].
The Weibull distribution is identical to the Rayleigh pdf if c = 2 and becomes negative ex-
ponential when c = 1. Thus, it can describe single-look speckle precisely for both amplitude
and intensity. Unfortunately, it lacks the ability to represent multilook speckle correctly.

A further empirical model, the Fisher distribution [52], has shown very good application
results, thanks to its capability to model a big variety of distribution tails. The distribution
is given by:

p(x) =
Γ(L+M)
Γ(L)Γ(M)

L

Mµ

(
Lx
Mµ

)L−1

(
1 + Lx

Mµ

)L+M
,

with L,M > 0 - the degrees of freedom parameters. Up to this moment, Fisher distribution
has not been theoretically proven to have relation to the physics of wave scattering. But
it has been shown that it has a natural relationship to multiplicative noise by the bias of
Mellin transform and second-kind statistics [52].

The MoLC equations for the Fisher pdf are given by:
κ1 = lnµ+ (Ψ(L) − lnL) − (Ψ(M) − lnM)
κ2 = Ψ(1, L) + Ψ(1,M)
κ3 = Ψ(2, L) − Ψ(2,M).

In a recent work [28] the so-called Generalized Gamma distribution (GΓD) was pro-
posed as an empirical statistical model for SAR images. The GΓD is de�ned by:

p(x) =
ν

σΓ(κ)

(x
σ

)κν−1

exp
{
−
(x
σ

)ν}
,

where ν, κ and σ are the positive real values corresponding to power, shape and scale
parameters respectively, and Γ(·) denotes the Gamma function. The GΓD contains a large
variety of distributions, including the Rayleigh (ν = 2, κ = 1), exponential (ν = 1, κ = 1),
Nakagami (ν = 2), Gamma (ν = 1), log-normal (κ→ ∞) and Weibull (κ = 1).

The MoLC equations for the GΓD are as follows:
κ1 = Ψ(κ)/ν + lnσ

κ2 = Ψ(1, κ)/ν2

κ3 = Ψ(2, κ)/ν3.

As a generalization of some of the mentioned distributions, GΓD demonstrated a better
�tting of data as compared to Weibull, Nakagami and K-distribution (see below) on a
number of SAR images [28].

2.2 Theoretical models

Several theoretical models have also been proposed in order to enhance the descriptive
quality or to generalize the most basic Rayleigh model to di�erent typologies of radar data.

INRIA



Modeling the statistics of high resolution SAR images 9

The �rst one, the Nakagami-Gamma distribution has been proposed to model the SAR
statistics in the presence of a single strong re�ector in a homogeneous clutter [52]. The
Gamma distribution has been introduced as a model for a multilook SAR intensity pdf:

p(v) =
(λL)L

Γ(L)
vL−1 exp(−λLv).

This model generalizes the exponential distribution of intensities by averaging L single-look
exponential distributions [40]. The corresponding amplitude takes the form of the Nakagami
distribution [52]:

p(r) =
2(λL)L

Γ(L)
r2L−1 exp(−λLr2).

The MoLC equations for the Nakagami distribution are:{
2κ1 = − lnλ+ Ψ(L) − lnL
4κ2 = Ψ(1, L).

The Nakagami-Gamma model has also been extended to the case of multilook polarimetric
and interferometric data [21] [22] [27] and to �nite mixtures of Gamma components [39]; its
application has been generalized by letting the integer number L of looks be a real positive
parameter (interpreted as an equivalent number of looks (ENL)) to be estimated together
with λ according to the image data.

In [25], a generalized version of the central limit theorem is applied in order to extend
the standard scattering model by allowing the real and imaginary parts of the backscattered
signal to be jointly symmetrically α-stable (SαS) distributed random variables [26], thus
resulting in the following generalized heavy-tailed Rayleigh model for the amplitude pdf:

p(r) = r

∫ +∞

0

ρ exp(−γρα)J0(rρ)dρ,

where α and γ are positive parameters and J0 is the zeroth order Bessel function of the �rst
kind [6]. The MoLC equations for the SαS model are:{

ακ1 = Ψ(1)(α− 1) + α ln 2 + ln γ

κ2 = Ψ(1, 1)α−2.

A di�erent approach to SAR scattering modeling is proposed in [20] by assuming the
number n of scatterers to be in itself a random variable and the population of scatterers to
be controlled by a birth-death migration process. In this case, a K distribution is obtained
for the signal intensity [20] [41]:

p(v) =
2(λLM)(L+M)/2

Γ(L)Γ(M)
v(L+M−2)/2KM−L

[
2(λLM)1/2

]
,

RR n° 6722



10 V. Krylov, G. Moser, S. Serpico, J. Zerubia

where λ, L and M are positive distribution parameters, and Kτ (·), τ > 0 is the τth order
modi�ed Bessel function of the second kind [6]. The corresponding amplitude distribution
(we refer to it as K-root distribution) is given by:

p(r) =
4(λLM)(L+M)/2

Γ(L)Γ(M)
rL+M−1KM−L

[
2r(λLM)1/2

]
.

The MoLC equations for K-root are given by:
2κ1 = − lnλ+ Ψ(L) − lnL+ Ψ(M) − lnM
4κ2 = Ψ(1, L) + Ψ(1,M)
8κ3 = Ψ(2, L) + Ψ(2,M).

The same pdf can be obtained by assuming a multiplicative noise model for the SAR intensity
by expressing v as the product of two Gamma-distributed components representing a signal
and a noise contribution, respectively [40]. Further extensions of the backscattering modeling
approach assuming n as a random variable are proposed in [13] [42] [57] [17]. MoM turns
out to be feasible for the parameter estimation task concerning a K-distributed random
variable, whereas no closed form is currently available for ML parameter estimation, thus
requiring intensive numerical computations or analytical approximations of the pdf itself.

Inverse Gaussian (IG) distributions have also been employed to model the amplitude
statistics [17] [36] [16]. A multiplicative model is adopted in [17], assuming a Nakagami dis-
tribution for the speckle noise component and a generalized inverse Gaussian (GIG) law for
the signal component, thus resulting in the following distribution (named G distribution)
for the amplitude return:

p(r) =
2LL

(
λ
γ

)α/2

Γ(L)Kα(2
√
λγ)

r2L−1

(
γ + Lr2

λ

)(α−L)/2

Kα−L

[
2
√
λ(γ + Lr2)

]
,

where L is the ENL of the Nakagami speckle distribution, and α, λ, and γ are the parame-
ters characterizing the GIG signal distribution. Such a general model includes, as particular
cases, the square root of K described above and the G0 distribution, which is derived in [17]
with a moment-based parameter estimation algorithm and is successfully applied to the
statistics of SAR amplitude data over extremely heterogeneous areas. In [52], the G0 dis-
tribution is proved to be equivalent to a Fisher pdf and is applied to the characterization
of the statistics of high-resolution SAR imagery over urban areas. A further particular case
of the G model (named the harmonic branch Gh) is proposed in [36] and endowed with a
moment-based estimation approach to images of urban areas and mixed terrain. In [16], a
normal IG distribution is proposed for the real and imaginary parts of the backscattered
complex signal, thus resulting in an amplitude pdf formulated as a combination of an IG
pdf and a Rice pdf:

p(r) =

√
2
πα

3/2δ exp
(
δ
√
α2 − β2

)
r

(δ2 + r2)3/4
K3/2

(
α
√
δ2 + r2

)
I0(βr),

INRIA



Modeling the statistics of high resolution SAR images 11

where α, β and δ are the distribution parameters, and Io(·) is the zeroth order modi�ed
Bessel function of the �rst kind. For this Rician inverse Gaussian (RiIG) pdf, a case-speci�c
iterative parameter estimation algorithm is developed in [16].

In the recent Generalized Gaussian Rayleigh Model, the theoretical circular Gaus-
sian speckle model is generalized, on a phenomenological basis, by assuming the real and
imaginary parts of the backscattered signal to be independent zero-mean generalized Gaus-
sian (GG) [35] random variables and by deriving the resulting amplitude pdf analytically.
The resulting model is given by:

p(r) =
γ2c2r

Γ2
(

1
c

) ∫ π/2

0

exp[−(γr)c(| cos θ|c + | sin θ|c)]dθ ,

where c, γ > 0 are the distribution parameters. The MoLC equations for this model are:{
κ1 = λΨ(2λ) − ln γ − λG1(λ)[G0(λ)]−1

κ2 = λ2Ψ(1, 2λ) + λ2G2(λ)[G0(λ)]−1 − λ2[G1(λ)]2[G0(λ)]−2,

where λ = 1
c and Gν(·) is the integral function introduced in [41] for GGR parametric

estimation. The application has shown accurate results of the GG model for images acquired
by di�erent SAR sensors at medium resolution with various types of scenes. The applicability
of this model was also shown to be complementary to those of the K-root. Some results
were also achieved in the application to the multilook images, although such images were
not explicitly addressed in the methodology of this model [35].

We stress here that for all the models above provided with MoLC-equations except for
GGR and K-root the equations have the unique solution for whatever the sample estimates
of log-moments are. For GGR and K-root some combinations of sample estimates may lead
to no solutions of MoLC-equations ([20], [35]).

RR n° 6722



12 V. Krylov, G. Moser, S. Serpico, J. Zerubia

3 A dictionary-based �nite mixture model for SAR data
pdf estimation

3.1 Finite mixture models for SAR amplitude data

In order to take explicitly into account the possible presence in a given SAR amplitude [40]
image I of several distinct land-cover typologies, yielding di�erent contributions to the
statistics of the pixel intensity, we assume a �nite mixture model (FMM) [45][46] for the
grey level pdf. Speci�cally, we model the SAR image as a set I = {r1, r2, . . . , rN} of
independent and identically distributed (i.i.d.) samples drawn according to the following
pdf1:

pr(r|θ) =
K∑

i=1

Pipi(r|θi), r ≥ 0, (1)

where pi(·|·) : [0,+∞) × Θi → [0,+∞) is a probability density function depending on a
vector θi of parameters, taking values in a set Θi ⊂ Rℓi (i = 1, 2, . . . ,K), {P1, P2, . . . , PK}
is a set of mixing proportions such that:

K∑
i=1

Pi = 1, 0 ≤ Pi ≤ 1, i = 1, 2, . . . ,K, (2)

and θ is a vector collecting all the parameters of the distribution, i.e.:

θ = (θ1, θ2, . . . , θK ;P1, P2, . . . , PK). (3)

Denoting as Θ the set of possible parameter vectors, i.e.:

Θ = Θ1 × Θ2 × . . .× ΘK ×

{
P ∈ [0, 1]K :

K∑
i=1

Pi = 1

}
, (4)

the problem of FMM parametric estimation, i.e., the computation of a parameter vector
θ∗ ∈ Θ optimally representing the observed image data I, has been addressed according to
several di�erent approaches [45][46]. Speci�cally, the i.i.d. assumption allows obtaining the
following expression for the log-likelihood function [53] of the image data I [45][46]:

LI(θ) =
N∑

k=1

ln pr(rk|θ) =
N∑

k=1

ln

[
K∑

i=1

Pipi(rk|θi)

]
, θ ∈ Θ. (5)

The computation of Maximum Likelihood (ML) estimates involves the maximization of this
function, but the solution of this maximization problem is not feasible analytically [46] and

1 This approach is widely accepted in the context of estimation theory [15][18][53] and operatively corre-
sponds to discard in the estimation process the contextual information associated to the correlation between
neighboring pixels in the image, thus exploiting only the greylevel information.
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Modeling the statistics of high resolution SAR images 13

also involves several numerical di�culties, due, for instance, to the common phenomenon of
presence of several local maxima [45]. In order to get round this problems in the compu-
tation of ML estimates, the use of the Expectation-Maximization (EM) algorithm has been
proposed [14][32][45], which formalizes the problem of the estimation of the parameters of
a FMM as an incomplete data problem and introduces a sequence {θt}∞t=0 of parameter
estimates, iteratively maximizing a Pseudo-Likelihood function, i.e. [14][45]:

θt+1 = arg max
θ∈Θ

QI(θ|θt) (6)

where

QI(θ|θt) =
N∑

k=1

K∑
i=1

τ t
ik[lnPi + ln pi(rk|θi)], τ t

ik =
P t

i pi(rk|θt
i)

pr(rk|θt)
, θ ∈ Θ. (7)

In the context of mixture densities EM has been proved to converge to a stationary
point of the log-likelihood function LI(·) [14][45][56], although not converging, in general,
to a global maximum point, and exhibiting sometimes long convergence times [8][46]. In
addition, the maximization problem (6), although analytically tractable in several applica-
tions [32] (e.g.: mixtures of exponential families [45]), does not always yield a closed form
solution, and moreover the convergence point can belong to the boundary of the param-
eter space Θ, thus possibly involving analytical singularities [46]. Several variants of EM
have been introduced in order to address these di�culties. In [19], [24], and [50] modi�ed
versions of EM, as well as regularized covariance estimators, are proposed in order to opti-
mize the robustness of the estimation process in the context of Gaussian Mixtures Models
(GMMs) for hyperspectral data classi�cation. A simpli�ed version of EM, named Classi�-
cation EM (CEM) [4], has been developed, which converges in a �nite number of iterations,
but yields, in general, biased parameter estimates. A sequential version of EM, namely, the
"Component-wise EM for mixtures" (CEM2), is proposed in [9], which aims at a reduction
in the computation time and also at avoiding analytical singularities [46]. The Stochastic
EM (SEM) [8] avoids the computation of the Pseudo-Likelihood function QI(·|·) and the
related analytical maximization issues, by integrating a stochastic sampling procedure in
the estimation process. Hence, the sequence of parameter estimates generated by SEM is a
discrete time random process, which does not converge pointwise, but has been proved to
be an ergodic and homogeneous Markov chain, converging to a unique stationary distribu-
tion, which is expected to be concentrated around the global maxima of the log-likelihood
function [8]. Simulated Annealing EM (SAEM) [8] is a combination of EM and SEM al-
lowing SEM to converge also almost surely (a.s.) [43][55], although at a local maximum
and requiring the preliminary de�nition of a suitable annealing schedule. Monte Carlo EM
(MCEM) and Simulated Annealing Monte Carlo EM (SA-MCEM) are further stochastic
variants of EM substituting a Monte Carlo sampling procedure to the computation of the
QI(·|·) function and a.s. converging, under mild assumptions, to a local maximum [8].
In [12] the Iterated Conditional Expectation (ICE) method is used, as an alternative to
EM and SEM, in the FMM estimation for image segmentation and clustering purposes and
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14 V. Krylov, G. Moser, S. Serpico, J. Zerubia

in [46] the Minimum Message Length (MML) principle is applied in order to formulate a
FMM unsupervised parametric estimator, aiming at avoiding convergence to the boundary
of the parameter space, as well as to improve, with respect to EM, robustness with respect
to initialization, but still involving the maximization problem (see Eq. 6).

We will adopt here the SEM algorithm, both due to its capability to avoid local maxima of
the log-likelihood function and thanks to its independence from the analytical maximization
process in Eq. (6). In fact, the adoption of several of the usual SAR amplitude or intensity
parametric models (such as Weibull or K) for the mixture components yields no closed form
solution for this optimization problem, thus strongly complicating the application of most
above-mentioned estimators.

3.2 SEM for FMM parametric density estimation

A general parametric density estimation problem assumes the availability of an observation
random vector x ∈ X ⊂ Rn, whose density function px(·|·) : X × Θ → [0,+∞) depends on
a parameter vector taking values in a given set Θ ⊂ Rℓ (namely, the parameter space).

This general problem is said to present data incompleteness when the data vector x
cannot be directly observed, for instance, due to lacking or corrupted data [32]. Such
incompleteness issues is formalized by assuming the �complete� data vector x not to be
available, but to be observed only through an �incomplete� data vector y = Φ(x), obtained
through a many-to-one mapping Φ : X → Y ⊂ Rm [14]. Hence, a given realization y ∈ Y
of the incomplete data may have been generated by any realization x ∈ Φ−1(y) ⊂ X in
the inverse image Φ−1(y) of y, thus not allowing, for instance, a direct feasible computation
of an ML estimate. SEM tries to avoid these di�culties by iteratively random sampling a
complete data set and by using it to compute a ML standard estimate.

Speci�cally, we denote as py(·|·) : Y × Θ → [0,+∞) the parametric incomplete data
density function2 and as px|y(·|y, ·) : Φ−1(y) × Θ → [0,+∞) the complete data parametric
density conditioned to an incomplete data realization y ∈ Y , and we state that [14][8][33]:

py(y|θ) =
∫

Φ−1(y)

px(x|θ)dζy(x), θ ∈ Θ, (8)

px|y(x|y, θ) =
px(x|θ)
py(y|θ)

, x ∈ Φ−1(y), θ ∈ Θ, (9)

where ζy is a suitable measure3 on Φ−1(y).
Given an observed incomplete data realization y ∈ Y , SEM computes a random sequence

{θt}∞t=0, by performing at the t-th iteration (t = 0, 1, . . .) the following three processing
steps [8]:

2As with x, this is the density function of the random vector y with respect to a suitable σ-�nite measure
space (Y,Y, η) introduced on Y .

3More speci�cally, a σ-�nite measure space (Φ−1(y),Zy , ζy) is introduced on the inverse image Φ−1(y) of
y ∈ Y , such that the restriction of px(·|θ) to Φ−1(y) is Zy-measurable for all θ ∈ Θ. This allows introducing
the model described by Eq. (8) for the incomplete data density, which yields the expression (9) for the
conditional complete data one [14][33][45].
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Modeling the statistics of high resolution SAR images 15

� E-step: compute the conditional complete data density px|y(·|y, θt) corresponding to
the current parameter estimate θt ∈ Θ;

� S-step: sample a complete data realization xt ∈ X according to the conditional
density computed in the E-step;

� M-step: update the parameter estimate, by computing a standard ML estimate θt+1 ∈
Θ according to the complete data realization xt sampled in the S-step.

As previously stated, the resulting discrete time random process {θt}∞t=0 is not point-
wise nor a.s. convergent, but has been proven to be a homogeneous Markov chain. If this
sequence turns out to be also ergodic, it converges in distribution to the unique stationary
distribution of the Markov chain and is expected to concentrate around the global maxima
of the likelihood function [8].

The FMM case satis�es this ergodicity assumption [8], thus suggesting SEM as a promis-
ing estimation tool. The speci�c FMM framework can be viewed as a�ected by data incom-
pleteness problems, since it is not known from which of the K available statistical popu-
lations involved in Eq. (1) a given image sample is drawn. This implicitly means that no
training information about the possible thematic classes in the SAR image is exploited in
the estimation process, i.e., the SAR amplitude pdf estimation problem is addressed in an
unsupervised context. Thus, denoting as Σ = {σ1, σ2, . . . , σK} the set of the K di�erent
populations, we assume the population label sk ∈ Σ of the k-th image pixel not to be known,
thus suggesting the following de�nition of the complete and of the incomplete data vectors,
respectively:

x = (r1, s1, r2, s2, . . . , rN , sN ), y = (r1, r2, . . . , rN ). (10)

Assuming the couples {(rk, sk) : k = 1, 2, . . . , N} of random variables to be i.i.d., we
denote as pr|s, Ps, Ps|r, and prs the parametric pdf of rk conditioned to sk, the parametric
probability mass function (PMF) of sk (i.e., the label prior probability), the parametric
PMF of sk conditioned to rk (i.e., the label posterior probability), and the parametric joint
density of (rk, sk), respectively (k = 1, 2, . . . , N). Hence [33][45]:

Ps(σi|θ) = Pi, pr|s(rk|σi, θ) = pi(rk|θi), θ ∈ Θ, i = 1, 2, . . . ,K, k = 1, 2, . . . , N, (11)

prs(rk, sk|θ) = pr|s(rk|sk, θ)Ps(sk|θ), θ ∈ Θ, k = 1, 2, . . . , N. (12)

The i.i.d. assumption allows obtaining the following expressions for the density functions
of the incomplete and of the complete data vectors, respectively:

py(y|θ) =
N∏

k=1

pr(rk|θ), px(x|θ) =
N∏

k=1

prs(rk, sk|θ) =
N∏

k=1

pr|s(rk|sk, θ)Ps(sk|θ), (13)

px|y(x|y, θ) =
px(x|θ)
py(y|θ)

=
N∏

k=1

pr|s(rk|sk, θ)
Ps(sk|θ)
pr(rk|θ)

=
N∏

k=1

Ps|r(sk|rk, θ) (14)
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16 V. Krylov, G. Moser, S. Serpico, J. Zerubia

Therefore, the t-th iteration of the SEM algorithm in the present FMM context involves
the following operations (t = 0, 1, . . .):

� E-step: compute the values of the posterior probabilities corresponding to the current
parameter estimate θt ∈ Θ, i.e. (k = 1, 2, . . . , N, i = 1, 2, . . . ,K):

Ps|r(σi|rk, θt) = pr|s(rk|σi, θ
t)
Ps(σi|θt)
pr(rk|θt)

=
P t

i pi(rk|θt
i)

pr(rk|θt)
= τ t

ik; (15)

� S-step: sample randomly a complete data realization xt, by sampling a label st
k for

each k-th pixel according to the current estimated posterior probability distribution
{τ t

ik : i = 1, 2, . . . ,K} of the pixel (k = 1, 2, . . . , N), thus implicitly partitioning the
image I in K subsets;

� M-step: update the parameter estimates, by computing, according to the partition
generated by the S-step, a standard supervised ML estimate θt+1 ∈ Θ, i.e.4:

P t+1
i =

|Qit|
N

, θt+1
i = arg max

ϕ∈Θi

∑
k∈Qit

ln pi(rk|ϕ), i = 1, 2, . . . ,K, (16)

where Qit = {k : st
k = σi} is the index set of the image samples assigned to the

component σi (i = 1, 2, . . . ,K).

A common initialization procedure for the described iterative process consists of set-
ting initially a uniform posterior distribution for all image pixels, but in order to provide
the iterative process with a more reasonable starting point (thus avoiding time consuming
burn-in iterations) we take into consideration the form of the amplitude histogram. Fur-
thermore, since SEM is not pointwise or a.s. convergent, a speci�c termination procedure
has to be de�ned in order to extract from the stationary steady distribution of the random
sequence {θt}∞t=0 a single parameter estimate θ∗. Several strategies have been proposed to
this purpose, for instance, in [4] and in [8].

3.3 The �dictionary� approach to SAR amplitude pdf estimation

The application of the FMM model described by Eq. (1) requires the de�nition of suitable
parametric models for the mixture components. However, as described in Section 2, in the
present SAR-speci�c context several parametric models have been proposed and proved to
be e�ective descriptions of the statistics of the pixel intensities corresponding to di�erent
land cover typologies. In order to overcome the intrinsic di�culty of an a priori choice
of a single suitable model and to improve the �exibility of the adopted FMM approach,
we avoid selecting a speci�c parametric family for each component pi(·|·) (i = 1, 2, . . . ,K),
and we adopt instead a �nite dictionary D = {f1, f2, . . . , fM} of M SAR-speci�c distinct

4Given a �nite set A, we denote by |A| the cardinality (i.e., the number of elements) of A.
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Modeling the statistics of high resolution SAR images 17

parametric pdfs fj(·|·) : [0,+∞) × Ξj → [0,+∞) (j = 1, 2, . . . ,M) with parameter spaces
Ξj (j = 1, 2, . . . ,M). In [12] a similar approach was proposed, which applied EM, SEM, and
ICE to a �generalized mixture model� with mixture components not restricted to belong to
a speci�c parametric family, but selected inside the Pearson system of distributions. Here,
dealing with SAR amplitude data pdf estimation, we adopt a dictionary D consisting of the
following eight parametric pdfs:

� Lognormal, the empirical log-normal distribution [40]:

f1(r|m,σ) =
1

σr
√

2π
exp

[
− (ln r −m)2

2σ2

]
, r > 0; (17)

� Weibull, the empirical Weibull distribution [37][40]:

f5(r|η, µ) =
η

µη
rη−1 exp

[
−
(
r

µ

)η]
, r ≥ 0; (18)

� Fisher, the empirical Fisher distribution [52]:

p(r|L,M, µ) =
Γ(L+M)
Γ(L)Γ(M)

L

Mµ

(
Lr
Mµ

)L−1

(
1 + Lr

Mµ

)L+M
, r ≥ 0, (19)

where Γ(·) is the Gamma function [48];

� GGamma, the empirical GΓD distribution [28]:

p(r|ν, σ, κ) =
ν

σΓ(κ)

( r
σ

)κν−1

exp
{
−
( r
σ

)ν}
, r ≥ 0; (20)

� Nakagami, the Nakagami distribution, proposed as an amplitude model for multi-look
SAR data [38][51]:

f2(r|L, µ) =
2

Γ(L)

(
L

µ

)L

r2L−1 exp
(
−Lr

2

µ

)
, r ≥ 0; (21)

� K-root, the amplitude distribution corresponding to a K-distributed intensity [40]
(hereafter denoted simply as �K-root�):

f6(r|L,M, µ) =
4

Γ(L)Γ(M)

(
LM

µ

)(L+M)/2

rL+M−1KM−L

[
2r
(
LM

µ

)1/2
]
, r ≥ 0;

(22)
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� GGD, the generalized Gaussian Rayleigh (GGR) distribution, based on a generalized
Gaussian model for the backscattered SAR signal [35]:

f3(r|λ, γ) =
γ2r

λ2Γ2(λ)

∫ π/2

0

exp[−(γr)1/λ(| cos θ|1/λ + | sin θ|1/λ)]dθ, r ≥ 0; (23)

� HT-Rayleigh, the SαS generalized Rayleigh distribution (hereafter simply denoted as
SαSGR), based on a SαS model for the SAR backscattered signal [25]:

f4(r|α, γ) = r

∫ +∞

0

ρ exp(−γρα)J0(rρ)dρ, r ≥ 0. (24)

Hence, with this speci�c choice, M = 8 distinct parametric families are involved in
the estimation process with 2-parameter families (i.e., Ξj = (0,+∞)2) for j = 1, 2, 5, 7, 8
and a 3-parameter family for j = 3, 4, 6 (i.e., Ξ6 = (0,+∞)3). We do not include the
Rayleigh distribution in the dictionary, since this pdf is a particular case of almost all the
pdfs above [25][28][35][40].

Speci�cally, we integrate this dictionary-based approach in the described SEM estima-
tion framework, by exploiting at each SEM iteration the image partition induced by the
sampling process in order to �t each parametric family in the dictionary to each mixture
component, thus generating a set of M feasible candidate estimates per component. Hence,
an optimality criterion has to be de�ned in order to choose, for each component, the optimal
estimate among the available candidates. Speci�cally denoting as ξt

ij ∈ Ξj the optimal pa-
rameter estimate computed for the j-th parametric model fj(·|ξj) (ξj ∈ Ξj) in the dictionary
according to the data samples assigned to the i-th component σi at the t-th SEM iteration,
we adopt, as a selection criterion for σi, the corresponding log-likelihood, i.e.:

Lt
ij =

∑
k∈Qit

ln fj(rk|ξt
ij), i = 1, 2, . . . ,K, j = 1, 2, . . . ,M. (25)

Hence, the pdf estimate for the component σi is updated as the candidate estimate fj(·|ξt
ij)

yielding the highest value of Lt
ij (i = 1, 2, . . . ,K, j = 1, 2, . . . ,M, t = 0, 1, . . .).

We stress however that the computation at the t-th iteration of the set {ξt
ij : i =

1, 2, . . . ,K, j = 1, 2, . . . ,M} of the optimal parameter vectors according to the M-step of
the SEM algorithm should be performed by using an ML procedure, i.e.:

ξt
ij = arg max

ξ∈Ξj

∑
k∈Qit

ln fj(rk|ξ) (26)

This approach turns out to be unfeasible for several SAR-speci�c pdfs, such as the K distri-
bution [40]. Hence, we avoid using ML estimates and we adopt in the M-step the �method
of log-cumulants� (MoLC) [38] instead, which has been proved to be a feasible and e�ective
estimation tool for all usual SAR parametric models [37][38].
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3.4 Parameter estimation with the Mellin transform and MoLC

The method of log-cumulants (MoLC) has been recently proposed as a parametric pdf esti-
mation technique feasible for distributions de�ned on [0,+∞), and has been explicitly ap-
plied in the context of the usual parametric families employed for SAR amplitude and inten-
sity data modelling (e.g. for the Nakagami-Gamma and the K distributions) [37][38][39][51].
MoLC is based on the generalization of the usual moment-based statistics, by using the
Mellin transform in the computation of characteristic functions and moment generating
functions, instead of the usual Fourier and Laplace transforms.

Given a generic random variable u, the moment generating function (MGF) Φu of u is
de�ned as the bilateral Laplace transform of the pdf of u [43], i.e.:

Φu(s) = L(pu)(s) =
∫ +∞

−∞
pu(u) exp(su)du, s ∈ C, (27)

where L is the bilateral Laplace transform operator5 on the Lebesgue space L1(R) [49]. The
MGF is known to converge and to be analytical at least in a vertical strip of the complex
plane and it turns out to be implicitly related to the MoM estimation approach. In fact,
if the interior of the convergence strip contains a neighborhood of the origin, then the ν-th
order moment (ν = 1, 2, . . .) can be expressed as

mν = E{uν} = Φ(ν)
u (0), (28)

where the superscript denotes a di�erentiation operator [43]. Related quantities are the
characteristic function of u, de�ned as the Fourier transform of the pdf, the second moment
generating function Ψu, de�ned as the complex logarithm of the MGF, and the ν-th order
cumulant kν , de�ned as the ν-th order derivative of the second MGF computed in the origin
of the complex plane:

Ψu(s) = lnΦu(s), kν = Ψ(ν)
u (0). (29)

In particular, the �rst and second order cumulants turn out to be equal to the distribution
mean and variance, respectively [43].

The MoM estimates are actually computed by analytically expressing the moments (or
the cumulants) of the parametric pdf under investigation as functions of the unknown param-
eters, and by estimating the moments as sample-moments, thus formulating the parameter
estimation problem as the solution of a (typically non-linear) system of equations. In [38][39]
this approach is specialized to non-negative random variables (such as SAR amplitude and
intensity), corresponding to pdf de�ned on [0,+∞), by rede�ning MGFs and characteristic
functions as Mellin transforms and resulting in a more feasible estimation.

5Actually, the bilateral Laplace operator would involve the exponential exp(−su) [43], but, in the context
of statistics, the MGF is usually de�ned with the exponential exp(su) as reported in Eq. (27). However, this
slight modi�cation has no signi�cant impact on the analytical properties of the resulting transform. Hence,
hereafter we will refer to the bilateral Laplace transform as de�ned by Eq. (27).
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Thus, given a non-negative random variable u, the second-kind characteristic function
ϕu of u is de�ned as the Mellin transform [49] of the pdf of u, i.e.:

ϕu(s) = M(pu)(s) =
∫ +∞

0

pu(u)us−1du, s ∈ C, (30)

where M is the Mellin transform on L1(0,+∞). Also ϕu is known to converge and to be
analytical in a vertical strip S of the complex plane [38][49]. If the interior of the convergence
strip contains a neighborhood of 1, then the following de�nitions are formulated by analogy
with the Laplace-based case [38]:

� ν-th order second kind moment: µν = ϕ
(ν)
u (1), ν = 1, 2, . . .;

� second kind second characteristic function: ψu(s) = lnϕu(s), s ∈ S;

� ν-th order second kind cumulant: κν = ψ
(ν)
u (1), ν = 1, 2, . . .

The expressions �log-moments� and �log-cumulants� are also employed for the second
kind moments and cumulants, thanks to their relation with the moments of the logarithm
of u, i.e. [38][51]:

µν = E{(lnu)ν}, κ1 = µ1 = E{lnu}, κ2 = Var{lnu}, κ3 = E{(lnu− κ1)3}. (31)

Hence, the estimation method of log-cumulants is based on the analytical calculation of
log-moments and log-cumulants as functions of the unknown parameters and on the inversion
of the resulting equations. Therefore, MoLC estimates are obtained from sample-moments
estimates of the log-moments or of the log-cumulants by solving a system of non-linear
equations.

The MoLC equations for the pdfs comprising our dictionary can be found in Section 2.
The solution of the resulting equations turns out to be feasible and fast for all the considered
distributions. Speci�cally, log-normal does not require a real solution process, since the
parameters of this distributions are exactly the �rst two log-cumulants. SαSGR and Weibull
allow an analytical solution of the corresponding system of two equations. Nakagami, GGR,
GΓD, Fisher and K-root require a numerical solution procedure, but, thanks to the strict
monotonicity properties of the functions involved, this procedure has been proved to be
simple and fast for all the three parametric families [35][37][38][28]. In addition, for several
of the considered models, good estimation properties have been proved theoretically for the
MoLC approach. In particular, the MoLC estimates exhibit a lower variance with respect to
the MoM ones for the Nakagami distribution [38], and are consistent for the GGR one [35].

However, as pointed out in [35], the MoLC equations for GGR and K-root can yield
no solutions for speci�c values of κ̂2 and κ̂3 (the sample estimates of moments kappa2 and
κ3 respectively). In such situations, these parametric families are not compatible with the
empirical data distributions and are not considered in the selection of the optimal model.
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3.5 Overall architecture of the proposed method

Plugging MoLC together with the optimal model selection procedure in the iterative SEM
estimation process, denoting as pt

i(·) and pt(·) the resulting t-th step σi-conditional and
unconditional amplitude pdf estimates, respectively, and formulating SEM explicitly in terms
of the histogram {h(z) : z = 0, 1, . . . , Z − 1} of the image I, we obtain at the t-th iteration
(t = 0, 1, . . .):

� E-step: compute, for any greylevel z and any component σi, the posterior probability
estimates corresponding to the current pdf estimates, i.e. (z = 0, 1, . . . , Z − 1, i =
1, 2, . . . ,K):

τ t
i (z) =

P t
i p

t
i(z)

pt(z)
, where pt(z) =

K∑
i=1

P t
i p

t
i(z); (32)

� S-step: sample the label st(z) of each greylevel z according to the current estimated
posterior probability distribution {τ t

i (z) : i = 1, 2, . . . ,K} (z = 0, 1, . . . , Z − 1);

� MoLC-step: for each mixture component σi, compute the following histogram-based
estimates of the mixture proportion and of the �rst three log-cumulants:

P t+1
i =

∑
z∈Qit

h(z)∑Z−1
z=0 h(z)

, κt
1i =

∑
z∈Qit

h(z) ln z∑
z∈Qit

h(z)
,

κt
2i =

∑
z∈Qit

h(z)(ln z − κt
1i)

2∑
z∈Qit

h(z)
, κt

3i =

∑
z∈Qit

h(z)(ln z − κt
1i)

3∑
z∈Qit

h(z)
, (33)

where Qit = {z : st(z) = σi} is the set of grey levels assigned to the component σi

(i = 1, 2, . . . ,K); then, solve the corresponding MoLC equations for each parametric
family fj(·|ξj) (ξj ∈ Ξj) in the dictionary, thus computing the resulting MoLC estimate
ξt
ij ∈ Ξj(i = 1, 2, . . . ,K, j = 1, 2, . . . ,M);

� MS-step (Model Selection-step): for each mixture component σi, compute the log-
likelihood of each estimated pdf fj(·|ξt

ij) (except, at least, GGR or K-root if the pre-
vious step yielded no solutions for the corresponding MoLC equations) according to
the data assigned to σi:

Lt
ij =

∑
z∈Qit

h(z) ln fj(z|ξt
ij) (34)

and de�ne pt+1
i (·) as the estimated pdf fj(·|ξt

ij) yielding the highest value of Lt
ij (i =

1, 2, . . . ,K, j = 1, 2, . . . ,M).

Thus, the proposed selection of an optimal SAR-speci�c model for each mixture compo-
nent operatively requires the substitution of the usual ML-based M-step with the described
MoLC-step, and the integration in the iterative procedure of a further MS-step, devoted to
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the model selection process. The resulting �dictionary-based� SEM method will be denoted
hereafter simply as DSEM.

Note that, di�erently from the previously described general SEM approach, the adopted
version of SEM, operating directly on the image histogram, implicitly assigns the same pop-
ulation label to all the image pixels presenting the same grey level. This speci�c histogram-
based approach has been adopted in order to reduce the computation time of the proposed
method. Considering, for example, a 1024 × 1024 pixel-sized image with 8 bpp (bit per
pixel), the general SEM approach would involve calculating the posterior probability distri-
bution and sampling a population label for each of the 220 image pixels, whereas the adopted
approach directly deals with only 28 = 256 distinct grey levels. In addition, after computing
the image histogram, the execution time of the adopted strategy is independent of the image
size. Furthermore, we stress that �tting all the eight considered parametric families to each
component does not yield a severe increase in the computation time, with respect to the
usual single-model approach. In fact, the solution of the MoLC equations is very fast for all
the models in the dictionary, thus not involving critical computational issues.

As in the general SEM framework, the resulting sequence of pdf estimates is expected
not to converge pointwise nor a.s., but to reach a stationary behavior, thus requiring the
de�nition of a speci�c procedure to extract a single optimal pdf estimate from the sequence
itself. We adopt here the approach suggested in [4], which computes, at any iteration t
(t = 0, 1, . . .), the log-likelihood of the current pdf estimate pt

r(·) over the whole image data
set I, i.e.:

Lt
I =

Z−1∑
z=0

h(z) ln pt
r(z), (35)

and chooses the estimate pt
r(·) exhibiting the highest likelihood Lt

I . This identi�es a single
estimate aiming at performing a �dictionary-based� ML estimation of the SAR amplitude
pdf of the input image.

On the other hand, the log-likelihood cannot be adopted as a criterion to choose the
optimal number K of components, due to the monotonic relation between these two quan-
tities [46]. Several di�erent validation functionals have been proposed in the literature as
selection criteria for the parameter K, for instance, according to a Bayesian model-based
framework [2][3], to discriminant analysis [1][23][31], or to the minimum message length
(MML) approach [46]. The latter, promoting the idea of penalizing the logliklihood func-
tion with respect to the number of components has shown to be useless for our application
because the number of observations (i.e. the number of pixels, often of the order of 100000)
is far greater than K (commonly below 20) so that the change of K does not noticeably
a�ect the message length. In order to overcome the problem of choosing the number of
components K outside the SEM procedure, we plug the estimation into the SEM scheme as
follows. We initialize the algorithmwith respect to the form of the histogram. Thus, �rst
we �nd the number and locations of the histogram modes. The common way to do it is
smoothing: the choice of a speci�c histogram smoothing procedure depends on the com-
plexity of the histogram (speci�cally, on the level of noise-like behavior), however for all our
test images the linear smoothing with window size of 10-20 provided accurate estimation of
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the number of modes. Then we initialize the components with respect to the positions of
the modes: on the grey levels corresponding to every mode of the histogram we randomly
initialize several components (depending on the level of competitiveness). This level of com-
petitiveness directly corresponds to the complexity of this particular image: if we expect
to �nd many distinct types of land-cover there, this parameter should be set higher, say
3-4; whereas for the most of the cases this parameter could be set 2 without any loss in
accuracy. The higher this parameter is set the more "thoroughly" the algorithm will tries
to �nd the components in the image. Such an approach is justi�ed by the observation that
all the distributions in our dictionary D have single-mode pdfs. We remind here that the
initial estimate K of the number of components for SEM should be an upper bound. With
su�cient level of competitiveness the upper bound condition is obviously met.

One more critical issue of any iterative scheme is to de�ne the number of iterations. As
mentioned above, the SEM sequence of pdf estimates is expected not to converge pointwise
nor a.s., but rather to reach a stationary behavior, so in order to stop it we apply the
following stationarity criterion:

t∑
iter=t−k+1

(
K∑

i=1

|Pi(iter) − Pi(iter − 1)|

)
< ϵ, (36)

where K is the number of components, Pi(iter) are the mixing proportions on the iterth

step as in (1). So we control the proportion of pixels being reallocated into some other
component during the previous k iterations and once this portion goes below some level (ϵ)
we stop the iterations.

We stress, in particular, that the proposed pdf estimation method for SAR amplitude
data turns out to be automatic. In fact, the selection of the number of mixture components,
the choice of the optimal model for each component and the estimation of the parameters
of the model are jointly and automatically performed by the algorithm without any need
for user intervention. However, several parameters such as smoothing window size and the
stationarity criterion constant ϵ have s strong impact on the runtime/accuracy ratio, so they
need to be de�ned correctly for the optimal performance.
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4 Experimental results

4.1 Data sets for experiments

The proposed DSEM algorithm for pdf estimation has been tested on a set of high-resolution
SAR images, and compared with several usual SAR-speci�c parametric pdf estimation
strategies.

The �rst seven images used for experiments are the portions of a 16 bpp singlelook X-
band SAR-image with 5 meter esolution acquired in 2008 over the region of Piemonte (Italy)
by COSMO-SkyMed (©Italian Space Agency):

� "River_ponds", 1400 × 1400 pixels;

� "Small_river", 300 × 500 pixels;

� "Mountain_lake1" and "Mountain_lake2", 400 × 400 pixels;

� "Mountain_town", 2200 × 1700 pixels;

� "Mountains8" and "Mountains16", both being the same image, the former 8 bpp, the
latter 16 bpp, for the sake of comparison, 3000 × 1400

These portions have been selected in order to test the proposed method on di�erent typolo-
gies of data histograms.

The last test image (700 × 700 pixels, 8 bpp) was acquired by the RAMSES airborne
sensor, we further refer to it as "Ramses" for simplicity. This image was provided by the
French Space Agency (©ONERA-CNES).

We stress, in particular, that some of the images exhibit bimodal histograms, whereas
the others have fairly simple unimodal histograms. All images are shown in Appendix A,
after histogram stretching and/or equalization, and all the corresponding histograms are
reported in Appendix B.

4.2 Pdf estimation results

The proposed DSEM method has been applied to all the considered images and the result-
ing pdf estimates have been assessed both quantitatively, by computing their correlation
coe�cients with the image histograms, and qualitatively, by visually comparing the plots of
the estimates and of the histograms. Appendix B shows all the plotted comparisons for all
the 11 images.

Before presenting the results, several remarks about the implementation of our algorithm
should be done. Firstly, When we deal with the 16 bpp images, in order to minimize the
computational burden, according to the nature of the data, we apply the following procedure:
instead of working with the whole 100% bins of the histogram, we work only with 99,9%
of the data, the part located within the 99,9% quantile. This almost does not a�ect the
estimation accuracy, while sharly reducing the computational burden. This is due to the fact
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Image ρ KS − dist K∗

River_ponds 99,95% 0,0001 3
Small_river 99,80% 0,0067 5

Mountain_lake1 99,91% 0,0011 4
Mountain_lake2 99,90% 0,0008 4
Mountain_town 99,89% 0,0049 4

Mountain8 99,70% 0,0082 3
Mountain16 99,80% 0,0017 3
Ramses 99,62% 0,0070 4

Table 1: Results for the DSEM algorithm applied to all the employed SAR images: correla-
tion coe�cient ρ and Kolmogorov-Smirnov distance KS − dist between the estimated pdf
and the image histogram and optimal number K∗ of mixture components.

that for all the images in our test set, the data in histograms was compactly concentrated
close to the origin, i.e. close to zero, so usually the 99,9% quantile was in range 300÷ 1500,
thus decresing the number of bins under study from 65536 to around 1000, thus reducing the
computation weight 65 times. Secondly, the histogram of "Ramses" has shown irregularities,
having picks for minimum intensity (shadows) and for maximum intensity (re�ection); due
to the fact that this kind of local e�ects (very high and very thin, with width 1, modes of
histogram) cannot be adequately modeled by means of classical absolutely continuous pdfs
(all pdfs in our dictionary), these spikes of histogram have been manually removed.

The correlation coe�cients between the resulting estimated pdfs and the image his-
tograms are very high (always greater than 99,5%) for all the considered images (see Table 1),
thus assessing the e�ectiveness of the proposed method from the viewpoint of the estimation
accuracy. The visual comparison between the pdf estimates and the corresponding image
histograms con�rms this conclusion, as shown, for example, in Fig. 1.

In order to further assess the capabilities of the method, a comparison has also been
performed with several other standard parametric models for SAR amplitude data. Specif-
ically, we present here the six (either theoretical or empirical) best-performing models from
our dictionary, the corresponding parameters for all models have been estimated by using
MoLC. The resulting correlation coe�cients are listed in Table 2. A comparison between
Tables 1 and 2 shows that the proposed DSEM algorithm yields the pdf estimate with the
highest correlation coe�cients with the image histograms of all images.

In particular, the good results achieved on "River_ponds", "Mountain_lake1" and
"Mountain_lake2" which exhibit bimodal histograms, stress the usefulness of the adopted
FMM approach. As shown in Fig. 1 for "Mountain_lake1", DSEM e�ectively describes
the bimodal statistics; on the contrary, all the parametric models considered in Table 2 are
intrinsically unimodal and provide poor estimates. We stress, in particular, the relevance,
in this case, of the automatic selection of an optimal number K∗ of components.

On the other hand, we also note from the comparison between Tables 1 and 2 that for
most of the remaining images, presenting a unimodal histogram, the di�erence between the
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Image Theoretical models Empirical models
GGR Nakagami HT-Rayleigh K-root Log-Normal Weibull GGamma

River_ponds not de�ned 98,86% 93,06% 98,05% 93,84% 99,06% 98,21%
Small_river not de�ned 98,66% 92,33% not de�ned 96,83% 98,01% 98,74%

Mountain_lake1 78,82% 77,12% 73,00% not de�ned 86,20% 77,62% 79,12%
Mountain_lake2 94,27% 97,14% 92,46% not de�ned 96,40% 96,73% 97,40%
Mountain_town not de�ned 97,87% 88,49% not de�ned 97,57% 96,64% 88,32%

Mountain8 89,70% 93,30% 86,20% 95,30% 99,33% 92,52% 94,93%
Mountain16 90,43% 94,10% 88,43% not de�ned 99,41% 93,34% 92,11%
Ramses 94,21% 93,65% 94,14% not de�ned 73,68% 93,80% 90,09%

Table 2: Correlation coe�cients between the estimated pdfs and the image histograms for
seven parametric families and all SAR images.

Figure 1: Plot of the image histogram and of the DSEM pdf estimates with K = 4 and the
best �tting pdf from the dictionary for the "Mountain_lake1" data image.
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Figure 2: Plot of the image histogram and of the DSEM and lognormal pdf estimates for
the "Mountain16" data image.

DSEM accuracy and the one achieved by the best single pdf estimate is not as big as for
the multimodal cases. In particular, at least one among the Nakagami, GGR, log-normal,
Weibull and GGamma distributions allows to obtain very accurate estimation results, though
worse than the DSEM result. In these cases, thanks to the unimodal empirical distribution,
a FMM-based approach is not mandatory and a single-component pdf estimate turns out
to be quite e�cient. For instance, in Fig. 2 we plot for the "Mountain16" image the pdf
estimates provided by DSEM and by the best performing single parametric model for this
image (namely, lognormal).

5 Conclusions

In this research report, an e�cient �nite mixture model (FMM) estimation algorithm has
been developed for high resolution SAR amplitude data pdf, by integrating the SEM and
the MoLC methods with an automatic technique to select, for each mixture component, an
optimal parametric model inside a prede�ned dictionary of parametric pdfs. In particular,
the developed estimation strategy is explicitly focused on the context of high resolution SAR
image analysis and correspondingly a set of eight theoretic or empirical models for SAR
amplitude data (i.e., Nakagami, log-normal, generalized Gaussian Rayleigh, SαS generalized
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Rayleigh, Weibull, K-root, Fisher and generalized Gamma) has been adopted as a dictionary.
The method generalizes to high resolution the previously designed approach [34] for low
resolution SAR.

The numerical results of the application of the method to several real SAR images ac-
quired by COSMO-SkyMed and airborne RAMSES sensor prove the proposed DSEM algo-
rithm to provide very accurate pdf estimates, both from the viewpoint of a visual comparison
between the estimates and the corresponding image histograms, and from the viewpoint of
the quantitative correlation coe�cient between them. We stress, in particular, that the
method proves to be e�ective on all the considered images, despite of their di�erent statis-
tics (i.e., histogram unimodality or multimodality) and high heterogeneity. Correlation
coe�cients higher that 99% are obtained, in fact, in all cases, thus proving the �exibility of
the method.

Speci�cally, the use of a mixture model is mandatory when dealing with multimodal
statistics. Applied to the "River_ponds", "Mountain_lake1" and "Mountain_lake2" im-
ages, which exhibit a bimodal histogram, the developed DSEM algorithm correctly detects
positions and sizes of both statistical modes. On the other hand, the results provided by
DSEM in case of unimodal histograms usually provide only minor improvement as compared
to the best single-component parametric models included in the dictionary.

The experiments have suggested the generalized Gaussian Rayleigh, Lognormal and gen-
eralized Gamma models to be the most e�ective single-component parametric families, pro-
viding higher correlation and often being the best �tting single component models. However,
the analysis of more complicated images has shown that in case of more irregular histograms
(multimodal, spiky) the single-component models from the dictionary fail in the task of ac-
curate estimation (e.g. the "Mountain_lake1" image). That can be explained to some
extent for the theoretical models as they are not designed to deal with multi-landcover and
heterogenous images. This fact stresses out the necessity to work with mixture models as
e�ective tools to achieve reasonable level of accuracy.

We stress here that the proposed DSEM algorithm is automatic, by performing both
the FMM estimation process and the optimization of the number of mixture components
without any need for user interaction. In addition, thanks to the speci�c histogram-based
version of SEM it adopts, the computation time of DSEM is almost independent of the
image size. These interesting operational properties, together with the estimation accuracy
it provides for all the di�erent considered images prove DSEM to be a �exible and e�ective
pdf estimation tool for SAR data analysis.
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Appendix

A SAR images employed for experiments

The present Appendix shows the 8 images used in the experiments (Figs. 1-7). Only for
visualization purposes, their histograms have been stretched and/or equalized.

Figure 1: "River_ponds" image (©ASI).
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Figure 2: "Small_river" image (©ASI).

Figure 3: "Mountain_lake1" image (©ASI).
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Figure 4: "Mountain_lake2" image (©ASI).

Figure 5: "Mountain_town" image (©ASI).
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Figure 6: "Mountain8"/"Mountain16" image (©ASI).

Figure 7: "Ramses" image (©ONERA-CNES).
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B Plots of the estimated pdfs

In Appendix B we report the estimated pdfs provided by the proposed DSEM algorithm
(Figs. 1-8), together with the histograms of the corresponding images and the histogram of
the best �tting pdf from the dictionary.

Figure 1: Plot of the histograms for the "River_ponds" image.
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Figure 2: Plot of the histograms for the "River_ponds" image.

Figure 3: Plot of the histograms for the "Mountain_lake1" image.
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Figure 4: Plot of the histograms for the "Mountain_lake2" image.

Figure 5: Plot of the histograms for the "Mountain_town" image.
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Figure 6: Plot of the histograms for the "Mountain8" image.

Figure 7: Plot of the histograms for the "Mountain16" image.
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Figure 8: Plot of the histograms for the "Ramses" image.
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