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Abstract

The generation of trajectories for a biped robot is a problem which has been
largely studied for several years, and many satisfying off-line solutions exist for
steady-state walking in absence of disturbances. The question is a little more com-
plex when the generation of the desired trajectories of joints or links has to be
achieved or adapted online, i.e. in real time, for example when it is wished to strongly
synchronize these trajectories with an external motion. This is precisely the problem
addressed in this paper. Indeed, we consider the case where the “master” motion is
measured by an position sensor embedded on a human leg. We propose a method to
synchronize the motion of a robot or on other device with respect to the output sig-
nal of the sensor. The main goal is to estimate as accurately as possible the current
phase along the gait cycle. We use for that purpose a model based on a nonlinear
oscillator, to which we associate an observer. Introducing the sensor output in the
observer allows us to compute the oscillator phase and to generate a synchronized
multilinks trajectory, at a very low computational cost. The paper also presents
evaluation results in terms of robustness against parameter estimation errors and
velocity changes in the input.
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1 Introduction

The problem of trajectory generation is classical in robotics. Although there
now exists efficient industrial solutions to generate complex trajectories for
manipulator robots, allowing for example obstacle avoidance, or energy con-
sumption or cycle time optimization, the problem is still a research one for
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some classes of mobile robots. In fact, the realisability of precomputed tra-
jectories may become questionable when it is needed to cope with control
requirements or to adapt in real time to unexpected changes. Non-holonomy
of wheeled robots, and dynamical walking stability of legged robots are two
examples of such difficulties.

In the case of bipedal systems, addressed in this paper, trajectory genera-
tion may be splitted in two parts: 1- path planning of the whole system: this
problem is close to the one of mobile robots, except when an accurate determi-
nation of footprints is required; 2- computation of leg trajectories preserving
some invariants in the posture and ensuring a certain form of stability. Focus-
ing on this second issue, it can be seen that several classes of methods can
be found in the literature (an overview of bipedal trajectory generation tech-
niques is presented in [1]), among them: computation of optimal trajectories
in various spaces, derivation of intrinsic trajectories in passive walking, or use
of model predictive control. More precisely, when periodic motions are consid-
ered, a frequently used approach consists in mimicking living being’s CPGs
(Central Pattern Generator), under the form, either of ANNs, or of nonlinear
oscillators. Originally designed for very stable systems, like 6- or more legged
machines, snake or fish robots, etc. .. (see for example [2]), this approach has
more rarely been used for biped robots [3]. However, the problem of using this
class of method, in conjunction with sensory inputs delivered in real-time, has
rarely been addressed. Some studies [4,5] report the use of sensory inputs in
dynamic neural networks; however, the use of such neural networks does not
allow the system designer to ensure behavioural properties, such as synchro-
nization of the network with respect to the input. This is precisely the goal
of this paper. Indeed, we consider the case where we want to generate cyclic
joint trajectories which have to be synchronous with the output of a sensor
mounted on another link. This is a kind of teleoperation, which can be, for
example, very useful in the case of controlling a leg prosthesis or remotely
operating a walking robot.

In this paper we will focus on the case of bipedal systems and, therefore,
consider the following situation: a sensor, installed on the thigh of a human,
provides at each time with an information related to the absolute angular
position of the link; the question which arises is then: how to use this single
information to generate the full trajectories of another system (a robot or the
other leg, for example), in a perfectly synchronous way? We will see later that
the problem is addressed by designing a specific conjunction of a nonlinear
oscillator and of the related observer. The paper is organized as follows: after
having recalled some basic facts on nonlinear oscillators required in the fol-
lowing, we will discuss the choice of the oscillator, and derive the associated
nonlinear observer. Then, we will analyze the properties of the designed sys-



tem, and give some simulation and experimental results. Finally, we will draw
some plans for the near future.

2 Framework

2.1 Oscillators: some definitions

In this section, we recall some basic facts concerning periodic solutions of ordi-
nary differential equations (ODE). All this section is largely inspired from the
book by Pikowsky et al. [6]: “Synchronization, a universal concept in nonlinear
sciences”, part 7.1: phase dynamics. The concepts of phase and isochrones,
that are defined there, and will be used in the following.

Let’s consider a system of autonomous ordinary differential equations:

Cj;:f(x), x € " (1)
and suppose that this system has a stable periodic (with a period Tj) solution
xo(t) = Xo(t + Tp). In the phase space (space in which all possible states are
represented) this solution is an isolated closed attractive trajectory, called the
limit cycle of Eq. (1) (Fig. 1). A classical example of a self-oscillating system
is the van der Pol equation:

i —p(l —2?)i+wiz =0 (2)
with © > 0 and wy > 0.

Let’s introduce the phase ¢ as a coordinate along the limit cycle, as a variable
which grows uniformly in the direction of the motion and gains 27 during each
rotation, thus obeying the equation:

dip
o (3)
where wg = 27 /T} is the frequency of the self-sustained oscillations.

From Eq. 3 follows an important property of the phase: it is a neutrally stable
variable, in the sense that a perturbation in the phase remains constant: it
never grows or decays in time.



mu=0.3 ; omega=1

2.0
154
1.0+

0.5+

velocity

0.0

-0.57

Fig. 1. Limit cycle of the van der Pol oscillator. Here 4 = 0.3 and wg = 1.

Consider now the effect of a small external periodic input on the self-sustained
oscillations, described by:

B 100+ ep(x.1) (1
where the input ep(x,t) = ep(x,t + T') has a period T, which is in general
different from 7j. The input is proportional to a small parameter ¢, and below
we consider only first-order effects in €. The external perturbation drives the
trajectory away from the limit cycle, but because it is small and the cycle is
stable, the trajectory only slightly deviates from the original one x(t). Thus
perturbations in the directions transverse to the limit cycle are small; contrary
to this, the phase perturbations can be large.

A need is then to define the phase variable in such a way that it rotates
uniformly according to Eq. 3 not only on the cycle, but in its neighbourhood
as well. To this end, we define the so-called isochrones in the vicinity of the
limit cycle [7]. Observing the dynamical system stroboscopically, with the time
interval being exactly the period of the limit cycle Tp, we get a mapping:

x(t) — x(t +Tp) = ¢(x)

This construction is illustrated by the figure 2. Let us choose a point P* on the
cycle and consider all the points in the vicinity that are attracted to P* under
the action of ®. They form a (M — 1)-dimensional hypersurface I (where M is
the dynamical system dimension) called an isochrone, crossing the limit cycle
at P*. An isochrone can be drawn at each point of the limit cycle, thus we
can parametrize the hypersurface according to the phase as I(¢) (see Fig. 2).
We now extend the definition of the phase to the vicinity of the limit cycle,



demanding that the phase be constant on each isochrone. In this way, phase
can be defined in the neighbourhood of the limit cycle.

Fig. 2. Isochrones in the vicinity of the limit cycle

2.2  CPG for trajectory generation

Recently, the concept of Central Pattern Generator (CPG) has been used in
robotics for online trajectory generation [8-10,3]. The CPG concepts comes
from biology [11,12]: it is a small neural network, located at the spinal level,
able to generate rhythmic commands for the muscles. It can be divided into
two parts: a rhythm generator, and a patterning mechanism [13]. CPGs re-
ceive inputs from higher parts of the central nervous system, and also from
peripheral afferents; thus, its functioning results from an interaction between
central commands and local reflexes (see fig 3).
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Fig. 3. CPG architecture for movement control in vertebrates




The CPG can be modelled by either a simulated neural network (for example
using the Fitzhugh-Nagumo model [14]) or a non-linear oscillator. In both
cases, the idea is to encode the desired trajectory in a stable limit cycle.

In robotics, a CPG-based command structure has several advantages for the
design of cyclic trajectories: when using a feedback control, the system is ro-
bust with respect to small perturbations, thanks to the intrinsic stability of
the limit cycle; one can easily modulate the amplitude or the period of the
trajectory; it is well suited for feedback integration [15]. Finally, a multidi-
mensional output can be generated for the same low computational price,
which is helpful when dealing with robots with numerous Degrees Of Freedom
(DOFs), having to exhibit multiple synchronized periodic motions, like walk-
ing machines. The control scheme presented in Fig. 4 gives an example of a
multi-DOFs command structure.

Fig. 4. This schematics gives an example of a joints command structure. Four cou-
pled oscillators (osc 1 .. osc 4) produce rhythm for the output mechanisms (maps)
of the four joints J1 .. J4

In this paper, we will focus on the sensory integration problem in the CPG
concept: “How can we build a rhythm generator (oscillator) such that we can
be sure that it will synchronize with a given input ?”. The issue here is to
provide the designer with tools that could ensure the synchronization property
of the system with respect to the input, and with some proofs of robustness of
the system. This can be of great importance when the oscillator is embedded
in a control scheme.

2.3  Synchronization and observation

The synchronization problem has been recognized of great interest recently
[16,6] and a link has been made between synchronization and observation the-
ories, mostly by Nijmeijer and his group [17,18]. The observer theory, coming



from the control theory, has been introduced in the early seventies by Luen-
berger [19] in the linear case; in the non-linear case, some partial results exist
[20].

The idea of observation is to estimate the state variables of a system, only
given the inputs and the outputs of the system. Let’s consider the system

and build a copy of ¥ with output injection (Fig. 5):

, = f(&)+g(u)+ K (§ —
. f(&) + g(u) (I —y) (©)
g=nh(z)
] outputy
input u System Z Observer &' I state

Fig. 5. Observer principle

In the linear case, if the original system ¥ is observable (see [21] for a complete
description of the observability conditions), and if gain K is correctly set, then
the observer state will converge toward the original system state. When the
output error (g — y) is canceled, the observer state exactly matches ¥’s state:
the observer is synchronized with the observed system.

In the non-linear case, there is no general result concerning the observer exis-
tence. However, it is sometimes possible to build a non-linear observer, when
the error dynamics is feedback linearizable. To achieve this, the system has to
belong to the Lur’e class [22], in which the non-linearity f is a function of the
output only:

i = Az + f(y,t) + B
.17 z 1 1) uxeé)?”,ueﬁ?m,yeﬁ?p (7)

y=Czx

The observer is then given by:
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and the error dynamics can be linearized:

with e =2 — x,
ée=i—i
= Az + f(y,t) + Bu+ K(y —y) — Az — f(y,t) — Bu
=(A+KCQ)e

(9)

2.4  Synthesis : our approach

Our aim is to build an oscillator which will synchronize with a given cyclic
sensory input. If we want to use the observer theory, we need to have a model
of the system. However, such a model is not often available. This leads us to
propose the following method, in two steps (Fig. 6):

(1) build a system as a phenomenological model, that simulates the sensor
measurements

(2) build an observer of this system, in which are injected the actual sensor
measurements

1.

/—‘ has to simulate

System © output sensor measurements
. —_—

(oscillator)

measurements | s opserver State
—_—

Fig. 6. Schematics of the method

To simulate a cyclic sensor measurement, one could choose a linear system as
a model, and provide it with a cyclic input u (for example, a sinusoidal input);
in that case the linear system is shaping the input so as its output simulates
the given measurement. A problem arises then: there is a need for providing
with a cyclic input which has to be synchronous with the measurement. This



problem has been explored in [23], where a network of adaptive coupled Hopf
oscillators can dynamically adapt to any periodic signal. Unfortunately, since
the proposed solution uses an external forcing, it adapts to frequency changes
too slowly for our application.

To solve this problem, we chose a non-linear oscillator as a phenomenological
model for our sensor measurement: it can generate a cyclic signal without
input. Consequently, there is no need for an adapted input. This approach,
using an observer of a non-linear oscillator, presents as major advantage the
fact that the behaviour of the observer can be proved to converge toward the
given cyclic input: the synchronization is ensured. The convergence speed can
be set through the gain K in Eq. 8.

3 Methods

In the previous sections, we have presented the general background of our ap-
proach. We will now focus on a particular class of applications, in the frame-
work of bipedal locomotion. The addressed question is the following:let us
install a motion sensor on the leg of a human, and consider another walking
device, the motion of which has to be hardly synchronized with the one of the
equipped leg during steady-state walking ; this can be for example an anthro-
pomorphic robot to be teleoperated or the other leg of an hemiplegic subject
assisted by FES ; the problem is now to generate in real time from the sensor
output a signal allowing to synchronize the trajectories of the “slave” links
with the one of the “master” human leg. For that purpose, we will instanti-
ate the approach previously described by selecting an adapted oscillator and
synthetizing the related observer.

3.1 Which oscillator and why ?

3.1.1 What could be the right form of an oscillator?

To some extent, and under the assumption of rigidity of the links, a bipedal
walking system can be modelled as a tree-structured n-link mechanical system
free in space. Its dynamics can therefore be described through a Lagrange
equation:

M(q)i+ N(q,q) +G(q) = —B(¢) + T + A" C(q) (10)



where ¢ is the set of joint coordinates, ¢ € R" @ SE(3) !, M is a symmetric
positive definite mass matrix, N gathers coriolis and centrifugal forces, B is
the friction term, G the gravity vector, I' the actuation input, and \T'C(q)
are the constraints of ground contacts, which are unilateral and time-varying.
C(q) is the jacobian matrix of the coordinates of the contact points and A
is the array of related Lagrange multipliers. The underlying contact model is
rigid and based on a LCP (Linear Complementary Problem) approach. In the
absence of constraints, friction and control, the right-hand side of the equation
is equal to zero, and the system is conservative with mechanical energy as first
integral, the continual exchange between kinetics energy and potential energy
producing a periodic motion.

Let us now consider a single coordinate ¢,, which can be for example the
thigh angle. Starting from the unforced version of eq. (10), we can express its
dynamics as:

H(q)da + F(q,4) +T(q) =0 (11)
By considering all other variables than ¢, as external inputs or disturbances,
we can, roughly, see this equation as the one of a nonlinear second order
system with perturbations and a kind of potential function. Furthermore, the
behaviour of ¢, is periodic. This incitates to research the oscillator preferably
within the class of modified and disturbed second-order nonlinear mass-spring
systems.

3.1.2 Is the concept of limit cycle licit for human walking?

As seen previously, the natural behaviour of a mechanical robotics system
without dissipative terms and other inputs is an oscillator with constant en-
ergy. Nevertheless, this does not correspond with the idea of an attractive
limit cycle which underlies the oscillator-based approach. To justify this point
of view, we have to refer to another class of mechanical systems: the passive
walking machines. Indeed, let us consider the case of a planar compass, walking
above a slope, with instantaneous and inelastic step transition, as addressed
in [24] and several others [25,26]. It then can be shown that, for a given slope,
such a system exhibits a limit walking cycle (see Fig. 7), with a rather large
basin of attraction. This behaviour can be compared to the concept of “nat-
ural gait” or “comfort gait” which is spontaneously reached and followed by a
human in steady state walking, and which corresponds to a minimum of the

I this means that the configuration space of the system is the product of the space
spanned by the joints and of the 6-dimensional position/orientation of a given link
in the space
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metabolic energy consumption with respect to distance.

edotted leg

» Ooediog

Fig. 7. Mechanical model of a passive walking machine, and its stable limit cycle.
Numbers II and III corresponds to the instantaneous transition ad the end of the
swing and IV to I ad the end of the stance. Figure derived from [25].

In conclusion, it appears that searching for a oscillator of second-order type
which exhibits a limit cycle is a reasonable way of modelling the periodic
behaviour of a link of the human leg when walking steadily.

3.1.8  Structure choice and parameters setting

From the previous sections, we know that we have to choose a nonlinear os-
cillator which belongs to the Lur’e class (so that it can be observable, see
section 2.3), and which is derived from a second-order mass-spring system.
Two common oscillators fit these requirements: the van der Pol oscillator and
the Rayleigh oscillator, which are very similar.

Let us select the van der Pol equation to represent the sensor signal obtained
when walking. However, a basic van der Pol oscillator is unable to fit immedi-
ately any kind of periodic motion, and we need to modify it according to the
considered application. In the present case, bipedal walking, a natural idea
is to use a representation of the leg “position”: for example, we could use a
measurement of a joint coordinate, such as the knee angle. Another possibility
is to consider the absolute orientation of one link; indeed, because of the used
sensor technology (see section 4.1), the thigh inclination with regard to the
vertical is the easiest variable to access. During human gait, this inclination
presents an asymmetrical shape, with a ascending phase shorter than the de-
scending one. The van der Pol equation provides with symmetrical signals;
some examples already exist in the literature [27,28] where the van der Pol
equation is modified in order to get asymmetrical signals. In the same spirit,
we may therefore insert a new term in the equation:

11



i —pu(l- b x — 2%)i +wir =0 (12)
with b > 0.

The idea is to modify the damping coefficient p(1 — bz — 2?) so as it is dif-
ferent when x < 0 or = > 0. In that way, the output of the modified van
der Pol oscillator won’t be symmetrical anymore: for a given |z| when = < 0,
|p(1 — bx — 2%)] is higher than when x > 0.

Once the structure of the nonlinear oscillator is chosen, we have to find the
best parameters u, b, and wy so that the trajectory of the limit cycle of this
oscillator will fit the sensor measurement. This measurement comes from a real
walking experiment, where a inclination sensor is placed on the thigh of the
subject. We write this identification problem as a least squares one: minimizing
the error between the measurements and the output of the oscillator:

m

min Z (m; — xfn)2

M:b:wo 723% i=1

i — (1 = bat — 2P)it + w2l =0

where ¢ are the discretized sensor measurements (for example, over one given
cycle), and z*, are the simulated oscillator outputs, thus following the dynamics
of Eq. (12).

One can notice that this problem is similar to an optimal control problem,
that can be solved using a direct method [29]. We include the discrete output
of the oscillator in the parameters to optimize, and we add constraints on
them following the dynamical model of the oscillator. The discretization of
this problem leads to a “nonlinear programming” problem which has been
solved using a constrained sequential quadratic programming solver (Feasible
Sequential Quadratic Programming: FSQP [30]). Practically, this method gave
good results: we obtained a very good match between the measurements and
the oscillator output (see fig. 8).

3.2 Observer design

In this section we apply the general observer theory presented in section 2.3
to a specific case: we want now to build an observer of the dynamical system
described by the modified van der Pol equation (12), which can be written as:

12
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Fig. 8. Comparison of the sensor measurement cycle (solid line) with the optimized
oscillator output (dotted line)

1:1 = T2
Y q dy=p(l —bry — 2wy — Winy (14)
Yy=m

We want to have access to the internal variables x; and x5 of the oscillator
described by Eq. 14. To achieve this, we can only use its output y, that will
become the observer input. One can notice in Eq. 14 that its output y directly
provides us with the internal state variable z;. Thus, we can build a reduced
observer, which means that the dimension of the observer is lower than the
dimension of the original system to be observed. In our case, the dimension
of the original system is 2, and the dimension of the observer will be 1. The
reduced observer will in some sense tend to track a transformation of the
state variable to be estimated, namely xs. In the same spirit as [17] does, we
introduce the variable z:

zZ = X9 + k:ly + k2y2 + k3y3 (15)

which satisfies the following equation:

13



Z = @y + kg + 2keyy + 3ksyy?

z = l;z + kll"l + 2]{721"1.T1 + 3/{33.T1$L’%

z = ZL:Q + ]{?1.232 + 2]{?2.232£E1 + 3k53$21’% (16>

2 = p(l —bxy — x3)w9 — WAL + k1o + 2kowaxy + 3k3zox?

2 = (pu+ki)wy + (2ky — pb)x1xe + (3kz — p) 3T — WE T3

We want to cancel the non-linear terms (this is also called feedback lineariza-
tion); so, setting:

,u+k1:—1 — k:lz—,u—l
%y — b =0 — ky = b2 (17)
3ks—pu=0 — ky=p/3

we get:

2= —Ty —win
L= —(2 = by — ky? — ksy®) — wim (18)
2= =2+ (k1 — W)y + koy® + k3y?

So, z dynamics is fully described by its single eigenvalue, that has to be nega-
tive to ensure the convergence of the observer. Here this eigenvalue equals to
—1, once ky is set to —p — 1. Finally:

14



= =2+ (b — Wy + kay® + ksy?

Ty = z2— kiy — k2y2 - /fs?/?’

3.8 Trajectory generation

By injecting a measurement input y in the observer (19), we get an estimation
of the two state variables #; and Z5. Since this observer is also an (forced) oscil-
lator, we can compute its phase. This can be easily done using the isochrones
defined in section 2.1. Isochrones can be computed, using the free nonlinear
oscillator equation (12), in two different ways. The first idea, analytical, is to
write the oscillator equation in polar coordinates (R, ), define the phase ¢
such as it grows uniformly, and compute the lines of constant phase on the
(R, 0) plane. Unfortunately, it is not possible to derive analytically the equa-
tion of isochrones exepted in very specific cases. The second idea is to obtain
them by simulation; first, let’s assess the free oscillator period Ty. Then, for
each point x; on the phase plane which is in the vicinity of the limit cycle,
simulate its trajectory under oscillator dynamics during a time n7Tj, with n
being an integer large enough such that the distance from the point x;(n7p)
to the limit cycle is small. In that case, the original point x; has the same
phase as x;(nTp), which is known, since it is on the limit cycle.

Finally, let’s say that the (cyclic) trajectory we want to generate is parame-
trized by its phase: we thus have a trajectory pattern T'(¢), for ¢ € [0, 27].

In summary, the online computation scheme for trajectory generation is the
following:

(1) inject the sensor measurement y in the adapted observer

(2) from the observer state variables x;, compute the phase ¢ of the oscillator
(3) provide with the command trajectory: C' = T'(¢)

(4) follow the computed trajectory with a dynamic controller (ex: PID or
computed torque)

and is embedded in the global scheme presented in Fig. 9:

15
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Fig. 9. Overall schematics of our method. The trajectory is computed online in a
synchronous way according to the sensor signal used as input (left). This trajectory
is then followed by the dynamic controller, that uses feedback from the controlled
segments and joints.

4 Implementation and Results

4.1  Angle estimation

We estimate the thigh inclination with a micro-sensor, developed by CEA-
LETT (Grenoble, France), which associates 3 accelerometers and 3 magnetome-
ters in a minimal volume (see Fig. 10). This attitude sensor is able, through
the associated processing algorithms, to reconstruct the orientation in space
of the segment to which it is attached (the reader may refer to [31] for fur-
ther information concerning this sensor). Figure 11 shows an example of thigh
inclination estimation during human gait, which will be used as input in the
following.

4.2 Results

To validate our method, we recorded sensor signals during human gait, in order
to generate a synchronous command. This was achieved in a first time offline
(in simulation but using real measurements, in order to have an insight on
generated trajectory). Figure 12 shows three consecutive measurement cycles,
together with the reference limit cycle: although the estimated state variables
of the oscillator do not always stay on the limit cycle, they remain close to it.

16



Fig. 10. CEA-LETT attitude sensor. Left: Sensor size, compared to a coin. Board is
then embedded in a silicon-like material. Right: Final view of the sensor, with its
datalogger.

thigh inclination (deg)
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P U S (TR GRNRN R |
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Fig. 11. Thigh inclination (regarding to the vertical) estimation during human gait,
using the attitude sensor. Subject is walking at approximately 1.2 m/s.

Some of the discrepancy might result from the impact when the leg hits the
ground.

Each couple (#1;Z2) of estimated state variables can be plotted in the phase
space. We know from section 2.1 (see also Fig. 2) that, using the isochrones, a
phase variable can be defined for each point in the phase space. Thus, combin-
ing the observer-based estimation of the state variables with the isochrones-
based estimation of phase, we get a good phase estimation (i.e. monotonous,
and quasi-piecewise linear), synchronous to the input signal. Finally, we can
generate a command parametrized by this phase variable. Without loss of gen-
erality, this command can be the desired joint coordinates of a poly-articulated
system. Such a system has several Degrees Of Freedom (DOFSs) which have
to be well coordinated, in particular in the case of walking systems. A phase
parametrization of the desired trajectory on each joint ensures the coordina-
tion of the overall movement: if all joints are parameterized with the same
phase, there are perfectly coordinated. An example of generated trajectory
for one DOF (knee joint angle, in sagittal plane) is shown in Fig. 13. In this

17
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Fig. 12. Estimated state variables of the observer during three consecutive gait
cycles (dashed line), compared to the reference limit cycle (solid line)

example we use a reference pattern for the knee trajectory, derived from [32].
This pattern gives the knee joint angle corresponding to each phase value
(from 0 % to 100 % along the gait cycle). Thus, knowing the phase variable,
we have immediate access to the knee joint angular position.

100

Generated trajectory (deg)
L o900 0 0o p &
) B

time (s)

Fig. 13. Phase (top) and trajectory generated for the knee joint (bottom).

4.3  FExperiment: Robot teleoperation

By installing the sensor on a human leg, we observe the thigh angle and
compute online a biped robot control, such that the robot “follows” the human
gait, in a synchronous way. This is done by first generating a desired trajectory
for each active DOF of the robot (in our case: ankle, knee and hip sagittal
angles on both legs), and then following this trajectory with a PID controller.
Such experiments were conducted on the BIP robot (Fig. 14, [33]), the robot
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being suspended to the ceiling. The sampling frequency was 100 Hz, and we
were able to check that the online computation of the trajectory took less
than 1 ms. We thus fully validated the online trajectory generation based on
sensor measurement. Although the trajectory generation can adapt to a quite
wide range of gaits (see later section 5.3), the robot itself has a limited speed
range (joints maximal velocities and accelerations do not allow it to follow fast
gaits). For this reason, the online experiments were conducted at a rather low
speed (about 0.9 m/s).

Fig. 14. Teleoperation experiment with the BIP robot

5 Evaluation of the method

In this paper, we consider the use of a nonlinear oscillator in the framework
of interaction with human, through actual sensor inputs. It is therefore neces-
sary to assess the practical efficiency of the method. We will consider in the
following three important issues:

e the theoretical behavior of the modified oscillator in terms of periodic solu-
tions

e the robustness of the approach with respect to errors in parameters

e the ability of the method to track changes in the input dynamics, which
allows in particular to cope with transient walking stages
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5.1 Some comments about experimental results

Let us first note that in the case of a practical experiment, as teleoperating
a robot with a sensor placed on a real person’s thigh, it is impossible to have
access to the “actual” intrinsic phase of the observed system (the human). For
this reason, is it difficult to evaluate the performance and robustness of our ap-
proach with respect to real values that are unknown. This is why quantitative
results were computed through simulation, while the presented experimental
ones are qualitative, since they cannot be evaluated more accurately.

Also, what we want to assess here is the trajectory generation part, not the
trajectory following part through the PID controller of the robot. For this
reason, the following results are based on theory and simulation (using real
measurements), but not on real-time experiments, that wouldn’t be useful to
assess the properties addressed here.

5.2 Robustness

5.2.1 Oscillator properties

Since we modified the van der Pol oscillator, it is important to study its
properties. We start again from Eq. (12), which can be written:

x‘:y:fl(xvy) (20)

g =p(l—bx—a?)y —wiz = fa(z,y)
with pu, b, and w all > 0.

A classical way to study a dynamical system is to analyze its behaviour around
its fixed points, if they exist. In the present case:

t=0—y=0
(21)
y=0—2=0

There is thus a single fixed point (x,y) = (0, 0). Let’s study is stability through
its Jacobian:
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ofi 9f1 0 1

ox Oy

Gk o p(—2z =b)y —wi  p(l —2* —b)

which gives, in (0,0) :

The Jacobian trace determines the characteristics of the fixed point. Here, as
Tr(J(0,0)) = >0, (0,0) is a repulsive point. Let’s express the eigenvalues:

N —pd+wi=0
(24)
A=p?—4w

And so, using the Poincaré - Bendixson Theorem [7]:

e if 4 < 2wy then A < 0, and (0,0) is a repulsive source
o if > 2wy then A > 0, and (0,0) is an unstable node

In our experiments, the optimized parameters (through the FSQP method,
see section 3.1.3) were: u = 2.03, b = 2.29, w = 5.34, which corresponds to a
standard adult non-pathological gait. We thus had p = 2.03 < 2 wy = 10.68,
far from the bifurcation.

5.2.2  Parameters sensitivity

We now focus on the consequences of an error in parameters estimation. This
is an important issue, since in real experiments sensor measurements cannot
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be exactly the same for a trial to another, even from a cycle to another. Prac-
tically, the estimated parameters are always slightly different from what they
should be.

So let’s consider the case where our estimation of parameter p is different from
its “true” value: i = u + €. Then:

ﬂ+k1:—1 — k'lz—/:b—l —>/L+k'1:—1—€
2ky —ib=0 — ko =ab/2 — 2ky— pub= —cb
3k3—ﬂ:0 — 1{13:;2/3 — 3](33—,&2—6

and:

2 = (=1 —€)wy — ebrymy — €ximy — Wity

Z = (=1=€)(z — kyy — kay? — k3y®)
—eby(z — kiy — k2y2 - k31/3)
—ey?(z — kyy — koy? — ksy?)

—WoY

2= [-1—e(l+by+y?)] =
(L4 )k — wi] -y
+ [(1 4 €) ko + €bky] - y?
+ [(1 + €)ks + ebko + €kq] - y°
+ [+ebks + €ko) - y*
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In the oscillator dynamics, the error can be thus expressed by:

e=2y—2,=—€(l+by+y*) -z
+eky -y
+é [ko + bky] - 92
+é€[ks + bky + k1] - y?
+é [bks + ko] - y?
+eks -

It thus appears that the error is linear with respect to the parameter estima-
tion error €. A similar demonstration can be held for each parameter.

We also tested in simulation the effects of a wrong parameter estimation. We
compared the observer output y when parameters have error with respect
to the nominal output. Figure 15 presents the error in y estimation with an
estimation error on p, b, or wy.

020 + +

%

< 0.15-

RMSE error

0.10-

0.05-

T T T T i T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

parameter estimation error (%)

Fig. 15. The 3 lines show the output error (in % RMSE) with respect to the 3
parameters; solid line stands for b estimation error, dotted line for u, crossed line
for w

Two remarks can be made: first, the output error is linear with respect to
the parameter error, whatever the parameter is. Second, the minimum output
estimation error is found for 0% parameter error; this result was of course
expected, and means that the parameters have been well estimated.
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5.8 Transitions

We simulated the effects of a quasi-step input frequency change. The results
show very good adaptation: the generated output follows frequency change
without distinguishable disturbance (see Fig. 16).

input frequency (Hz)
-
o
hi

1.054

8 9 10 11 12 13

time (s)

Fig. 16. Frequency change adaptation. Top: Input signal frequency; bottom: gener-
ated command

6 Future work

6.1 Aimed application

A first application we consider is hemiplegic stroke patients’ gait rehabilita-
tion. Hemiplegia induces a situation where a vertical half of patient’s body
sensory-motor pathways do not function properly. A direct consequence is
that one side of patient is weak or paralyzed, thus severely impairing walk-
ing. Training of hemiplegia is likely to promote changes in neural circuits
based on excitability and plasticity cortical properties. Some patients re-learn
how to walk without assistance. Functional Electrical Stimulation (FES) al-
lows for controlling artificially movements in patients with motor disability by
applying electrical stimuli to impaired muscles through surface or implanted
electrodes. FES has been shown to be a valuable method for training stroke
patients in early phase of hemiplegia to improve recovery of walking skills. In
this framework, the timing of muscle stimulation sequences is critical. Today,
the existing FES systems usually provide with fixed stimulation patterns, over
one gait cycle, parameterized and pre-programmed off-line [34]. The triggering
of stimulation sequences is often achieved manually by the clinician assisting

24



the patient. Some other systems using embedded sensors [35] provide with sev-
eral triggers corresponding to different gait phases (heel strike, toe off, ...);
a specific stimulation sequence is then applied during each gait phase. The
problem is that if the patient walks faster or slower than the programmed
sequence, the movements on the healthy and the paretic leg might not be well
coordinated. A critical issue is the command of this stimulation: there is a
need to apply the proper stimulation amplitude at the proper instant. This
problem can be seen as a teleoperation issue: observing the healthy leg, the
goal is to apply an adapted command on the affected one. Applied to that
case, our method could be used to adapt stimulation parameters (amplitude,
pulse width, frequency) according to the computed phase. The command ap-
plied would thus be continuously adapted to the ongoing movement, in an
online way.

6.2 Perspectives

One possible development of our method is an extension to the multidimen-
sional case: how to integrate several inputs in our scheme? One idea is to
build an oscillator with multiple outputs, each one of them simulating one
measurement, and then synthesize a single observer with multidimensional
input. Another possibility is to build as many adapted oscillators as sensor
measurements, and then fusing the several phase estimations.

Also, it would be of great interest to study the behaviour of our system in the
case of uneven terrain (slope, stairs, ...). If the input signal is too different
from the original reference, it may loose its synchronization properties. In that
case, different oscillator-observers could be prepared, each one corresponding
to a given walking task; we would thus build a kind of “filter bank”, switching
from one to another if necessary.

7 Conclusion

The core of this paper can be seen as a contribution to the problem of periodic
motion synchronization, with focus on steady-state walking. The considered
application was a kind of teleoperation of an anthropomorphic robot by a hu-
man leg. More precisely, we have proposed a method for synchronizing in real
time a robot trajectory generator with an external leg motion, through a sin-
gle phase signal generated from an embedded attitude sensor. We assessed the
robustness properties of this method, and demonstrated that it was suitable
for human gait observation. In some sense, the approach can also be seen as an
online time-scaling method. Since the focus of this work was on the synchro-
nization, we considered neither the problem of dynamical control nor the one
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of gait stability. The fact that the robot was suspended helped us to evaluate
the quality of the synchronization in itself without being disturbed by other
aspects. Nevertheless, stability is a major issue in biped walking and we can’t
avoid it if we want to explore possible extensions of this work. Let us recall
that the fundamental problem in synthesizing and controlling a stable dynam-
ical walk is the compatibility between the existence of preset trajectories and
the online adaptation required to avoid falling in presence of disturbances. A
classical way of solving the problem is to leave some “degrees of freedom” to
the controller: for example, we can dedicate the control of some joints to sta-
bilization exclusively, or, better, specify trajectories depending on a few set of
parameters, which are computed as dynamically stable at the nominal value,
and the parameters of which can be modified on line by the controller to pre-
serve the stability. The time scale can be such a parameter. Of course, in the
framework of teleoperation, it is expected that in case of hard disturbance, the
stability will be a priority and the quality of master/slave synchronization will
strongly decrease. In that case, a feedback from the slave to the master would
be useful, leading to a kind of bilateral synchronization. More generally, the
use of nonlinear oscillators as periodic trajectory generators for dynamically
stable biped walking has not yet been studied. A way to address the problem
might be to connect to the very promising works of Kajita [36] and Wieber
[37], who use a predictive control approach to compute on line the parameters
which maintains the Center of Pressure in a given area.
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