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On-line simultaneous maximization of the size

and the weight for degradable intervals schedules

Fabien Baille, Evripidis Bampis, Christian Laforest, Nicolas Thibault

Tour Evry 2, LaMI, Université d’Evry, 523 place des terrasses, 91000 EVRY France
{fbaille,bampis,laforest,nthibaul}@lami.univ-evry.fr

Abstract. We consider the problem of scheduling on-line a sequence of
degradable intervals in a set of k identical machines. Our objective is to
find a schedule that maximizes simultaneously the Weight (equal to the
sum of processing times) and the Size (equal to the number) of the sched-
uled intervals. We propose a bicriteria algorithm that uses the strategies
of two monocriteria algorithms (GOL [7], maximizing the Size and LR
[4], maximizing the Weight) and yields two simultaneous constant com-
petitive ratios. This work is an extension of [2] (COCOON’04), where
the same model of degradable intervals was investigated in an off-line

context and the two objectives were considered separately.

In this paper, we consider the problem of scheduling on-line degradable intervals
on k identical machines. We define a degradable interval σ by a triplet (r, q, d)
where r denotes the release date, q the minimal deadline and d the deadline
(r < q ≤ d). This means that σ is scheduled if and only if it is executed from
date r to date t (q ≤ t ≤ d) on one machine. Intuitively, in this model, each
interval can be shortened (with respect to the required total execution [r, d)). We
denote by [r, t) the numerical interval corresponding to the effective execution
of a degradable interval σ and by p(σ) = t− r its processing time. We define the
weight w(σ) of the effective execution of any interval σ by w(σ) = tσ − rσ. This
means that the weight of an interval σ is equal to its processing time (it is known
in the literature as the proportional weight model [8]). In our model, we consider
on-line sequences of degradable intervals σ1, ..., σn where the σi’s are revealed
one by one in the increasing order of their release dates (r1 ≤ r2 ≤ · · · ≤ rn),
and future intervals are not known in advance.

For any algorithm A, we denote by Ak the version of A running on k identical
machines. In our model, an on-line algorithm Ak has to build at each step a valid
schedule. A schedule is valid if and only if for every date t, there is at most one
interval on each machine and each interval is scheduled at most once. When a
new interval σi is revealed (at step i), the algorithm Ak can reject it (in this case,
it is definitively lost) or serve it. In this second case, if the algorithm schedules
σi on machine j, it interrupts at least the already scheduled interval intersecting
σi on machine j. The interrupted intervals are definitively lost and no gain is
obtained from them for both metrics. Thus, each step i of any on-line algorithm
Ak can be decomposed into two stages: First, there is the interrupting stage
of step i. During this stage, the algorithm interrupts a subset of the already



scheduled intervals (note that this subset can be empty). Secondly, there is the
scheduling stage of step i. During this stage, the algorithm decides if the new
interval σi is served or rejected, and if it is served, on which machine σi is served.

Notation 1 (Schedule Ak(σ1, . . . , σi)) Let σ1, . . . , σn be any on-line sequence
of degradable intervals and let Ak be any algorithm running on k identical ma-
chines. For every step i (1 ≤ i ≤ n), we denote by Ak(σ1, . . . , σi) the schedule
returned by Ak at the end of step i.

We define the size N(O) = |{σ ∈ O}| (i.e. the number of scheduled intervals)
and the weight W (O) =

∑

σ∈O w(σ) (i.e. the weight of scheduled intervals) of
any schedule O. Our problem is then to find a schedule which has size and
weight the largest possible. In order to evaluate the quality of a schedule for our
measures (the Size and the Weight), we use the competitive ratio [5].

Definition 1 (Competitive ratio). Let σ1, ..., σn be any on-line sequence of
intervals. Let Ak(σ1, ..., σi) be the schedule on k machines given by an algorithm
Ak at step i (1 ≤ i ≤ n) and let O∗

i be the optimal (off-line) schedule on k
machines of {σ1, . . . , σi} for the criterion C (here, C = W or C = N). Ak has
a competitive ratio of ρ (it is ρ-competitive) for the criterion C if and only if we
have:

∀i, 1 ≤ i ≤ n, ρ · · ·C(Ak(σ1, ..., σi)) ≥ C(O∗

i )

An algorithm Ak is (ρ, µ)-competitive if it is simultaneously ρ-competitive for the

Size and µ-competitive for the Weight. In this paper, we propose a
(

k
r
, 4k

k−r−2

)

-

competitive algorithm, called ABk (with 1 ≤ r < k). For example, if we set

r = k
2 (if k

2 ≥ 3 and k even), ABk is
(

2, 8
1− 4

k

)

-competitive.

Previous works. The off-line version of the bicriteria non-degradable problem
has been treated in [3] where a (k

r
, k

k−r
)-approximation algorithm (1 ≤ r < k)

has been proposed. Concerning the monocriteria non-degradable problems, they
have been extensively studied for both the off-line and the on-line versions. In
particular, the off-line versions are polynomial (see Faigle and Nawijn [7] for
the Size and Carlisle and Lloyd [6] or Arkin and Silverberg [1] for the Weight
problems). In the on-line context, the algorithm GOL of Faigle and Nawijn [7] is
optimal for the Size problem. For the Weight problem, there is a series of works
going from the paper of Woeginger [8] to the paper of Bar-Noy et al. [4], who
proposed on-line algorithms with constant competitive ratios. Note that the two
degradable monocriterion intervals problem has been investigated in [2].
Outline of the paper. In Section 1, we present two monocriterion algorithms
(GOLk [7] and LRk [4]) in the degradable interval model. Section 2 is devoted
to the description and the analysis of our on-line bicriteria algorithm ABk using
GOL and LR as subroutines.

1 Two on-line monocriteria algorithms for the size and

the proportional weight metrics

In this section, we describe and analyze the competitiveness of the algorithm of
Faigle and Nawijn [7] and the algorithm of Bar-Noy et al. [4]. We use them as



subroutines of our algorithm ABk (see Section 2) in order to obtain a pair of
constant competitive ratios.
The algorithm GOLk. We describe the algorithm GOLk of [7] in the degrad-
able interval model by decomposing it into an interrupting stage and a scheduling
stage.

Algorithm GOLk (adaptation of [7])

When a new interval σi, defined by (ri, qi, di), is revealed, choose its effective
execution σq

i = [ri, qi) (i.e. each new interval is totally degraded) and do:

Interrupting stage: If there are k served intervals intersecting the date ri, let
σmax be the one with the maximum deadline.

If σmax does not exist (there is a free machine), do not interrupt any interval.
Else, If dmax ≥ qi then interrupt σmax.
If dmax < qi then do not interrupt any interval.

Scheduling stage:
If there is a free machine, then schedule σq

i on it.
Else, reject σi.

Note that the original algorithm of [7] is described for the classical non-degradable
interval model. In the following, we denote by GOLk

N this original version of the
algorithm (notice that it is the same algorithm as GOLk, except that GOLk

N

does not degrade any interval).

Lemma 1 GOLk is optimal for the Size in the degradable interval model.

Proof. Let σ1, . . . , σn be an on-line sequence of intervals such that for all i,
1 ≤ i ≤ n, σi is defined by (ri, qi, di). Let σD

1 , . . . , σD
n be the sequence such that

for all i, 1 ≤ i ≤ n, σD
i = [ri, qi) (i.e. the sequence version with the intervals

totally degraded). Let O∗

D be an optimal schedule of σ1, . . . , σn in the degradable
interval model and let O∗

N be an optimal schedule of σD
1 , . . . , σD

n in the non-
degradable interval model. By [2], we know that N(O∗

D) = N(O∗

N ). Furthermore,
since GOLk

N is optimal for the Size in the non-degradable interval model (See
[7]), we have N(O∗

N ) = N(GOLk
N (σD

1 , . . . , σD
n )). By definition of GOLk we have

GOLk
N (σD

1 , . . . , σD
n ) = GOLk(σ1, . . . , σn). If we combine all these equalities, we

obtain GOLk(σ1, . . . , σn) = GOLk
N (σD

1 , . . . , σD
n ) = N(O∗

N ) = N(O∗

D). Thus,
GOLk is optimal for the Size in the degradable interval model. ⊓⊔

The algorithm LRk. We now describe the algorithm LRk of [4] adapted to
our degradable interval model and decomposed into an interrupting stage and a
scheduling stage (for all k ≥ 3).

Algorithm LRk (adaptation of [4])

We denote by Ft the set of scheduled intervals containing date t. When a new
interval σi defined by (ri, qi, di) is revealed, choose the effective execution σd

i =
[ri, di) (i.e. do not degrade any interval) and do:

Interrupting stage:
If |Fri

| < k, then do not interrupt any interval.
If |Fri

| = k, then



1. Sort the k+1 intervals of Fri
∪{σd

i } by increasing order of release dates. If
several intervals have the same release date, order them in the decreasing
order of their deadlines and let L be the set of the

⌈

k
2

⌉

first intervals.
2. Sort the k + 1 intervals of Fri

∪ {σd
i } by decreasing order of deadlines

(ties are broken arbitrarily) and let R be the set of the
⌊

k
2

⌋

first intervals.
If σd

i ∈ L ∪ R, then interrupt any interval σj in Fri
− L ∪ R,

Else do not interrupt any interval.
Scheduling stage:
If |Fri

| < k, then schedule σd
i on any free machine.

If |Fri
| = k and σd

i ∈ L ∪ R, then schedule σd
i on the machine where σj has

been interrupted.
If |Fri

| = k and σd
i /∈ L ∪ R, then reject σi.

In the following, we show that LRk is
(

4
1− 2

k

)

-competitive in the degradable

interval model for the Weight metric (note that this is very close to 4 when k
is large). We first show that the weight of an optimal degradable schedule is no
more than twice the weight of an optimal non-degradable schedule.

Lemma 2 For every set of intervals {σ1, . . . , σn}, let O∗nd be an optimal sched-
ule of {σ1, . . . , σn} for the proportional weight metric in the non-degradable in-
terval model (i.e. qi = di), and let O∗d be an optimal schedule of {σ1, . . . , σn}
for the same metric in the degradable interval model. We have:

W (O∗d) ≤ 2W (O∗nd)

Proof. Let O∗d
1 , · · · , O∗d

k be the k sub-schedules of O∗d (O∗d
i executes the same

intervals at the same dates as machine i of O∗d). Thus, we have:

W (O∗d) =
∑k

i=0 W (O∗

i )

Let Γi = {σj ∈ {σ1, . . . , σn} : σj ∈ O∗d
i }. O∗d

i is an optimal schedule of Γi in the
degradable interval model. Indeed, suppose, by contradiction, that there exists
a valid schedule O of Γi such that W (O∗d

i ) < W (O). This means that the valid
schedule consisting in the union of the O∗d

j ’s, except for j = i, which is replaced

by O, generates a weight greater than O∗d and is valid. This contradicts the
optimality of O∗d.

Let us apply the 2-approximation algorithm for one machine schedules de-
scribed in [2] separately on each Γi (1 ≤ i ≤ k). Let O1, · · · , Ok be the obtained
schedules. Thus, by Theorem 5 of [2], for each i, we have W (O∗d

i ) ≤ 2W (Oi). We

sum the k inequalities and we obtain W (O∗d) ≤ 2
∑k

i=1 W (Oi). Moreover, since
the 2-approximation algorithm of [2] does not degrade the intervals, the k ma-
chine schedule consisting in the union of the Oi’s is valid for the non-degradable
interval model. This means that

∑k

i=1 W (Oi) ≤ W (O∗nd). Combining this last

inequality with W (O∗d) ≤ 2
∑k

i=1 W (Oi) leads to:

W (O∗d) ≤ 2W (O∗nd) ⊓⊔

Corollary 1 LRk is
(

4
1− 2

k

)

-competitive for the degradable interval model on

k ≥ 3 machines.



Proof. It is known that LRk is ( 2
1− 2

k

)-competitive for the non-degradable interval

model (from an adaptation of the proof of [4]). Thus, by definition, we have
2

1− 2

k

W (LRk(σ)) ≥ W (O∗nd). By Lemma 2, we have 2W (O∗nd) ≥ W (O∗d).

Combining these two inequalities leads to 4
1− 2

k

W (LRk(σ)) ≥ W (O∗d). This

means that LRk is
(

4
1− 2

k

)

-competitive for the degradable model. ⊓⊔

2 Our algorithm AB
k

Definition 2 (Cover relation). Let σ be an interval defined by the triplet
(r, q, d). Let σ1 = [r, t1) and σ2 = [r, t2) be two valid effective executions of σ
(i.e. q ≤ t1 ≤ d and q ≤ t2 ≤ d). We say that σ1 covers σ2 if and only if σ2 ⊆ σ1

(i.e. if and only if t2 ≤ t1).

Definition 3 (Union+ of sets of degraded intervals). Let {σ1, · · · , σn} be
a set of degradable intervals. For all i, 1 ≤ i ≤ n, σi is defined by (ri, qi, di).
For all σi ∈ {σ1, · · · , σn}, let σ1

i = [ri, t
1
i ) and σ2

i = [ri, t
2
i ) be two valid effective

executions of σi (i.e. qi ≤ t1i ≤ di and qi ≤ t2i ≤ di). Let E1 ⊆ {σ1
i : σi ∈

{σ1, . . . , σn}} and E2 ⊆ {σ2
i : σi ∈ {σ1, . . . , σn}}. We define E1 ⊎E2 the union+

of E1 and E2 as follows:

– σ1
i ∈ E1 ⊎ E2 if and only if (σ1

i ∈ E1 and σ2
i /∈ E2) or (σ1

i ∈ E1 and σ2
i ∈

E2 and σ1
i covers σ2

i ).
– σ2

i ∈ E1 ⊎ E2 if and only if (σ2
i ∈ E2 and σ1

i /∈ E1) or (σ2
i ∈ E2 and σ1

i ∈
E1 and σ2

i covers σ1
i ).

Note that the union+ is commutative and it generalizes the usual definition of
the union of two non-degradable intervals sets since in that case, σ1

i = σ2
i . Thus,

for all σ, E1 and E2, if σ ∈ E1 ⊎ E2, then σ ∈ E1 ∪ E2.
As, by definition, the two effective executions of a same interval σ defined by

(r, q, d) must start at the same release date r, the one with the smallest execution
time is covered by the other.

Note that, to be completely rigorous, we should not define an interval σi

by (ri, qi, di), but by (ri, qi, di, i). Indeed, let us consider the following prob-
lematic example. Let σ1

i = [ri, t
1
i ) be an effective execution of σi = (ri, qi, di)

and σ1
j = [rj , t

1
j ) be an effective execution of σj = (rj , qj , dj), with i 6= j. If

we consider the particular case where ri = rj and t1i = t1j (our model allows

such a situation), then we have σ1
i = [ri, t

1
i ) = [rj , t

1
j ) = σ1

j . Of course, in this

paper, we consider that the intervals are distinct (i.e. σ1
i 6= σ1

j ). That is why

we should define an interval σi by (ri, qi, di, i) and an effective execution σ1
i by

([ri, t
1
i ), i). But, in order to simplify the notations, we write σi = (ri, qi, di) in-

stead of σi = (ri, qi, di, i), and σ1
i = [ri, t

1
i ) instead of σ1

i = ([ri, t
1
i ), i).

The algorithm ABk. The main idea is the following. ABk is running on k
identical machines (called real machines because it is on these machines that



the effective schedule is built). It uses as subroutines GOL and LR (described
in Section 1). For the ease of notation, we use A for GOL and B for LR. For
each new submitted interval σi, we simulate the execution of the algorithm Ar

(resp. Bk−r) on r (resp. k − r) virtual machines, in order to control the size
(resp. the weight) of the schedule. These two simulations (for the size and for
the weight) are made on machines that we call virtual, because they are used
only in order to determine the set (potentially empty) of intervals ABk has to
interrupt and whether σi has to be rejected or served by ABk (and in this last
case, to decide in which degraded version ABk has to serve the new interval).
Indeed, ABk serves σi on a real machine if and only if Ar or Bk−r serves σi

(note that if both Ar and Bk−r serve it, ABk chooses the effective execution of
σi that covers the other).

In order to determine the schedule given by an algorithm after the interrupt-
ing and the scheduling stages, we introduce the following notation.

Notation 2 (Schedule returned by an algorithm on step i) For every
on-line sequence σ1, . . . , σn, for every algorithm ALG and for every step of ex-
ecution i (1 ≤ i ≤ n) of ALG, let Oi1(ALG) (resp. Oi2(ALG)) be the schedule
returned ALG after the interrupting (resp. scheduling) stage of step i.

Notation 3 (Set of intervals scheduled by ABk) For every on-line se-
quence σ1, . . . , σn, for every step of execution i (1 ≤ i ≤ n) of the algorithm
ABk, let Ri1(ABk) (resp. Ri2(ABk)) be the set of intervals scheduled and not
interrupted after the interrupting (resp. the scheduling) stage of step i on the k
machines associated to ABk, called real machines.

Notation 4 (Set of intervals scheduled by Ar and Bk−r) For every on-
line sequence σ1, . . . , σn, for every step of execution i (1 ≤ i ≤ n) of the algorithm
Ar (resp. Bk−r), let Vi1(A

r) (resp. Vi1(B
k−r)) be the set of intervals scheduled

and not interrupted after the interrupting stage of step i on the r (resp k − r)
machines associated to Ar (resp. Bk−r). Let Vi2(A

r) (resp. Vi2(B
k−r)) be the

set of intervals scheduled and not interrupted after the scheduling stage of step
i on the r (resp. k − r) machines associated to Ar (resp. Bk−r). The r (resp
k − r) machines associated to Ar (resp. Bk−r) are called virtual machines.

We give now a formal description of the algorithm ABk.

Input: An on-line sequence of intervals σ1, . . . , σn and k identical machines.

Output: After each step i (1 ≤ i ≤ n), a valid schedule Oi2(ABk) of σ1, . . . , σi

on the k real machines.

Step 0: V02
(Ar) = V02

(Bk−r) = R02
(ABk) = ∅

Step i (date ri):

1. The interrupting stage of ABk:
(a) Execute the interrupting stage of Ar (resp. Bk−r) on the r (resp.

k− r) virtual machines associated to Ar (resp. Bk−r) by submitting
the new interval σi to Ar (resp. Bk−r). Note that the set of intervals
scheduled and not interrupted by Ar (resp. Bk−r) is now Vi1(A

r)
(resp. Vi1(B

k−r)).



(b) Execute the interrupting stage of ABk on the k real machines associ-
ated to ABk by interrupting the subset of intervals of R(i−1)2(ABk)

such that: Ri1(ABk) = Vi1(A
r) ⊎ Vi1(B

k−r)
2. The scheduling stage of ABk:

(a) Execute the scheduling stage of Ar (resp. Bk−r) on the r (resp. k−r)
virtual machines associated to Ar (resp. Bk−r) by serving or rejecting
the new interval σi.

(b) Execute the scheduling stage of ABk on the k real machines associ-
ated to ABk by switching to the appropriate case:
i. If Ar and Bk−r reject σi, then ABk does not schedule σi. Thus,

we have: Ri2(ABk) = Ri1(ABk)
ii. If Ar serves σi (with effective execution σA

i ) and Bk−r rejects σi

then ABk serves σA
i on any free machine and we have:

Ri2(ABk) = Ri1(ABk) ∪ {σA
i }

iii. If Ar rejects σi and Bk−r serves σi (with effective execution σB
i )

then ABk serves σB
i on any free machine and we have:

Ri2(ABk) = Ri1(ABk) ∪ {σB
i }

iv. If Ar and Bk−r serve σi one with effective execution σA
i and the

other with effective execution σB
i then ABk serves the effective

execution that covers the other on any free machine. If σB
i covers

σA
i then we have:

Ri2(ABk) = Ri1(ABk) ∪ {σB
i }

else we have:
Ri2(ABk) = Ri1(ABk) ∪ {σA

i }

Intervals scheduled by the algorithm ABk. We first present Lemma 3 which
states that the algorithm ABk schedules the same intervals as the union+ of the
intervals scheduled by Ar and the intervals scheduled by Bk−r.

Lemma 3 For each step i of execution of the algorithm ABk, the schedule
Oi2(ABk) is valid and Ri2(ABk) = Vi2(A

r) ⊎ Vi2(B
k−r).

Proof. We prove Lemma 3 by induction on the steps of execution i of ABk.
The basic case (step 0): By definition of ABk, we have V02

(Ar) = V02
(Bk−r) =

R02
(ABk) = ∅. Thus, Oi2(ABk) is valid and we have Ri2(ABk) = Vi2(A

r) ⊎
Vi2(B

k−r). The basic case is checked.
The main case (step i): Let us assume that O(i−1)2(ABk) is valid and that

R(i−1)2(ABk) = V(i−1)2(A
r) ⊎ V(i−1)2(B

k−r) (by the assumption of the induc-
tion).

1. The interrupting stage: We first need to prove that Ri1(ABk) = Vi1(A
r) ⊎

Vi1(B
k−r) and that Oi1(ABk) is valid.

(a) By definition, ABk interrupts the subset of intervals of R(i−1)2(ABk)
such that:

Ri1(ABk) = Vi1(A
r) ⊎ Vi1(B

k−r) (union)



We have to show that there is always a subset of intervals of R(i−1)2(ABk)
that can be removed such that the above equality is possible.

Since Vi1(A
r) ⊆ V(i−1)2(A

r), Vi1(B
k−r) ⊆ V(i−1)2(B

k−r), and

R(i−1)2(ABk) = V(i−1)2(A
r) ⊎ V(i−1)2(B

k−r) (by the assumption of the

induction), we have Vi1(A
r) ⊎ Vi1(B

k−r) ⊆ R(i−1)2(ABk).

(b) By definition, ABk interrupts only intervals scheduled in O(i−1)2(ABk),

and by assumption of induction, O(i−1)2(ABk) is valid. Thus, there
cannot be intervals scheduled at the same time or more than once in
Oi1(ABk). This means that Oi1(ABk) is valid. (valid)

2. The scheduling stage: We now prove that Ri2(ABk) = Vi2(A
r) ⊎ Vi2(B

k−r)
and that Oi2(ABk) is valid. By definition of ABk, several cases may happen:

(a) If Ar and Bk−r reject σi, then ABk does not schedule σi and we have:

i.
Ri2(ABk) = Ri1(ABk) = Vi1(A

r) ⊎ Vi1(B
k−r)

(by the definition of ABk and by (union))
= Vi2(A

r) ⊎ Vi2(B
k−r)

(since Ar and Bk−r reject σi, we have
Vi1(A

r) = Vi2(A
r) and Vi1(B

k−r) = Vi2(B
k−r))

ii. Oi2(ABk) = Oi1(ABk). Thus Oi2(ABk) is valid (because by (valid),
Oi1(ABk) is valid).

(b) If Ar serves σi (with effective execution σA
i ) and Bk−r rejects σi, then

ABk schedules σA
i on any free real machine at time ri and we have:

i.
Ri2(ABk) = Ri1(ABk) ∪ {σA

i } = (Vi1(A
r) ⊎ Vi1(B

k−r)) ∪ {σA
i }

(by the definition of ABk and by (union))
= Vi2(A

r) ⊎ Vi2(B
k−r)

(union and union+ commute and since Ar serves σi

and Bk−rrejects σi, we have Vi2(A
r)=Vi1(A

r) ∪ {σA
i }

and Vi2(B
k−r)=Vi1(B

k−r))

ii. Since Oi1(ABk) is a valid schedule (by (valid)) and Oi2(ABk) is
built by ABk by adding σi to Oi1(ABk) only once, the only reason for
which Oi2(ABk) could not be valid would be because σi is scheduled
by ABk at time ri whereas there is no free machine at time ri, i.e.
because there are at least k + 1 intervals of Ri2(ABk) scheduled
at time ri by ABk. Let us prove that this is impossible. Indeed,
since Ar and Bk−r build at each time valid schedules, there are at
most r + k − r = k intervals of Vi2(A

r) ⊎ Vi2(B
k−r) scheduled at

time ri by Ar and Bk−r, and thus, there are at most k intervals
of Ri2(ABk) scheduled at time ri by ABk (because we just proved
above that Ri2(ABk) = Vi2(A

r) ⊎ Vi2(B
k−r)). Thus, Oi2(ABk) is a

valid schedule.

(c) If Ar rejects σi and Bk−r serves σi (with effective execution σB
i ), then

ABk schedules σB
i on any free real machine at time ri.



i. We prove that Ri2(ABk) = Vi2(A
r) ⊎ Vi2(B

k−r) in the same way
that we prove it in 2(b)i, except that we replace σA

i by σB
i .

ii. We prove that Oi2(ABk) is valid in the same way as in 2(b)ii.
(d) If Ar and Bk−r serve σi one with effective execution σA

i and the other
with effective execution σB

i . Let σS
i (resp. σL

i ) be the shortest (resp.
longest) effective execution of σi. Without loss of generality, we sup-
pose that Ar schedules σS

i and Bk−r schedules σL
i . By definition of the

algorithm, ABk schedules σL
i , and we have:

i.
Ri2(ABk) = Ri1(ABk) ∪ {σL

i } = (Vi1(A
r) ⊎ Vi1(B

k−r)) ∪ {σL
i }

(by definition of ABk and by (union))
= (Vi1(A

r) ⊎ Vi1(B
k−r)) ∪ ({σL

i } ⊎ {σS
i })

(because, by definition of union+, {σL
i }={σL

i } ⊎ {σS
i })

= Vi1(A
r) ⊎ Vi1(B

k−r) ⊎ {σL
i } ⊎ {σS

i }
(because (Vi1(A

r) ⊎ Vi1(B
k−r)) ∩ ({σL

i } ⊎ {σS
i }) = ∅)

= (Vi1(A
r) ∪ {σS

i }) ⊎ (Vi1(B
k−r) ∪ {σL

i })
(because the union+ is commutative and since σS

i /∈
Vi1(A

r), we have Vi1(A
r) ⊎ {σS

i } = Vi1(A
r) ∪ {σS

i })
= Vi2(A

r) ⊎ Vi2(B
k−r)

(because since Ar and Bk−r serve σi, we have Vi2(A
r)

= Vi1(A
r) ∪ {σS

i } and Vi2(B
k−r) = Vi1(B

k−r) ∪ {σL
i })

ii. We prove that Oi2(ABk) is valid in the same way as in 2(b)ii.

⊓⊔

Corollary 2 Let Ar = GOLr and Bk−r = LRk−r. Let N(Vi2(GOLr)) =
|Vi2(GOLr)| and W (Vi2(LRk−r)) be the sum of the weight of the intervals of
Vi2(LRk−r). For every input sequence σ1, . . . , σn and for every step i (1 ≤ i ≤ n)
of the algorithm ABk, we have:

N(Vi2(GOLr)) ≤ N(Ri2(ABk)) and W (Vi2(LRk−r)) ≤ W (Ri2(ABk))

Proof. By Lemma 3, for every step i of the algorithm ABk, we have Ri2(ABk) =
Vi2(A

r) ⊎ Vi2(B
k−r) = Vi2(GOLr) ⊎ Vi2(LRk−r), thus, by definition of union+,

Corollary 2 is checked. ⊓⊔

Theorem 1. For all k ≥ 4, for all r, 1 ≤ r ≤ k − 3, the algorithm ABk applied

with GOLr and LRk−r is
(

k
r
, 4k

k−r−2

)

-competitive for the Size and Proportional

weights metrics.

Proof. Let σ1, · · · , σn be any on-line sequence of intervals and let ON∗

x (resp.
OW∗

x ) be an optimal schedule of {σ1, · · · , σn} for the size N (resp. for the pro-
portional weight W ) on x ≤ k machines. Let OGOL

r (resp. OLR
k−r) be the schedule

returned by GOLr (resp. LRk−r) on the on-line sequence σ1, · · · , σn on r ≤ k−3
(resp. k− r ≥ 3) machines. Since, by Lemma 1, GOLr is 1-competitive (resp. by

Corollary 1, LRk−r is
(

4
1− 2

k−r

)

-competitive), we have:



N(ON∗

r ) ≤ N(OGOL
r ) (resp. W (OW∗

k−r) ≤
(

4
1− 2

k−r

)

W (OLR
k−r) ) (1)

Let O′N (resp. O′W ) be the r (resp. k − r) machine sub-schedule of ON∗

k (resp.
OW∗

k ) executing all the intervals appearing on the r (resp. k − r) machines of
ON∗

k (resp. OW∗

k ) generating the largest size (resp. weight). Since O′N (resp.
O′W ) is a r (resp. k − r) machine schedule, we have N(O′N ) ≤ N(ON∗

r ) (resp.
W (O′W ) ≤ W (OW∗

k−r)), otherwise, ON∗

r (resp. OW∗

k−r) would not be an optimal
schedule for the size (resp. weight). Combined with (1), we obtain:

N(O′N ) ≤ N(ON∗

r ) ≤ N(OGOL
r )

(2)
(resp. W (O′W ) ≤ W (OW∗

k−r) ≤
(

4
1− 2

k−r

)

W (OLR
k−r) )

Since O′N (resp. O′W ) is the r machine sub-schedule of ON∗

k (resp. OW∗

k ) gener-
ating the largest size (resp. weight), the average size (resp. weight) per machine
in O′N (resp. O′W ) is larger than the average size (resp. weight) per machine

in ON∗

k (resp. OW∗

k ). Thus, we have
N(ON∗

k
)

k
≤ N(O′N )

r
⇒ N(ON∗

k ) ≤ k
r
N(O′N )

(resp.
W (OW∗

k
)

k
≤ W (O′W )

k−r
⇒ W (OW∗

k ) ≤ k
k−r

W (O′W )). Combined with (2), we
obtain:

N(ON∗

k ) ≤ k
r
N(OGOL

r ) (resp. W (OW∗

k ) ≤ 4k
k−r−2W (OLR

k−r)) (3)

As N(OGOL
r ) = N(Vi2(GOLr)) (resp. W (OLR

k−r) = W (Vi2(LRk−r)) ), by apply-
ing Corollary 2 on (3), we obtain:

N(ON∗

k ) ≤ k
r
N(Vi2(GOLr)) ≤ k

r
N(Ri2(ABk))

(resp. W (OW∗

k ) ≤ k
r
W (Vi2(LRk−r)) ≤ 4k

k−r−2W (Ri2(ABk)) )

This means that ABk is (k
r
, 4k

k−r−2 )-competitive. ⊓⊔

Example. If r = k
2 (if k

2 ≥ 3 and k even), ABk is
(

2, 8
1− 4

k

)

-competitive.
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