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Closed loop observer-based parameter estimation

of quantum systems with a single population

measurement

Zaki Leghtas∗

November 18, 2008

Abstract

An observer-based Hamiltonian identification algorithm for quantum
systems has been proposed in [2]. In this paper we propose another
observer enabling the identification of the dipole moments of a multi-level
case, and having access to the population of the ground state only.

Keywords: Nonlinear systems, Quantum systems, Parameter identification,
Asymptotic observers, Averaging, Feedback.

1 Introduction

This work is the result of a summer internship I did at INRIA Rocquencourt,
with Mazyar Mirrahimi1 and Pierre Rouchon2. Our goal was to improve the
result given in [2] in order to enable an experimentator to estimate the dipole
moments of a quantum system measuring continuously the population on the
first state.
First, we will explain the problem and expose the model of the considered quan-
tum system. In the next section, we explicit the observer algorithm and look at
some simulations. Then, using some averaging arguments and neglecting some
second order terms, we prove the convergence of the observer.
We finally come to the interesting conclusion that a feedback is required.

2 The three level system

2.1 The problem

We have a quantum system and we wish to estimate its dipole moment ma-
trix.
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Figure 1: Diagram of the closed loop identification algorithm.

1. We excite the system with a laser. We are free to modulate its amplitude
and it’s phase.

2. We only measure continuously the population on it’s ground state.

In this paper, we propose a method to extract the desired information (the
dipole moments) from this output.

2.2 The model

We consider a three level quantum system, whose dynamics is described by the
Schrödinger equation:

d

dt
Ψ =

−i

~
(H0 + A(t)H1)Ψ, y = 〈1|ΨΨ? |1〉 ,

where Ψ is the wavefunction, A(t) is the laser field, H0 is the sum of the kinetic
energy operator and the potential energy operator without the laser field, H1

is the dipole moment matrix and y is the measurement output. Our aim is to
estimate this matrix:

H0 =

λ1 0 0
0 λ2 0
0 0 λ3

 , H1 =

 0 µ12 0
µ12 0 µ23

0 µ23 0


The goal is to estimate µ12 and µ23. Within the density language matrix ρ =
|Ψ〉 〈Ψ|, and taking ~ = 1, we have:

ρ̇ = −i[H, ρ].

3 The observer

3.1 The laser field

We choose an electromagnetic field which is the sum of two lasers:
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1. Laser 1: Ā12

cos((λ2 − λ1)t) with Ā12 constant and of order 1

2. Laser 2: A23

cos((λ3 − λ2)t) with A23 = Ā23

cos(θ̂) and ˙̂
θ = Ā12µ̂12

2 , Ā23 constant of order 1 and µ̂12 being the estimated
value of µ12 and is explicitly defined below. This amplitude modulation
can be as slow as desired by choosing a small Ā12 as long as Ā12 >> ε.

We then sum these two lasers, putting a small factor ε in front of the second
one. This gives the following laser field:

A(t) = Ā12cos((λ2 − λ1)t) + εĀ23cos(θ̂)cos((λ3 − λ2)t)

Which leads us to a dynamics written with the effective hamiltonian to:

ρ̇ = −i
Ā12µ12

2
[σ12

x , ρ]− iε
Ā23µ23

2
cos(θ̂)[σ23

x , ρ]

3.2 The proposed method

We use observers which make the estimated values converge to the real ones.
We suppose that H1=Ĥ1, and see what output ŷ it would give. The error:
e=y-ŷ is then used to correct the estimation of H1. The difficulty is to find
an adequate way to deal with this error in order to make Ĥ1 converge to H1.
The other difficulty is the choice of the laser amplitude A(t) which enables us
to extract the right information from the system.
The estimation method is the following: We design an observer such that esti-
mator of µ12 converges rapidly towards µ12. We add some small perturbation
terms so that, once the estimation of µ12 is accurate enough, the second order
terms will make the estimator of µ23 converge to µ23.
We do this by using the estimated values of µ12 to modulate the amplitude of
the second laser. The modulation is done with a frequency of Ā12µ12

2 . Note that
this frequency Ā12µ12

2 can be chosen as small as needed, through the choice of
Ā12 (which is itself a control degree of freedom).
The notion of feedback can lead some difficulties in the realization of the exper-
iment. However, to avoid suc complications, one can first apply the laser 1, and
once the value of µ12 is known, he can switch on the laser 2 and modulate its
amplitude with a signal of frequency A12µ12

2 . This will ensure the convergence
of µ̂23 to µ23

Intuitively, one can predict that by measuring the population of state 1, one
can identify the dipole moment between state 1 and any other state k (k = 2
or k = 3), by exciting the system with a resonant laser with the transition
frequency between state 1 and k. On the other hand, identifying the dipole
moment between any two states k and m (m and k different from 1), with only
the population of state 1 seems difficult to achieve. Hence, we excite the system
with a laser resonant with transition 1 and m, and m and k. We make sure the
laser coupling 1 and m is much more powerful than the second one. We can
therefore consider states 1 and m as being equivalent to a unified average state.
And therefore, we are back to a situation where we have 2 states, knowing the
population of the first one. The different scales of amplitudes between the two
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lasers and the notion of averaged systems[4][3] are key notions in the design of
the proposed observer.

3.3 The observer

We propose the following observer:

˙̂ρ = −i
Ā12µ̂12

2
[σ12

x , ρ̂]− iε
Ā23µ̂23

2
cos(θ̂)[σ23

x , ρ̂]

+εΓ1(y − ŷ)(σ1
z ρ̂ + ρ̂σ1

z − 2Tr(σ1
z ρ̂)ρ̂)

+ε2Γ2(y − ŷ)[(1 + 2 cos(2θ̂))(Q1ρ̂ + ρ̂Q1 − 2Tr(Q1ρ̂)ρ̂)

+(1− 2 cos(2θ̂))(Q2ρ̂ + ρ̂Q2 − 2Tr(Q2ρ̂)ρ̂)
−2(Q3ρ̂ + ρ̂Q3 − 2Tr(Q3ρ̂)ρ̂)]

˙̂
θ =

Ā12µ̂12

2
˙̂µ12 = −i

2
Ā12

ε2γ1Tr(σ1
z [σ12

x , ρ̂])(y − ŷ)

˙̂µ23 = −i
2

Ā23
ε4(y − ŷ)γ2[(1− 2 cos(2θ̂))Tr(Q2[Σ23

x , ρ̂])− 2Tr(Q3[Σ23
x , ρ̂])]

With: Γ1, Γ2, γ1, γ2 are constants of order 1. And ε is a small parameter.
Explicit expressions of the matrices σij

x and so on are given in the appendix.
We have considered the notations:

Ω̂ij =
1
2
µ̂ijĀij y = Tr(P1ρ) ŷ = Tr(P1ρ̂)

and:
Σ12

x = L†σ12
x L Σ23

z = L†σ23
z L Σ23

x = L†σ23
x L

Q1 = L†P1L Q2 = L†P2L Q3 = L†P3L

where:

L = eiθ̂σ12
x

3.4 Simulations

Before entering the details of the convergence proof of the observer, let us look
at some simulations.

N.B: Ωe and ye stand respectively for Ω̂ and ŷ

The simulation was done with the following parameters:
ε = 1/10 Γ1 = 2 γ1 = 2 Γ2 = 1.6 γ2 = 1.28

With an initial state: Ψ0 = 1
1.55

 1 + i
.6 + .1i
.2 + .1i


We initialise the observer at: Ψ̂0 = 1

1.7

1.2 + i
.6 + .2i
.1 + .2i
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Figure 2: Output. Measured output error and parameter estimation

Figure 3: Output with a 20% gaussian noise. Measured output error and pa-
rameter estimation
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The dipole moment matrix is: H1 =

0 1 0
1 0 .8
0 .8 0


We start the observer at Ĥ1 =

 0 .83 0
.83 0 .96
0 .96 0


µ12 converges much faster (about 1

ε times faster) than µ23. We notice that the
ouput error is about 10−2 which is the order of the noise.

3.5 Identifiability

It has been proved in [1] that if one has access to the population of all states of
the quantum system, it is possible to identify the dipole moment matrix.
In this paper, we only measure the population of the ground state. But in fact,
the needed information is coded in the averaged system. Indeed, by writing the
dynamics of the system in a frame such as the terms of order 1 vanish, hence
by considering: η = eiΩ12tρe−iΩ12t, we obtain the following output:

y(t) =
1
2
(Tr(I12η) + cos(2Ω12t)Tr(σ1

zη) + sin(2Ω12t)Tr(σ12
y η))

The first order terms in η are slow compared to cos(2Ω12t) and sin(2Ω12t).
Notice that in average:

y(t)(1 + 2 cos(2Ω12t)) = Tr(P1η)
y(t)(1− 2 cos(2Ω12t)) = Tr(P2η)

1− 2y(t) = Tr(P3η)

Hence, we have transformed the problem from a system where we only measured
the population of its first ground state, to a system where, in average, we know
the populations of all the states. Considering that Ω̂12 has converged to Ω12,
we obtain the following system:

d

dt
η = −i ε

2Ω23[σ23
x , η]

yj(t) = Tr(Pjη) is known in average for j = 1, 2, 3.

This, according to [1], is identifiable.

4 Convergence analysis

Let us write the observer as follows:

˙̂ρ = −iΩ̂12[σ12
x , ρ̂]− iεΩ̂23 cos(θ̂)[σ23

x , ρ̂] + εΓ1(y − ŷ)(σ1
z ρ̂ + ρ̂σ1

z − 2Tr(σ1
z ρ̂)ρ̂)

+ ε2Γ2(y − ŷ)
[
(1 + 2 cos(2θ̂))(Q1ρ̂ + ρ̂Q1 − 2Tr(Q1ρ̂)ρ̂)

+ (1− 2 cos(2θ̂))(Q2ρ̂ + ρ̂Q2 − 2Tr(Q2ρ̂)ρ̂)− 2(Q3ρ̂ + ρ̂Q3 − 2Tr(Q3ρ̂)ρ̂)
]

˙̂
θ = Ω̂12

˙̂Ω12 = −iε2γ1Tr(σ1
z [σ12

x , ρ̂])(y − ŷ)
˙̂Ω23 = −iε4γ2(y − ŷ)γ2[(1− 2 cos(2θ̂))Tr(Q2[Σ23

x , ρ̂])− 2Tr(Q3[Σ23
x , ρ̂])].
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As we can see in the simulation, and seeing the design of the observer, the
convergence is done in two steps:

1. We consider the dynamics of the system neglecting the terms in−iεΩ̂23 cos(θ̂)[σ23
x , ρ̂]

in front of −iΩ̂12[σ12
x , ρ̂] and neglecting the term in ε2Γ2 in front of εΓ1.

We then prove that

(a) limt→+∞ Ω̂12 = Ω12

(b) limt→+∞Tr(σ12
y η̂) = Tr(σ12

y η)

(c) limt→+∞Tr(σ1
z η̂) = Tr(σ1

zη)

2. Once all these terms have converged, we consider the higher order terms
of the system and prove that:

(a) limt→+∞ Ω̂23 = Ω23

(b) limt→+∞Tr(P1ζ̂) = Tr(P1ζ)

(c) limt→+∞Tr(P2ζ̂) = Tr(P2ζ)

(d) limt→+∞Tr(P3ζ̂) = Tr(P3ζ)

η and ζ being equal to ρ in some adequately chosen frames. Their expressions
will be given below.

4.1 The convergence of the first order system

We now write the system considering the approximations of step 1, mentioned
above. Which leads us to the system:

ρ̇ = −iΩ12[σ12
x , ρ]

˙̂ρ = −iΩ̂12[σ12
x , ρ̂] + εΓ1(y − ŷ)(σ1

z ρ̂ + ρ̂σ1
z − 2Tr(σ1

z ρ̂)ρ̂)
˙̂Ω12 = −iε2γ1Tr(σ1

z [σ12
x , ρ̂])(y − ŷ)

We are now tempted to write these equation in a rotating frame, such as the
dominant term in Ω12 vanishes. We will then be able to see which terms have
a first or higher order influence.
Let us define:

η = R†ρR and η̂ = R†ρ̂R where R = e−iΩ12σ12
x t

Here are some results which will be useful throughout our calculations:

R†σ1
zR = cos(2Ω12t)σ1

z + sin(2Ω12t)σ12
y (1)

LP1L
† =

1
2
(I12 + cos(2Ω12t)σ1

z + sin(2Ω12t)σ12
y ) (2)
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Which leads us to:
d

dt
η = 0

d

dt
η̂ = −i(Ω̂12 − Ω12)[σ

12
x , η̂]

+ ε
Γ1

2

h
Tr(I12(η − η̂)) + cos(2Ω12t)Tr(σ1

z(η − η̂)) + sin(2Ω12t)Tr(σ12
y (η − η̂))

i
+ cos(2Ω12t)

h
σ1

z η̂ + η̂σ1
z − 2Tr(σ1

z η̂)η̂
i

+ sin(2Ω12t)
h
σ12

y η̂ + η̂σ12
y − 2Tr(σ12

y η̂)η̂
i

d

dt
Ω̂12 = −iε2

γ1

2

ˆ
Tr(I12(η − η̂)) + cos(2Ω12t)Tr(σ1

z(η − η̂)) + sin(2Ω12t)Tr(σ12
y (η − η̂))

˜
+ (cos(2Ω12t)Tr(σ1

z [σ12
x , η̂]) + sin(2Ω12t)Tr(σ12

y [σ12
x , η̂]))

After neglecting the highly oscillating terms of average 0 in front of the first
order secular ones, and rearranging the terms, we obtain the following equations:

d

dt
η = 0

d

dt
η̂ = −i(Ω̂12 − Ω12)[σ

12
x , η̂] +

εΓ1

4

h
Tr(σ1

z(η − η̂))[σ1
z η̂ + η̂σ1

z − 2Tr(σ1
z η̂)η̂]

+ Tr(σ12
y (η − η̂))[σ12

y η̂ + η̂σ12
y − 2Tr(σ12

y η̂)η̂]
i

d

dt
Ω̂12 = −iε2

γ1

4

`
Tr(σ1

z(η − η̂))Tr(σ1
z [σ12

x , η̂]) + Tr(σ12
y (η − η̂))Tr(σ12

y [σ12
x , η̂])

´
.

N.B: Note that Ω̂12 − Ω12 of order ε is an essential hypothesis. That is why it
is important to choose, for t = 0, Ω̂12 close to Ω12.
Let us use the following notations:

X = Tr(σ12
x η) Y = Tr(σ12

y η) Z = Tr(σ1
zη)

X̂ = Tr(σ12
x η̂) Ŷ = Tr(σ12

y η̂) Ẑ = Tr(σ1
z η̂).

We have

Ẋ = Ẏ = Ż = 0
˙̂

X = −ε
Γ1

4
[(Z − Ẑ)(iŶ + ẐX̂) + (Y − Ŷ )(iẐ + Ŷ X̂)]

˙̂
Y = −(Ω̂12 − Ω12)Ẑ + ε

Γ1

4
[(Z − Ẑ)(iX̂ − Ŷ Ẑ)− (Y − Ŷ )(1− Ŷ 2)]

˙̂
Z = (Ω̂12 − Ω12)Ŷ + ε

Γ1

4
[(Z − Ẑ)(1− Ẑ2)− (Y − Ŷ )(iX̂ + Ŷ Ẑ)]

˙̂Ω12 = −iε2
γ1

4
((Z − Ẑ)Ŷ − (Y − Ŷ )Ẑ)

We are now going to prove that the proposed observer enables us to estimate
Ω12, X, Y and Z (we assume everywhere in this paper that Y and Z are both
different from zero). Let’s consider the Lyapounov function:

R3 → R

V :

Ω̂12

Ŷ

Ẑ

 → 4
ε2γ1

(Ω̂12 − Ω12)2 + (Ẑ − Z)2 + (Ŷ − Y )2

V̇

2
=

4
ε2γ1

˙̂Ω12(Ω̂12 − Ω12) + ˙̂
Z(Ẑ − Z) + ˙̂

Y (Ŷ − Y )
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Let us detail some calculations which will help us compute the latter expression

σ12
y σ12

y = σ1
zσ1

z = I12

σ12
y σ1

z = iσ12
x = −σ12

y σ1
z

Notice that in a first approximation, we have Tr(I12η̂) = Tr(I12η̂
2) = 1 Which

leads us to:

V̇

Γ
= −[(Ẑ − Z)2 + (Ŷ − Y )2] + ((Ẑ − Z)Ẑ + (Ŷ − Y )Ŷ )2.

According to the Cauchy Schwartz inequality, we have:

V̇

Γ
≤− [(Ẑ − Z)2 + (Ŷ − Y )2] + ((Ẑ − Z)2 + (Ŷ − Y )2)(Ẑ2 + Ŷ 2)

≤− [(Ẑ − Z)2 + (Ŷ − Y )2][1− Ẑ2 − Ŷ 2].

Obviously,−[(Ẑ − Z)2 + (Ŷ − Y )2] ≤ 0 and since Tr(I12η̂
2) ≤ 1, we have 1 −

Ẑ2 − Ŷ 2 ≥ 0.

4.1.1 case of equality:

case where 1−Ẑ2−Ŷ 2 = 0 and ∃K in R such that Ẑ = KZ and Ŷ = KY :
In this situation,

η̂ = η̂± =
1
2
(I ± (

Y√
Y 2 + Z2

σ12
y +

Z√
Y 2 + Z2

σ1
z) + ...)

One can see that (η̂±,Ω12) are equilibrium points. But by choosing |η̂(0)− η| <
|η̂± − η|, η̂(0) being the initial state of the observer, the Lyapounov function
will keep decreasing, and the observer will never reach this equilibrium point.

case where (Ẑ − Z)2 = (Ŷ − Y )2 = 0:
The dynamics of the system at this point become:

d

dt
η = 0

d

dt
η̂ = −i(Ω̂12 − Ω12)[σ12

x , η̂]

d

dt
Ω̂12 = 0

and:

d

dt
η = 0

d

dt
(Ẑ − Z) = (Ω̂12 − Ω12)Ŷ

d

dt
(Ŷ − Y ) = −(Ω̂12 − Ω12)Ẑ

d

dt
Ω̂12 = 0
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Notice that by assuming Y and Z both non-zeros, we have excluded the case
Ŷ = Ẑ = 0 and therefore necessarily Ω̂12 = Ω12. We conclude that the LaSalle
invariant set is given by Ẑ = Z, Ŷ = Y and Ω̂12 = Ω12. HenceΩ̂12

Ŷ

Ẑ

 converges to

Ω12

Y
Z

 .

4.2 The identification of µ23

The main difficulty here, compared to the solution proposed by [1] is that we
only have access to the population on the ground state.
We now consider the averaged system with all the terms, in which we neglect
the terms in Z − Ẑ, Y − Ŷ and Ω12 − Ω̂12:

d

dt
η = −iΩ23ε[σ23

x , η]

d

dt
η̂ = −iΩ̂23ε[σ23

x , η̂]

+ε2Γ2[Tr(P1(η − η̂))(P1η̂ + η̂P1 − 2Tr(P1η̂)η̂)
+Tr(P2(η − η̂))(P2η̂ + η̂P2 − 2Tr(P2η̂)η̂)
+Tr(P3(η − η̂))(P3ρ̂ + ρ̂P3 − 2Tr(P3ρ̂)ρ̂)]

d

dt
Ω̂23 = −iε4γ2(Tr(P2(η − η̂))Tr(P1[σ23

x , η̂] + Tr(P3(η − η̂))Tr(P3[σ23
x , η̂])

We are now confronted to the problem solved in [2], where the populations on
all the states are known. Please refer to the latter paper for an explanation
about the convergence of this observer. The scheme of the explanation is:

1. We write the equations in the rotating frame by defining a new variable:
ζ = eiΩ23σ23

x tηe−iΩ23σ23
x t

2. We then neglect the highly oscillating terms

3. After defining a Lyapounov function and using the Lasalle invariance prin-
ciple and the averaging theorem, we conclude that

(a) limt→+∞ Ω̂23 = Ω23

(b) limt→+∞Tr(P1ζ̂) = Tr(P1ζ)

(c) limt→+∞Tr(P2ζ̂) = Tr(P2ζ)

(d) limt→+∞Tr(P3ζ̂) = Tr(P3ζ)
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A Gell-Mann matrices

Let’s recall the expressions of the Gell-Mann Matrices:

σkl
x = |k〉 〈l|+ |l〉 〈k| , σkl

y = −i |k〉 〈l|+ i |l〉 〈k|

and

σz1 =

1 0 0
0 −1 0
0 0 0

 σz2 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

We also define

P1 =

1 0 0
0 0 0
0 0 0

 , σ3
z =

0 0 0
0 1 0
0 0 −1

 .
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