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Abstract: Mixture of Gaussians is a widely used approach for background modeling to detect moving objects from static 
cameras. Numerous improvements of the original method developed by Stauffer and Grimson [1] have been proposed 
over the recent years and the purpose of this paper is to provide a survey and an original classification of these 
improvements. We also discuss relevant issues to reduce the computation time. Firstly, the original MOG are reminded 
and discussed following the challenges met in video sequences. Then, we categorize the different improvements found in 
the literature. We have classified them in term of strategies used to improve the original MOG and we have discussed 
them in term of the critical situations they claim to handle. After analyzing the strategies and identifying their limitations, 
we conclude with several promising directions for future research.  
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INTRODUCTION 

 Background modeling is often used in different appli-
cations to model the background and then detect the moving 
objects in the scene like in video surveillance [2, 3], optical 
motion capture [4, 5-6] and multimedia [7, 8-10]. The 
simplest way to model the background is to acquire a 
background image which doesn't include any moving object. 
In some environments, the background isn’t available and 
can always be changed under critical situations like 
illumination changes, objects being introduced or removed 
from the scene. To take into account these problems of 
robustness and adaptation, many background modeling 
methods have been developed and the most recent surveys 
can be found in [2, 11, 12]. These background modeling 
methods can be classified in the following categories: Basic 
Background Modeling [13-15], Statistical Background 
Modeling [1, 16, 17], Fuzzy Background Modeling [18, 19, 
20] and Background Estimation [3, 21, 22]. Other classi-
fications can be found in term of prediction [23], recursion 
[2], adaptation [24], or modality [25]. All these modeling 
approaches are used in background subtraction context 
which presents the following steps and issues: background 
modeling, background initialization, background mainte-
nance, foreground detection, choice of the feature size (pixel, 
a block or a cluster), choice of the feature type (color 
features, edge features, stereo features, motion features and 
texture features). Developing a background subtraction 
method, all these choices determine the robustness of the 
method to the critical situations met in video sequence [3, 
26]: Noise image due to a poor quality image source (NI), 
Camera jitter (CJ), Camera automatic adjustments (CA), 
Time of the day (TD), Light switch (LS), Bootstrapping (B), 
Camouflage (C), Foreground aperture (FA), Moved back-
ground objects (MO), Inserted background objects (IBO), 
Multimodal background (MB), Waking foreground object 
(WFO), Sleeping foreground object (SFO) and Shadows (S). 
Different datasets benchmarks are available [27-32] to 
evaluate the robustness of the background subtraction 
methods against these critical situations which have different 
spatial and temporal characteristics which must be take into 

account to obtain a good segmentation. This challenge must 
be made in the context of real-time application which runs 
on common PC and so two constraints are introduced: less 
computation time (CT) and less memory requirement (MR) 
as possible. The performance is evaluated using the ROC 
analysis [33] or the PDR Analysis [34] or the similarity 
measure [35]. Others performance evaluation methods are 
proposed and compared in [36, 37]. Reading the literature, 
two remarks can be made: (1) The most used model is 
certainly the pixel-wise MOG one proposed by Stauffer and 
Grimson [1] due to a good compromise between robustness 
to the critical situations and the constraints (CT, MR). (2) 
There are many improvements of this MOG model as shown 
by the different acronyms found like GMM [38], TLGMM  
[39], STGMM [40], SKMGM [41], TAPPMOG [42] and S-
TAPPMOG [43]. All the developed strategies attempt to be 
more rigorous statistically or to introduce spatial and/or 
temporal constraints. The motivation of this paper concerns 
these two remarks. The objective is to group these different 
strategies in one paper and classify them following the 
different steps and issues of the MOG model. We also 
discuss them following the challenges met in video seq-
uences. The idea is not to present a numeric comparative 
evaluation using ROC or PDR analysis of the different algo-
rithms due their large number and because this evaluation 
can be generally found in the related paper. Furthermore, the 
purpose of this paper is limited to temporal pixel-wise MOG 
model. So, the spatial MOG model versions [44-49] are not 
discussed here.  

 The rest of this paper is organized as follows: In the 
Section 2, we firstly remind the original pixel-wise MOG 
model [1]. Then, we provide a classification of the modified 
versions found in the literature. In the Section 3, we survey 
the intrinsic model improvements which concern the 
initialization and the maintenance of the parameters, the 
foreground detection and by extension the features used. In 
the Section 4, we have classified the extrinsic model 
improvements which use the temporal and spatial constraints 
in their external strategies in the sense that how the MOG is 
applied. In the Section 5, the methods which reduce compu-



tation time are listed. Then, the methods which use the 
collaboration with another segmentation method are seen in 
the Section 6. Finally, the conclusion is given in Section 7. 

2. BACKGROUND MODELING USING MIXTURE OF 
GAUSSIANS 

 In the context of a traffic surveillance system, Friedman 
and Russel [50] proposed to model each background pixel 
using a mixture of three Gaussians corresponding to road, 
vehicle and shadows. This model is initialized using an EM 
algorithm [51]. Then, the Gaussians are manually labeled in 
a heuristic manner as follows: the darkest component is 
labeled as shadow; in the remaining two components, the 
one with the largest variance is labeled as vehicle and the 
other one as road. This remains fixed for all the process 
giving lack of adaptation to changes over time. For the 
foreground detection, each pixel is compared with each 
Gaussian and is classified according to it corresponding 
Gaussian. The maintenance is made using an incremental 
EM algorithm for real time consideration. Stauffer and 
Grimson [1] generalized this idea by modeling the recent 
history of the color features of each pixel X1,..., Xt{ } by a 

mixture of K Gaussians. We remind below the algorithm. 

2.1. Principle 

 First, each pixel is characterized by its intensity in the 
RGB color space. Then, the probability of observing the 
current pixel value is considered given by the following 
formula in the multidimensional case: 

P Xt( ) = ωi, t .η Xt ,µi, t , ∑i, t( )
i =1

K

∑                        (1) 

where the parameters are K is the number of distributions, 
ω i, t is a weight associated to the ith Gaussian at time t with 

mean µ i, t and standard deviation ∑i ,t . η  is a Gaussian 
probability density function: 

η(Xt ,µ,Σ) =
1

(2π )n/2 Σ 1/2 e
− 1

2
(X t −µ)Σ−1 (Xt − µ)

         (2) 

 For computational reasons, Stauffer and Grimson [1] 
assumed that the RGB color components are independent 
and have the same variances. So, the covariance matrix is of 
the form: 

Σi,t = σ i, t
2 I                                                                   (3) 

 So, each pixel is characterized by a mixture of K 
Gaussians. Once the background model is defined, the 
different parameters of the mixture of Gaussians must be 
initialized. The parameters of the MOG’s model are the 
number of Gaussians K, the weight ωi ,t associated to the ith 

Gaussian at time t, the mean µ i, t and the covariance matrix 

∑i, t . 

 

 

Re marks 

 K determined the multimodality of the background and 
by the available memory and computational power. Stauffer 
and Grimson [1] proposed to set K from 3 to 5.  

 The initialization of the weight, the mean and the 
covariance matrix is made using an EM algorithm. Stauffer 
and Grimson [1] used the K-mean algorithm for real time 
consideration.  

 Once the parameters initialization is made, a first 
foreground detection can be made and then the parameters 
are updated. Firstly, Stauffer and Grimson [1] used as 
criterion the ratio rj =ω j σ j

 and ordered the K Gaussians 

following this ratio. This ordering supposes that a 
background pixel corresponds to a high weight with a weak 
variance due to the fact that the background is more present 
than moving objects and that its value is practically constant. 
The first B Gaussian distributions which exceed certain 
threshold T are retained for a background distribution: 

B = argminb ωi ,ti=1

b∑ > T( )                                      (4) 

 The other distributions are considered to represent a 
foreground distribution. Then, when the new frame incomes 
at times t+1, a match test is made for each pixel. A pixel 
matches a Gaussian distribution if the Mahalanobis distance 

sqrt Xt+1 − µi , t( )T
.∑i , t

−1 . Xt+1 − µ i, t( )( )< kσ i ,t                    (5)  

where k  is a constant threshold equal to 2.5.  Then, two 
cases can occur: 

 Case 1: A match is found with one of the K Gaussians. In 
this case, if the Gaussian distribution is identified as a 
background one, the pixel is classified as background else 
the pixel is classified as foreground. 

 Case 2: No match is found with any of the K Gaussians. 
In this case, the pixel is classified as foreground. 

 At this step, a binary mask is obtained. Then, to make the 
next foreground detection, the parameters must be updated. 
Using the match test (5), two cases can occur like in the 
foreground detection:  

 Case 1: A match is found with one of the K Gaussians.  

 For the matched component, the update is done as 
follows:  

ωi, t +1 = 1 −α( )ωi, t +α                                        (6) 

where α is a constant learning rate. 

µi,t +1 = (1− ρ)µi,t + ρ.Xt+1                                       (7) 

σ i ,t +1
2 = (1 − ρ )σ i, t

2 + ρ( X t+1 − µi, t +1).(X t +1 − µi, t+1 )T  (8) 

where ρ = α.η X t+1, µi ,∑i( )  

 For the unmatched components, µ  and ∑ are 
unchanged, only the weight is replaced by: 

ω j,t+1 = (1− α)ω j ,t                                                     (9) 



 Case 2: No match is found with any of the K Gaussians. 
In this case, the least probable distribution k is replaced with 
a new one with parameters:  

 nk,t +1= Low Prior Weight                                     (10) 

µk , t+1 = Xt +1  (11) 

 nk,t +1
2 = Large Initial Variance                                     (12) 

 Once the parameters maintenance is made, foreground 
detection can be made and so on. Complete studies on the 
signification and the setting of the parameters can be found 
in [52, 53]. 

2.2. Discussion 

 Firstly, we discussed the relevance of the pixel-wise 
MOG model and the approximation made at each step by 
grouping the different remarks found about it in the 
literature. Then, we have identified the critical situations that 
can handle this model. 

 Relevance and approximations made: Modeling the 
background using the MOG implies the assumption that the 
background distributions and the foreground ones are 
Gaussians but it isn’t always the case. For example, Kitahara 
et al. [54] show that the distribution in indoor scene is much 
closer to a Laplace model than a Gaussian one. In another 
way, Wang et al. [55] remark that the intensity doesn't 
conform to the Gaussian distributions when the intensity 
varies abruptly like in the case of flickering trees (MB) in 
outdoor scene. For the initialization, the MOG needs that the 
number of Gaussians K is fixed and is the same for all pixels. 
It isn’t optimal because the multimodality is variable 
spatially and temporally. For the initialization of the mean, 
the variance and the weight, a series of training frames 
absent of moving objects is needed but in some environment, 
it isn’t possible to obtain frames without moving objects. 
Furthermore, this storage causes a amount of memory 
required in this step. For the maintenance phase, Greiffen-
hagen et al . [56] characterizes it statistical behavior making 
different parameters initialization using real data and 
simulated data. The experiment shows that only the means 
are estimated and tracked correctly. The variance and the 
weights are unstable and unreliable but Greiffenhagen et al. 
[56] remark that this is not really a problem because the 
weights and the variances are not used in a subsequent 
processing step. For the foreground detection, the main 
drawback is mainly due to the matching test as explained in 
[57]. Indeed, the maintenance is made according to the 
classification using this matching test which is an 
approximation of the MAP. The consequence is that the tail 
of the distribution is not updated when the maintenance is 
only made when the new value is between this interval given 
by the mean and standard deviation as in the Equation (5). 
When only the part of the distribution defined by this 
interval is used, a new Gaussian kernel is estimated which 
are a lower standard deviation. So, the standard deviation 
becomes underestimated and values in the tail are wrongly 
classified as foreground. This cause problem when the 
background is not updated due to the error in the 
classification. This gives more pixels classified as 
foreground causing false positive detections. This problem 
increased over time. For the feature size, Stauffer and 

Grimson [1] have choosen the pixel but this pixel-wise 
aspect has the main disadvantage that the temporal and 
spatial constraints aren’t tackled. For the feature type, 
Stauffer and Grimson [1] used the RGB space but these color 
components aren’t independent and so the simplification 
made in Equation (3) for the covariance matrix isn’t right. 
This simplification conducts to false positive and false 
negative detections as explained in [58]. More complete 
analysis of the assumption made in the MOG model is 
available in [59]. In this paper, Gao et al. [59] have 
presented an error analysis in the different steps providing 
both theoretical analysis and experimental validation.  

 Dealing with the challenges: The MOG model deals 
with the movement in the background (MB) due to the 
multimodality in the representation step. The maintenance 
step permits to cope up with the gradual illumination 
changes (TD) and the learning rate α determines the speed 
of adaptation to illumination changes (TD) but also the speed 
of the incorporation of background objects moved or inserted 
(MBO, IBO) and the speed of incorporation of a moving 
object which stopped (SFO) as explained in [60]. This is one 
of the disadvantages of the MOG and generally in the 
literature the authors make a compromise between the two 
processes. Another disadvantage is that the pixel-wise aspect 
prevents to handle some critical situations (LS, B) which can 
be only detected spatially and temporally. Furthermore, some 
critical situations need pre-processing or post-processing 
(NI, CJ, CA). For these two types of critical situations, 
Stauffer and Grimson [1] proposed nothing to deal with it. 
Another disadvantage is the use of the RGB which can 
permit to make well shadows detection (S). In resume, the 
original pixel-wise MOG model is design well for (TD, MB), 
is medium for the (MBO, IBO, SFO), and isn’t design for the 
(NI, CJ, CA, LS, B, C, FA, WFO, S). 

 To solve these different limitations, many improvements 
can be found in the literature and consist in being more 
rigorous in the statistical sense and in introducing the spatial 
and temporal constraints. We have classified them as 
intrinsic and extrinsic model improvements which are 
presented respectively in the Section 2 and Section 3. Table 
1 and Table 2 show respectively an overview of the critical 
situations and the real-time constraints versus the different 
MOG versions that can tackle them better than the original 
one. 

3. INTRINSIC MODEL IMPROVEMENTS  

 Intrinsic model improvements concern directly the MOG 
model like the initialization and the maintenance of the 
parameters, the foreground detection and by extension the 
features used.  

3.1. Number of Components - K 

 K is fixed experimentally and constant over time in 
Stauffer and Grimson [1]. K fixed and the same for each 
pixel is not optimal in term of detection and computational  
 

 

 

 



Table 1. Challenges and MOG Versions 

Critical Situations References 

Noise Image (NI) [61 -64] 

Camera jitter (CJ) [58, 62, 65, 66] 

Camera Adjustements (CA)  

Auto Gain Control [67] 

Auto White Balance [68] 

Automatic Exposure Correction  [69] 

Gradual Illumination Changes (TD) [1, 24, 38, 63, 70-73, 74, 75] 

Sudden Illumination Changes (LS) [24, 61, 63, 65, 67, 68, 70, 71, 
74-81] 

Bootstrapping during initialization 
(B) 

[59, 82, 83] 

Bootstrapping during running (B) [84-88] 

Camouflage (C)  [42, 72, 73, 88-92] 

Foreground Aperture (FA) [93] 

Moved background objects (MBO) [60, 63, 70, 74, 75, 80,85, 87, 
88] 

Inserted background objects (IBO) [60, 63, 70, 74, 75, 85, 87, 88] 

Multimodal background (MB) [1, 61, 64, 84, 86, 90, 94-107] 

Waking foreground object (WFO) [74-75, 80, 85, 87, 88] 

Sleeping foreground objects (SFO) [1, 42, 60,74,75,78,79, 85, 87, 
88, 108-114]  

Shadows and highlights (S) [61, 62, 68-70, 81, 101, 109, 
115-123] 

 
Table 2. Real Time Constraints and MOG Versions 

Real-Time Constraints References 

Computation Time (CT) [24, 43, 92,124-131] 

Memory Requirement (MR)  [127, 128] 

 

time. To solve this problem, Zivkovic [94] proposes an 
online algorithm that estimates the parameters of the MOG 
and simultaneously selects the number of Gaussians using 
the Dirichlet prior. The consequence is that K is dynamically 
adapted to the multimodality of each pixel. In the same idea, 
Cheng et al. [95] propose a stochastic approximation 
procedure which is used to recursively estimate the 
parameters of MOG and obtains the asymptotically optimal 
number of Gaussians. Another approach proposed by 
Shimada et al. [96] consists in a dynamic control of the 
number of Gaussians. This approach automatically changes 
the number of Gaussians in each pixel. The number of 
Gaussians increases when pixel values often change. On the 
other hand, when pixel values are constant in a while, some 
Gaussians are eliminated or integrated. Another idea 

proposed by Tan et al . [97] consists in a modified online EM 
procedure to construct an adaptive MOG in which the 
number K can adaptively reflect the complexity of pattern at 
the pixel. Carminati et al. [98] estimate the optimal number 
of K Gaussians for each pixel in a training set using an 
ISODATA algorithm. This method is less adaptive than the 
others because K isn’t updated after the training period.  

3.2. Initialization of the Weight, the Mean and the 
Variance  

 Stauffer and Grimson [1] initialized the weight, the mean 
and the variance of each Gaussian using a K-means 
algorithm. A training sequence without foreground is 
needed. This initialization scheme is improved as follows:  

 By using another algorithm for the initialization: 
Pavlidis et al. [99] show that an EM algorithm [51] is a 
superior initialization method that provides fast learning and 
exceptional stability to the foreground detection. This is 
especially true when initialization happens during challen-
ging weather conditions like fast moving clouds or other 
cases of multimodal background (MB). The disadvantage is 
that the EM algorithm is computationally intensive. In the 
continuity, Lee [84] proposes an approximation of the EM 
algorithm to avoid unnecessary computation or storage. His 
results on both synthetic data and surveillance videos show 
better learning efficiency and robustness in case of (B) and 
(MB) than the algorithm used by Friedman and Russel [50], 
Stauffer and Grimson [1], and Bowden et al. [132]. 

 By allowing presence of foreground objects in the 
training sequence: Following the assumption that the 
background’s pixels appear in the image sequence with the 
maximum frequency, Zhang et al . [60] propose a 
background reconstruction algorithm to initialize the MOG 
even in presence of foreground in the scene. Another 
approach proposed by Amintoosi et al. [82] consists in a QR-
decomposition based algorithm. To be more robust when 
large parts of the background are occluded by moving 
objects and parts of the background are never seen, Lepisk 
[83] proposes to use the optic flow to reason about if the 
background has been seen or not. This method is more robust 
in the case of bootstrapping (B). 

3.3. Maintenance of the Weight, the Mean and the 
Variance  

 Stauffer and Grimson [1] updated the weight, the mean 
and the variance of each Gaussians with an IIR filter using a 
constant learning rate α  for the weight update and a 
learning rate ρ  for the mean and variance update. This 
maintenance scheme is optimized in the literature through 
three different ways: 

 (1) Maintenance Rules:  The update of the parameters in 
Stauffer and Grimson [1] is made using an IIR filter like 
shown in the Equation (6). The disadvantage is that it is 
necessary to choose using a training sequence the learning 
rate α  which is then fixed for all the sequence. To improve 
the robustness and sensitively to gradual illumination chan-
ges (TD), Han and Lin [38] update the MOG via adaptive 
Kalman filtering. The main interest is that the Kalman filter 
proposed adjusts its gain depending on the normalized 



correlation of the innovation to accurately update gradually 
the parameters without empirical parameter selection. 

 (2) Maintenance Mechanisms: The maintenance 
mechanism used in the original MOG model [1] has the 
advantage to adapt robustly to gradual illumination change 
(TD) and the learning rate α  determines the speed of 
adaptation to illumination changes (TD) but also the speed of 
the incorporation of background objects moved or inserted 
(MBO, IBO) and the speed of incorporation of a moving 
object which stopped (SFO). So, one mechanism deals with 
different critical situations which have different temporal 
characteristics. To decouple the adaptation mechanism and 
the incorporation mechanism, Wang et al. [70] and Zhang et 
al. [60] propose to use a set of counter which represents  the 
number of times a pixel is classified as a foreground pixel. 
When this number is larger than a threshold, the pixel is 
considered as background. This gives a time limit on how 
long a pixel can be considered as a static foreground pixel. 
Another approach developed by Lindstrom et al. [85] uses a 
CUSUM detector to determine when components should be 
transfer from a foreground component to a background 
component. The CUSUM detector utilizes local counters for 
the foreground components. If the counter exceeds a thres -
hold, the corresponding foreground component is added to 
the background model. If the maximum number of back-
ground components has been reached, it replaces the least 

likely background component. The foreground component 
remains in the model because other pixels might still be 
explained by it. 

 (3) Selective Maintenance: The selective maintenance is 
based on the idea that the maintenance can be performed by 
using a different rule following some temporal or spatial 
conditions. For example, some authors [86,108, 109, 114] 
propose to select the rule for each pixel following it previous 
classification and other ones [71] propose to select the rule 
for all the pixels following the illumination change detected 
in the scene. 

 Table 3 shows an overview of the different methods for 
the initialization and maintenance of the parameters. 

 Another way to perform the maintenance is to adjust the 
leaning rates using spatial and/or temporal information. 

3.4. Learning rates α and ρ   

 The learning rates control the adaptation rate with a 
compromise between being fast enough to adapt to changes 
and slow enough to store a useful temporal history. At fast 
adaptation rates, the distribution quickly becomes dominated 
by a single Gaussian. In [1], α  is a constant and 
ρ = αη Xt ,µ i ,t ,∑ i ,t( ). However, a constant learning rate α  

causes problems with slow initial adaptation giving an 

Table 3.  Parameters Initialization and Maintenance  

Method Training Sequence Parameters Initialization  Parameters Maintenance  

  K 
Mean, variance, 

weights K 
Mean, variance, 

weights 

Stauffer and 
Grimson  [1] 

Clean sequence manually set 3 to 5 K-means no IIR Filter 

Zivkovic et al. [94] - Estimation at each pixel - Dirichlet prior - yes IIR Filter 

Cheng et al. [95] - Estimation at each pixel - Asymptotically optimal number EM algorithm yes IIR Filter 

Shimada et al. [96] - Estimation at each pixel – Incrementation/decrementation - yes IIR Filter 

Tan et al. [97] - Estim ation at each pixel Incrementation/decrementation EM algorithm yes IIR Filter 

Cuevas et al. [130] - 
Estimation at each pixel 

Automatic strategy  
- yes IIR Filter 

Tian et al. [133] - 
Estimation at each pixel 

Frequency of pixel value changes 
- yes 

IIR 

Filter 

Carminati et al. 
[98] 

- Estimation at each pixel – ISODATA algorithm ISODATA 
algorithm 

no IIR Filter 

Pavlidis et al. [99] - manually set to 3 EM algorithm no Method of 
moments 

Lee [84] - manually set 3 to 5 Approximated EM 
algorithm 

no IIR Filter 

Zhang et al. [60] Allow presence MO 
Occurrence 

manually set 3 to 5 Sequential K-means no IIR Filter 

Amintoosi et al. 
[82] 

Allow presence MO 

QR-Decomposition 
manually set 3 to 5 QR -

Decomposition  
no IIR Filter 

 



exaggerated importance to the initial values and gives no 
adaptation to the environment changes. For the learning rate 
ρ , the problem is that η Xt ,µi ,t , ∑i , t( )is usually very small, 

this makes convergence tolerably slow. The different 
approaches can be classified as follows: 

 By using better settings: In a simple way, Zang and 
Klette [137 ] use a constant α  and propose to use a 
reasonable constant value for the learning rate ρ  by setting 
this value according to specific situations in the captured 
scenes to control the speed of adaptation. This setting 
improves the convergence. Sensitivity α  is also closely tied 
with T. In this context, White et al . [138 ] propose to 
automatically tune the learning rate α  and the background 
threshold parameter T using Particle Swarm Optimization 
[134]. For this, a measure of quality called the F-measure 
quantifies in one scalar value for a frame how similar a 
resulting foreground detection image is to the ground-truth. 
Then, the fitness space is explored automatically to locate 
the couple ( α , T ) which maximize the f itness. This method 
has the advantage to tune α and T following the sequence. 
Their results show that this method reduces the total pixel 
error of the MOG significantly on the seven critical 
situations represent in the Wallflower dataset [27] 
particularly for the camouflage (C) and the movement in the 
background (MB). 

 By adapting the learning rates:  Bowden et al [87, 132, 
135] propose to use a different learning rate between the 
steps of the parameters initialization and the parameters 
maintenance. During the initialization, the expected 
sufficient statistics update equations are used. When the first 
L samples are processed, the algorithm changes to the L-
recent window version. The expected sufficient statistics 
update equations provide a good estimate at the beginning 
before all L samples can be collected. This initial estimate 
improves the accuracy of the estimate allowing fast 
convergence on a stable background model. The L-recent 
window update equations give priority over recent data to 
adapt to changes in the environment. A more adaptive 
approach is proposed by Lee [136] and used a different 
learning rate for each Gaussian. The convergence speed and 
approximation results are significantly improved. Harville et 
al. [88] adapted the learning rate following the pixel activity 
and so used temporal information in the objective to deal 
with (MBO, IBO, SFO). Lindstrom [85] proposed a 
progressive learning rate where the relative update speed of 
each Gaussian component depends on how often the 
component has been observed and so integrates temporal 
information in the maintenance scheme. Thus, in a natural 
way, giving varying learning rates, where current data is 
allowed greater relative influence on the parameter estimates 
of newer and seldomly observed components. Wang et al 
[70] adapt the learning rate using spatial information to be 
adaptive to the illumi-nation context. If the pixel number of 
detected foreground pixels is larger than a threshold (e.g., 
70% of the whole image pixels), Wang et al. adjust the 
learning rate to a high value because LS is detected. 
Otherwise, the learning rate is set to a low value. In the same 

idea, Porikli [24] adjusts the learning rate according to the 
illumination change of random pixels that do not corrrespond 
at an object. An illumination change score is computed. If an 
illumination change is detected in the pixels (TD, LS) i.e the 
illumi-nations score is higher than a threshold, the learning 
rate is higher and then adapt quickly. Furthermore, Porikli 
[24] adapts the time period of the maintenance mechanism 
following the illumination change score. The idea is that no 
maintenance is needed if no illumination change is detected 
and a quick maintenance is necessary otherwise. Another 
adaptive approach is to use tracking feedback. Liu et al [110] 
divide foreground pixels into moving or static according to 
whether they are classified moving or static objects by the 
tracking process. So, background pixels are updated slightly 
on moving objects in order to preserve the original back-
ground, while greatly on stationary objects and background 
to make any changes in scenes quickly incorporated into the 
background model. In this way, the background model will 
be adapted quickly to the changes in the environment while 
keeping it from damaged by moving objects at the same 
time. Pnevmatikakis et al. [111] propose a feedback tracking 
architecture too. Indeed, the learning rate is modified in 
elliptical regions around the targets. Thus, instead of a 
constant value, a spatiotempora l adaptation of the learning 
rate is used. α(x,y, t) is large if the pixel (x,y) isn’t near a 
target at time t and α(x, y, t) is small if the pixel (x,y) is 
near a target at time t. This delays the incorporation of the 
targets and depending on the selection of the small learning 
rate and the motion of the targets can be sufficient. In some 
cases, when targets stay immobile for every long periods 
even the small learning rate will gradually incorporate these 
targets into the background. If this case occurs, the original 
weight update mechanism is replaced by the following 
mechanism: The weight of the current Gaussian is decreased 
and the other ones are increased with a rate that is inversely 
proportional to the mobility of the target, as this is estimated 
from the state of the Kalman tracker for this particular target. 
This incorporation prevention mechanism is not always in 
effect and is only activated when targets are small and rather 
immobile. This tracking feedback is improved in 
Pnevmatikakis et al. [112] by modified the learning rate 
following the speed and the size of the targets and is  useful 
for large vehicles, where their speed can be large, but their 
uniform colors can lead to fading into the background. Some 
authors use a combination a the previous adaptive strategies. 
For example, Schoonees et al. [139] propose a strategy 
which combined [87,136]. During the initialization period, 
α is variable and αt = 1 / t while α ≥ α min . After this 

condition isn’t respected, α = αmin . The learning rate ρ  is 
variable for each Gaussian and is computed as follows: 
ρi,t = αt /ωi ,t  for the component matched and ρi,t = 0  

otherwise. In the same way, Leotta et al . [140] use the same 
strategy for the initialization and the maintenance than [87] 
for the learning rate α  but it is like [136] for the learning 
rate ρi, t .  



 Table 4 shows an overview of the diffe rent methods for 
the settings and adaptation of the learning rates. 

 These different adaptive approaches introduce spatial and 
temporal information in the learning rate and so improve the 
behavior of the maintenance to the critical situations. 
Another way to enhance the maintenance is to use a variable 
adaptation rate to optimize the computation time as 
developed in the Section 4.  

3.5. Threshold T  

 T is highly sensitive to the scene environment and is tied 
toα . As seen in the Section 3.4, White et al. [138] propose 
to automatically tune α  and T using Particle Swarm 
Optimization [134] and results show that this method 
reduces the total pixel error of the MOG significantly. 
Another approach developed by Haque et al. [104-106] 
replace T with another less sensitive parameter and so 
improve the robustness. Instead of T, this approach uses the 
background-foreground separation threshold S used in the 
basic background subtraction. Low S gives high quality 
detection independent of α . Results show better perfo-
mance than the original MOG and the modified version 
presented in [141]. 

3.6. Foreground Detection 

 Stauffer and Grimson [1] made the foreground detection 
in three phases: ordering following the ratio jr , labelling the 

Gaussian using the background threshold T and classifying 
the current pixel using the matching test. This scheme is 
improved in the literature in five different ways:  

 By using a different measure for the matching test: In 
this case, the ordering and labeling phases are conserved and 
only the matching test is changed to be more exact 
statistically. Indeed, Stauffer and Grimson [1] checked every 
new pixel against the K existing distribution using the 
Equation (5) to classify it in background pixel or foreground 
one. This test gives a binary mask and was chosen in an 
approximation to the true Maximum A Priori (MAP) 
solution to permit a real-time implementation. This approxi -
mation causes false positive detections due the use of the 
interval defined by the mean and the standard deviation in 
Equation (5). To solve this problem, Ren et al. [142], 
Carminati et al . [98] and Lee [136] suggest to use a 
likelihood maximization instead of the approximation MAP. 
Another approach is proposed by Pavlidis et al. [99] which 
use the Jeffreys divergence measure to check if the incoming 
pixel value can be ascribed to any of the existing K 
Gaussians. Results presented by Pavlidis et al. [99] show 
that the false positives are reduced.  

 By using a Pixel Persistence Map (PPM): Pardas et al. 
[143] use a Pixel Persistence Map (PPM) which is a map of 
the same dimension as the frames containing at each location 
(x,y) the weight of the Gaussian matching the current color 
of the pixel (x,y). Small PPM values indicate foreground 

Table 4. Settings and Adaption of the Learning Rates 

Method Learning Rate α  Learning Rate  ρ  

Stauffer and Grimson [1] Constant - set manually  Const ant - set manually  

Zang et al. [137] Constant - set manually  Constant - Reasonable value – set manually 

White et al.  [138] Constant - Particle Swarm Parameter [134] - 

Bowden et al. [87][132] 
Variable during the initialization 

Constant during the maintenance 

Variable during the initialization 

Constant during the maintenance 

Bowden et al. [135]  
Variable during the initialization 
Constant during the maintenance ρ = α  

Lee [136] Constant - set manually  Variable and different for each Gaussian 

Harville et al. [88] Variable - pixel activity ρ = α  

Lindstrom et al.  [85] Variable - occurrence of the components ρ = α  

Wang et al. [70] Variable - illumination activity ρ = α  

Porikli [24] Variable - illumination activity ρ = α  

Liu et al. [110] Variable - tracking feedback Variable following the tracking feedback 

Pnevmatikakis et al. [111] Two values - small near target and large otherwise ρ = α  

Pnevmatikakis et al. [112] 
Two values - constant small value near target 

and variable large value otherwise 
ρ = α  

Schoonees and Power [139] 
Variable during the initialization 

Constant during the maintenance 
Variable and different for each Gaussian 

Leotta et al. [140] 
Variable during the initialization 

Constant during the maintenance 
Variable and different for each Gaussian [136] 



pixels, while large indicate background ones. So, the 
foreground detection is made using a decision test with a 
threshold on the PPM. The disadvantage is that when there is 
camera jitter (CJ) or movement in the background (MB), the 
PPM needs to be bounted by a very low threshold in order 
not to consider flickering pixels as foreground but this 
threshold tends to discard true foreground pixels . To solve 
this problem, Pnevmatikakis et al. [111] propose to adapt the 
threshold on the PPM in a spatiotemporal fashion using a 
tracking feedback. This scheme presents the advantage that 
flickering pixels are avoided far from the targets, while the 
targets themselves are not affected. The drawback of this 
strategy is the delayed detection of new very small targets. 
Then, Pnevmatikakis et al. [112] improved this tracking 
feedback scheme by using the covariance matrix of the 
target. We can note that the ordering and labeling phases 
aren’t used and only a matching test is used to ascribe a pixel 
to a Gaussian. 

 By using the probabilities: Another way to make the 
foreground detection consists in using the MOG background 
likelihood but it is very sensitive. Instead of using directly 
the learned MOG background likelihood to determine 
whether a pixel belongs to background or not, Yang and Hsu 
[101] propose to include the spatial and color features to 
construct the background model. Considering the neighbor-
hood around a pixel, Hsu models the prior probability of this 
pixel: 

))(exp(
1

)( DnHVn
Z

BP dhv +−=                      (13) 

where Z is a normalization term, nhv  and nd indicate the 
number of foreground pixels in the horizontal/vertical and 
diagonal neighborhood respectively, and HV and D are the 
corresponding penalties. A pixel is classified as background 
if: P(X t / B)P(B) > T  where T is a fixed threshold. Lee 
[141] uses the posterior probability in the foreground 
detection. This probability can be expressed in terms of the 
mixture components P(Gk )  and P(Xt / Gk )as follows: 

P(B / Xt ) =
P(Xt / Gk

k=1

K

∑ )P(Gk )P(B / Gk )

P(Xt / Gk
k=1

K

∑ )P(Gk )
           (14) 

 The mixture components are obtained through the 
learning step. The estimation of P(B / Gk )  involves heuris -
tics encapsulating the domain knowledge of the background 
process. In the first model presented by Friedman and Russel 
[50], the Gaussians are manually labeled and remain fixed. 
In the original MOG [1], the probability is equal to 1 for 
Gaussians with the highest ratio r =ω σ covering a certain 
percentage of observations, and 0 for all others. In this 
approach, Lee [141] trains a sigmoid function on r to 
approximate P(B / Gk ) using logistic regression: 

P̂(B / Gk ) = 1 / (1+ e− aω k /σ k+ +b )                                     (15) 

 Once P(Xt) and )/( kGBP  are estimated, the foreground 
is composed of pixels where  

P(B / X t ) < 0.5 .                                                  (16) 
 By using a foreground model: In these approaches, the 
authors [57, 85, 109] use one model for the foreground and 
one for the background. The background model is the 
Mixture of Gaussians per pixel, as the background will be 
different per pixel. On the other hands, foreground objects 
are not static and move over all pixels. So, the foreground 
model is spatially shared and only one model is used for 
describing all foreground objects depicted in all pixels. 
Withagen et al . [57] and Pardas et al. [109] model the 
foreground by a uniform distribution. Lindstrom et al. [85] 
use a global Mixture of Gaussians for the foreground. Once 
the foreground model is determined, Withagen et al . [57] and 
Pardas et al. [109] propose to compare the probabilities that 
the pixels belongs to the background or the foreground. 
Respectively noted  P(

r
x / B)  and  P(

r
x / F) . Following the 

Bayes criterion, a pixel is assigned to be background when: 

 

P(
v
x / F)

P( vx / B)
< CBP(B)

CF P(F)
                                                  (17) 

where the FC  and BC  are the costs of false positive 
detection and false negative detection, and P(F) and P(B) are 
the a priori foreground and background probabilities. In 
practice, Whitagen et al. [57] set these parameters as 
follows:  P(

r
x / F)=1/ 2563 , P(B) −1− P(F)  and 

CB / CF = 0.05 . In this approach, there is no need to order 
and label kernels as in the scheme proposed by Stauffer and 
Grimson [1]. Classification is based on the highest 
probability, meaning that if the models are accurate, 
classification results will be optimal i.e. the total cost of 
misclassification will be minimal. So, the classification is 
performed by choosing the class which is most probable. 
Similarly, Pardas et al . [109] classify a pixel as foreground if 

 P(F)P(
r
x / F) > P(B)P(

r
x / B) . This test is the same one than 

in the Equation 17 proposed by Withagen et al. [57] with 
CB / C F = 1 .  

 By using some matching tests: Wang et al. [70] 
proposed to classify pixels as foreground when the pixel 
doesn’t match any Gaussian. The matching tests differ 
following the intensity value of the pixel to be more robust 
when the intensity is low and in the case of shadows and 
highlights (S). Results presented by Wang et al. [70] show 
that the foreground detection is improved especially in the 
case of dark scenes. Another approach developed by Miller 
et al . [58] consists in using the cylindrical color model 
defined by Kim et al . [144] instead of the spherical color 
model used by Stauffer and Grimson [1]. A pixel is classified 
as background if two matching tests are verified otherwise 
the pixel is classified as foreground. In these two approaches, 
the ordering and labeling phases aren’t used. To incorporate 
spatial information, Zhang et al. [40] defined a new 
matching test in a spatiotemporal Gaussian mixture model 
(STGMM). This test permits to handle the complex motion 
of the background by considering every background pixel to 



be fluctuating both in intensity and in its neighboring region. 
Quantitative evaluations demonstrate that the proposed 
STGMM performs better than MOG. 

 By using the most dominant background model: The 
ordering and labeling phases are conserved and the matching 
test is the same but instead of using a percentage of the 
Gaussian only the most dominant is considered to represent 
the background. Furthermore, instead of using the corres-
ponding µ  as the reference value, Haque et al. [104-106] 
proposed to use the most recent pixel value m represented 
by this Gaussian. The idea is to avoid any artificial value as 
the representation. Then, the foreground detection is made 
using S as explained in Section 3.5. 

 All the previous foreground detection used the pixel as 
element of comparison. To enhance the robustness, other 
feature sizes are used. 

3.6 Feature Size 

 Stauffer and Grimson [1] used the pixel as element of the 
image but the pixel-wise aspect has some disadvantages. To 
alleviate this, some authors use block [145, 146] or cluster 
[147] instead of the pixel:  

 Block-wise approaches: Fang et al. [145] apply a block-
wise MOG model which consists on a vector of 3×3 
neighbors of the current pixel. The advantage is to take into 
account the spatial dimension to imp rove the robustness. The 
foreground detection is obtained with pixel-wise precision 
due to the cooperation with a color segmentation, and so 
Fang et al . [145] eliminate the disadvantage of the original 
MOG which can’t detect foreground completely when the 
foreground’s texture and color are homogeneous and have 
low contrast with background (C, FA).  Another approach 
proposed by Latecki et al. [146] decomposes the video into 
spatiotemporal blocks. A dimensionality reduction technique 
is applied to obtain a compact vector representation of each 
block. The block vectors provide a joint representation of 
texture and motion patterns in videos. These block vectors 
are used as features. The foreground detection is improved 
decreasing the processing time due to the reduction of the 
number of input vectors per frame. The advantage to use the 
spatiotemporal blocks is the robustness to noise (NI) and to 
movement in the background (MB). The disadvantage is that 
the detection is less precise because only blocks are detected.  

 Cluster-wise approaches: Bhaskar et al. [147] divide 
first the image in clusters which are generated using a color 
clustering mechanism of the nearest neighbor approach. So, 
each cluster contains pixels than have similar features in the 
HSV space color. Then, the MOG is applied on these 
clusters to obtain cluster of pixels classified as background 
or foreground. Results presented by Bhaskar et al. [147] 
show that the cluster-wise MOG gives less false alarms. 
Instead of the block-wise approach, the foreground detection 
is obtained with a pixel-wise precision. 

3.8. Feature Type 

 There are several features that are used in the literature 
rather than the RGB space used by Stauffer and Grimson [1]. 
These features can be classified in seven categories: color 
features, edge features, texture features, stereo features, 
spatial features, motion features, and video features.  

 Color features: In the original MOG, Stauffer and 
Grimson [1] used the RGB components but these compo-
nents are very sensible to illumination changes (TD, LS) and 
shadowing (S). Furthermore, these components aren’t 
independent. So, some authors prefer to use other color space 
which are more robust to these critical situations and have 
independent components. These color spaces are the 
following ones: Normalized RGB [115, 116], YUV [88, 100, 
117], HSV [100], HSI [148], Luv [101], Improved HLS 
Color Space [118]. Kristensen et al. [119] have studied the 
influence of the seven color spaces. The YCbCr is found to 
be best in terms of noise, due to numeric stability and an 
independent brightness channel. Ribeiro et al. [120] have 
made a similar study which confirms it. 

 Edge features: In addition of the color features, Javed et 
al. [80] use the gradient as feature to deal with local sudden 
illumination changes (LS) and the ghosts leaved in (MBO) 
and (WFO). Another example can be found in Lindstrom et 
al. [85] which uses only the gradient feature. The com-
parison with the intensity, the RGB space and the log-
transformed output from a Prewitt edge detector show that 
the results are better in gray and RGB space because these 
features have less problems with false positives resulting in 
less noisy segmentation. It confirms the conclusion made in 
[149] that the gradient feature must be used in addition of the 
color features but not alone. In [67], Jain et al. use subpixel 
edges comparing this feature with the intensity, the gradient 
and the edges. Their results show that the subpixel edges are 
more robust in the case of camera adjustments like automatic 
gain control (CA) and sudden illumination change (MB). 

 Texture features: Hampapur et al. [81] use texture 
features to handle sudden illumination changes (LS). The 
original MOG method generates large areas of false positive 
foreground when there are LS. The basic idea is that the 
texture in the false positive foreground areas which is caused 
by lighting changes should be similar to the texture in the 
background. The results show robustness to LS. 

 Stereo features:  In [89], Harville et al. propose to use the 
color space RGB and the disparity. In the same idea, Harville 
et al . [88] use the color space RGB but replace the disparity 
by the depth. The interest is that the two features can help 
each other in case of camouflage (C). One disadvantage of 
the stereo feature is the need of at least two cameras. 
Furthermore, the stereo features are not available in 
background areas which do not have sufficient texture to 
measure disparity with high confidence. In this case, only the 
color feature is used. Recently, Silvestre [91] alleviates the 
constraints of two cameras using a Time -of-Flight (TOF) 
camera which is a recent technology for the acquisition in 
real-time of depth and intensity images. 

 Spatial Features: In addition to the color features (Luv), 
Yang and Hsu [101] use the spatial coordinate (x,y) as 
features. As seen in the Section 3.5, this method is more 
robust in the case of MB. In the same idea, Dickinson et al. 
[90] use the spatial coordinate features (x,y) too but with the 
color features (YUV). The interest of spatial features is 
developed in [150]. 
 Motion Features:  Gao et al . [41] propose a Spatial-
Kinetic Mixture of Gaussians model (SKMGM). A four 



dimensional feature vector is taken to describe the state of 
each pixel: ),( ii yx which denotes the pixel’s coordinate 

and ),( ii yx &&  which denotes the corresponding motion speed 
values. Results [41] show robustness to dynamic back-
grounds (MB), quick illumination changes (LS) and noise 
(NI). 

 Video Features: Chen et al. [61] use video features to 
model the background directly from compressed video. The 
proposed approach utilizes the information exploited from 
DCT coefficients at block level to construct accurate 
background models at pixel level. An advantage of this block 
based approach in the DCT domain is a representation of a 
pixel block in a very compact form. This method is more 
robust to noise (NI) and local sudden illumination changes 
(LS) because the block level introduces spatial information. 
Furthermore, the use of the YCbCr gives more robustness to 
shadows (S). 

 The intrinsic model improvements attempt to be more 
rigorous in the statistical sense like in the foreground 
detection or to introduce spatial and temporal constraints. In 
the following Section, we survey the other improvements 
which introduce these constraints too by adding one or more 
external process and so we have called them extrinsic model 
improvements. These kinds of improvements have been used 
in [151]. 

4. EXTRINSIC MODEL IMPROVEMENTS  

 The efficacy and robustness can be improved by using 
the knowledge of temporal and spatial information in the 
external strategies. In the literature, different approaches can 
be found by using: 

 Markov Random Fields: Kumar and Sengupta [69] 
propose to enforce the temporal contiguity in p ixel 
classification by the use of simple Markov sequence models 
and to capture the spatial contiguity by MRF models. Results 
[69] show that the proposed algorithm is able to handle with 
local illumination changes corresponding to shadows and 
highlights due to Automatic Exposure Correction (CA). 
False positive and false negative detections are less than in 
the original MOG. Although the foreground detection is 
improved by the MRF, some objects may still be connected 
incorrectly and the boundaries of object are not accurate. To 
solve this problem, Zhou and Zhang [152] propose to use a 
level set method to handle topological merging and splitting. 
This method gives precise boundaries and good results on 
real images but is computationally expensive. Schindler et 
al. [153] present a MRF formulation of the labeling task too 
but only takes into account the spatial contiguity. The 
advantage of the proposed algorithm is that it is simple 
enough to be optimized in real-time.  

 Hierarchical approaches: As sharp changes (LS) cannot 
be detected on the pixel level alone, Sun and Yuan [76] 
employ state models of different scales. A MOG of the 
highest scale is used to detect sharp changes in the overall 
scene, which is built by extracting the global mean vector of 
each frame. The MOGs of intermediate scales are 
constructed likewise on a part of each frame to detect sharp 
changes in the partial scene, while pixel-wise MOGs of the 

lowest scale are implemented as usual. If a MOG of the 
upper scale has K states, each state holds a version of MOGs 
of the lower scale in the same location. Hence, all state 
models are organized in a hierarchical mode. In the same 
idea, Zhou et al. [154] use image pyramid. The motivation is 
that the peak noises and the small movement of the scene are 
eliminated in the low resolution image. By inferring the 
corresponding pixel states at different resolution level, a 
better background label image is computed. Park et al. [124] 
use a hierarchical data structure based on a regularly 
decomposed region quadtree for decrease the processing 
time. The hierarchical MOG is 5 to 10 faster than the 
Stauffer’s implementation. Hung et al. [102] propose a 
method that combines pixel-based and block-based approa-
ches into a single framework. An efficient hierarchical 
background is built by considering that these two approaches 
are complementary to each other. Indeed, the hierarchical 
MOG proposed is more robust in the case of movement in 
the background (MB). 
 Multi-level approaches:  Javed et al. [80] propose an 
algorithm which process at these three distinct levels. At the 
pixel level, two background models using the MOG are 
used: one for the color feature, the other one for the gradient 
feature. The edge and color information obtained from pixel 
level is used at the region level. The basic idea is that any 
foreground region that corresponds to an object will have 
high values of gradient at its boundaries. On the opposite, the 
boundary pixels did not contain significant edges in the cases 
of local sudden illumination changes (LS) and the ghosts 
leaved in (MBO) and (WFO). So, these edges  are eliminated 
in the region level where foreground pixels obtained from 
the color feature are grouped into regions and gradient 
feature is then used to make inferences about the validity of 
these regions. The maintenance of the pixels is made 
following the results of the region level. Finally frame level 
analysis is performed to detect global sudden illumination 
changes (LS). Indeed, if more than 50 percent of the pixels 
are detected as foreground ones, the results obtained with the 
color feature are ignored at the frame level and then only 
gradient information is used. When the frame level model is 
active, the region level is not applied because the color 
feature is supposed to be completely unreliable at this point. 
Furthermore, the initialization of background model is 
possible with moving objects present in the scene but not 
more than 50%. So, the method may be not very robust to 
the bootstrapping (B). Another similar approach is presented 
by Zang and Klette [155] and consists in three levels too. In 
the pixel level, the background is model by the MOG only 
for the color feature in the RGB space. Then, the frame level 
is used in second and it is defined by two frame differences 
computed between the frame It-1, It+1  corresponding to Dt-1 

and the frames It,It+1 corresponding to Dt . Pixels being 
identical in all three frames are in the foreground region of 
frame. So, Zang and Klette [155] ensure that these pixels are 
also in the foreground mask obtained from the pixel process 
by the following formula: Mask = Mask + (Dt −1 ∧ Dt ) . The 
region level comes in last position and its objective is to 
eliminate noise or small holes. For this, a test on the 
percentage of identical pixels in a 5*5 windows is made: 1) 



If there are less than half the number of foreground points 
surrounding the central pixel, and these points are not 
connected, then this central foreground pixel is removed 
from foreground mask. 2) If there are more than half the 
number of foreground points surrounding it, and these points 
are connected, then this central point is confirmed to be a 
foreground pixel. Results show that the foreground detection 
gives more homogenous region than the MOG only. In [77], 
the pixel level consists in an improved MOG to get the better 
adaptability to the slow change of background. On the region 
level, the moving pixels are grouped to get moving region. 
Region level processing provides the solution for the slow 
and fast changes of the dynamic environments. Finally, 
frame level analysis is performed to detect the global 
illumination changes and re-initialize the background model. 
Cristani et al. [78] propose to use only the pixel level and the 
region level. At the pixel level, the TAPPMOG model 
proposed by Harville et al. [42] is used. Then, the pixel level 
information is modulated with the region level information 
resulting in a variation of the adaptiveness speed of the 
background modeling system driven by region-based 
reasoning. This approach is robust to sudden il lumination 
changes (LS). Cristani et al  [43] proposed a S-TAPPMOG 
model which perform the previous scheme using a spatial 
sampling mechanism. The maintenance is made at the region 
level. Cristani et al. [92] used a joint pixel-region analysis 
technique called ASTNA and which is able to automatically 
select sampling rate with which pixels in different areas are 
checked out, while adapting the size of the neighborhood 
region considered. 

 Multiple backgrounds: Su and Hu [74] use two 
background models to handle  gradual and sudden changes 
(TD, LS). The first one is the short -term model which 
represents the change in background over a short time. It 
updates by the result of background MOG. Pixels belong to 
background will be used to update the short-term model. It  is 
not desired when the foreground object become a part of 
background. The second one is the long-term model which 
represents the change in background over a long time. Each 
pixel will be used to update the long-term model. It is not 
desired when foreground objects move slowly or when some 
stationary variations happened in background, but it 
overcomes the drawback of the short-term model. Then, the 
two models are combined to get a better background model. 
When the mean of short-term model exceeds the mean of 
long-term model 2.5 standard deviation, the present 
background model will be replaced by long-term model. 
Otherwise, the short-term model is used. The threshold, 2.5 
standard deviation, can be adjusted by the case of appli -
cation. The sensitivity of the background model becomes 
higher by decreasing the threshold value. This scheme is 
improved by the same authors in [75]. Another approach 
developed by Porikli [156] use two backgrounds too, i.e a 
short and a long term ones, to detect temporarily static 
regions in video surveillance scene. 

 Graph cuts: Sun et al. [100] use a dynamic graph cut 
algorithm. First, an energy function is defined integrating a 
better likelihood term, a shadow elimination term and a 
contrast term. Exploiting the fact that there is minimal 

change between consecutive frames and corresponding 
MRF, Sun et al . [100] alleviate the constraints to construct 
and cut a new graph for each frame which is a conven-
tionally slow step and uses the dynamic graph cut algorithm 
proposed by Kohli and Torr [157] to speed up foreground 
detection significantly. Results [100] show robustness to 
(MB) and (S). 

 Multi-layer approach: Yang et al. [39] use a two-layer 
Gaussian mixture model (TLGMM) of dynamic scenes for 
moving object detection. The first layer permits to deals with 
gradually changing pixels specially. The second layer 
focuses on those pixels changing significantly and irregu-
larly. TLGMM can represent dynamic scenes more accura-
tely and effectively. Additionally, a long term and short term 
variance are taken into account to alleviate the transparent 
problems faced by pixel-based methods. Results [39] show 
better performance in case of waving trees and water rippling 
(MB). Another approach developed by Porikli and Tuzel 
[158] models each pixel as layers of 3D multivariate 
Gaussians. Each layer corresponds to a different appearance 
of the pixel in the RGB space. The number of layers required 
to represent a pixel is not known beforehand so background 
is initialized with more layers than needed (3 to five layers). 
Using confidence scores, significant layers are retained for 
each pixel. At each update, at most one layer is updated with 
the current observation. This assures the minimum overlap 
over layers. 

 A different Features-Cameras strategies : Stauffer and 
Grimson [1] applied the MOG with one camera and color 
features. Different other strategies can be found in term of 
number of cameras and features used: 

 Multiple features - One Camera: The idea is to compen-
sate the failure due to one color features by another color 
features (i.e intensity or color space) or another type of 
features (i.e edge features, stereo features and spatial 
features). For example, Ellis et al . [121] propose an original 
approach based on the intensity component and the color 
comp onent. The interest is that the intensity feature is 
sensitive to both foreground and illumination changes and 
that the color features respond only to foreground. For the 
use of other features than the intensity features in addition to 
the color features, the advantage is related to the 
characteristic of the features used as seen in the Section 3.7. 

 One feature –  Multiple Cameras:  Nadimi and Bhanu 
[122] use different sensors but only the color features are 
used. Indeed, the sensors  are visible spectrum cameras and 
the RGB components are used as features but the cameras 
have different spectral sensitivities. Each camera is looking 
at the same phenomenon in the scene and is providing 
independent measurements. Hence, camera configuration can 
be thought of as either cooperative or competitive in a fusion 
strategy scheme. Results [122] indicate that a AND strategy 
is a viable fusion strategy for relatively small moving objects 
at intermediate distances. 

 Multiple features – Multiple cameras: Nadimi and 
Bhanu [72] use the IR feature in addition of the RGB ones 
and so use two different cameras (IR, visible) The interest is 
to handle adverse illumination conditions such as sudden 
illumination changes (LS) or lack of illumination in a scene. 



Indeed, the IR feature is more reliable in this challenge than 
the RGB features. Results [72] show that this method 
maintains high detection rates under a variety of critical 
illumination conditions (TD, LS) and visible camera failure. 
In the same idea, Conaire et al. [73] use thermal infrared 
video and visible spectrum video in the context of video 
surveillance and models the background for each features 
(IR and LUV) with the MOG model proposed by [87]. 
Results show that this method is more robust to changing 
lighting conditions (TD, LS) and camouflage (C). 

 By using tracking feedback: Harville et al. [42] propose 
to use two types of feedback based on the classification 
obtained from the tracking process. A positive feedback 
enhances correct foreground segmentations and a negative 
feedback adjusts the pixel-level background model in order 
to prevent the re-occurrence of detected foreground 
mistakes. The feedback interface between the MOG and the 
higher levels i.e the tracker consists of two bitmaps. One 
represents pixels where positive feedback should be applied 
and the other represents pixel where negative feedback 
should be applied. The precise goal of positive feedback is to 
prevent incorporation of correctly foreground pixels into the 
background in the case of sleeping foreground objects 
(SFO). So, for pixels that are classified by the tracker as 
foreground pixels too, the learning rate is set to zero. The 
negative feedback can be viewed as a system that correct 
pixels classified as foreground by the MOG but as 
background by the tracker. Another approach developed by 
Taycher et al. [113] consists in a statistically consistent 
method for incorporating feedback from high-level motion 
model to modify adaptation behavior. This approach is based 
on formulating the background maintenance problem as 
inference in a continuous state Hidden Markov Model, and 
combining it with a similarly formulated object tracker in a 
multichain graphical model framework. The idea is that the 
background model should not be adapted to pixels that the 
tracking system predicts to be generated by the foreground 
objects, and visa versa, pixels that are predicted to belong to 
background should not be considered by the tracker. Results 
are better in the case of foreground objects that remained 
stationary for extended periods of time (SFO). 

 Post-processing: Standard post-processing is generally 
applied by using morphological operators, connected com-
ponent analysis and minim area filtering. Turdu and Erdogan 
[159] reduce the fragmentation of foreground objects using a 
hysteresis thresholding method. An evaluation of the MOG 
with post-processing is presented in [160]. 

We can remark that the original MOG used in certain 
extrinsic model improvements can be replaced by one of the 
improved intrinsic MOG seen in the Section 2. All the 
intrinsic and extrinsic model improvements concern the 
quality of the foreground detection but there is another 
manner to improve the original MOG which consist in 
reducing the computation time. 

5. REDUCING THE COMP UTATION TIME  

 The algorithm presented by Stauffer and Grimson [1] can 
be performed in term of time consuming. Different strategies 
can be found in the literature:  

 Region of interest: To reduce computation time, Atrey et 
al. [125] propose to use an Experiential Sampling technique. 
The goal is to apply only the MOG on the region for interest 
and thus restrict the computational efforts in these regions. 
Indeed, this region of interest in general is present only in a 
small part of the image, therefore, the attention should only 
be in these regions. Results presented by Atrey et al. [125] 
show a significant gain in processing speed with a minor loss 
in accuracy. 

 A variable adaptation rate: Another way to reduce the 
computation time is the use a variable adaptation rate in the 
maintenance. The goal is to update only when it needed. 
Indeed, Stauffer and Grimson [1] make the maintenance 
every frame but in the case of no significant changes pixels 
doesn’t needed to be updated at every frame. In [24], Porikli 
et al . propose to adapt the time period of the maintenance 
mechanism following the illumination change score. The 
idea is that no maintenance is needed if no illumination 
change is detected and a quick maintenance is necessary 
otherwise. In the same idea, Magee [126] use a variable 
adaptation frame rate following the pixel’s activity, which 
improves temporal history storage for slow changing pixels 
while running at high adaptation rates for less stable pixels.  

 Hardware implementations: The large amount of 
calculations due to pixel-wise aspect of the MOG could often 
only achieve a low frame rate far from real-time require-
ments on computers. To solve this problem, Jiang et al. [127] 
propose a hardware accelerator with a dedicated architecture 
which can address the computation and the memory 
bandwidth demand. This architecture provides a calculation 
capacity allowing real-time processing of relatively large 
images 1024×1024 in RGB at a frame rate of 38 fps. To 
reduce the large memory required for storing Gaussian 
parameters, a specific memory scheme is proposed. Further-
more, a test benchmark based on an FPGA platform has been 
developed, capable of real time evaluation of the system 
performance as well as parameter properties. Another 
architecture proposed by Appiah et al . [128] use a cam-
corder, a FPGA single-chip, four blocks of RAM and a 
display unit. The system performs 209fps for 640×480 frame 
size and 145fps for 768×576 frame size in RGB. 

 Switching the background model: Zuo et al. [129] 
propose a switching based background modeling approach 
called MSBM. Regions are classified as regions with high or 
low complexity using an entropy measure. For background 
regions with high complexity of pixels value distribution, the 
MOG model is used to guarantee the accuracy of moving 
object detection. Otherwise a running average is applied to 
reduce the computational load. Results [129] show that this 
approach possesses almost the same detection accuracy and 
much higher image processing frame rate than MOG model 
only. Another approach proposed by Liang et al. [161] use a 
mean shift algorithm which classifies the background pixels 
as single mode or multiple mode pixels so that the single-
mode pixel values are updated with a IIR filter, while the 
multi-mode pixel values are modeled by the MOG. This 
approach has a faster speed than the original MOG.  

 Space sampling: The meaning of the space sampling is 
to lower the resolution of the image and was proposed in 
[131]. For example, take a 320*240 image, its resolution can 



be reduced by ¼. This image is used to execute the MOG 
method and so the computational load is further lowered. 
When the binary mask is obtained, a zoom is made to come 
back to 320*240 using interpolation method. The speed 
using the space sampling method is 1.65 times, to 2.51 times 
faster than the original MOG. 

 All the precedent improvements concern directly the 
original MOG and the foreground detection results only from 
it. Another way to improve this method is to enhance the 
results of the foreground detection by using cooperation with 
another segmentation method. 

6. ENHANCING THE DET ECTION WITH ANOTHER 
SEGMENTATION METHOD 

 Some authors propose to enhance the performance of the 
MOG using another method of segmentation: 

 Statistical Background Disturbance Technique: Gunn et 
al. [123] combine the original MOG with the statistical 
background disturbance technique developed by Horprasert 
et al . [162]. This second model uses the chrominance 
distortion and the brightness distortion and is more robust in 
the context of presence of shadows (S) and highlights 
particularly in indoor scenes. The idea proposed by Gun et 
al. [123] consists in the following: The MOG forms the basis 
of the model and the statistical background disturbance 
technique is used to force the MOG to expand the back-
ground distributions only when a pixel is labeled as a 
foreground pixel and the background disturbance technique 
disagrees. Results [123] show that the combination is more 
robust in the case of shadows and highlight in indoor and 
outdoor scenes. 

 Color Segmentation: Fang et al . [145] combine the 
foreground detection obtained by a block-wise MOG with a 
color image segmentation [163] using a projecting method 
[164]. The projection operation consists in estimating every 
homogeneous region after color image segmentation. The 
region is validated as a moving region if most of the regions 
belong to moving region by background model algorithm. 
Otherwise the region is background. Results [145] show that 
the combination is more robust in the case of camouflage 
(CS6) than the original MOG.  

 Optical Flow and Temporal Subtraction: Zhou et al. 
[103] associate the original MOG with optical flow and 
temporal differencing. The idea is to obtain the foreground 
object using the MOG and the moving objects using the 
optical flow and the temporal differencing. Temporal 
differencing is considered as a support technique of the 
optical flow which presents the inaccuracy to estimate the 
motion boundaries due to the use of image gradients and 
fixed support regions. In the data fusion step, foreground 
objects are validated as moving objects if the amplitude and 
direction of the optical flow are within the ranges of 
consideration. Results [103] show that the method locates 
precisely boundaries. Furthermore, this approach has satis -
factory performance on real image sequence but is 
computational expensive because of the use of optical flow.  

 Region-based motion detection: Zhang and Chen [64] 
apply a SVM classifier for block-based motion detection. 
Each video frame is divided into 8x8 blocks, and then 

classified as background or foreground. Features are extrac-
ted from current video frame, previous video frame, and the 
video background. The statistical attributes of an image 
block are computed as features, such as mean, standard 
deviation, and correlation. Eight fe atures from each block are 
used for training and testing. By applying the decision 
function, a block motion detection mask is obtained. Then, 
the integration of SVM and MOG is given simply by the 
interSection. These approach remove false classifications du 
to irregular background motion (MB). 

 We can remark that to enhance the results obtained with 
the original MOG used in [64,103,145] can be replaced by 
one of the intrinsic models improvements see in the Section 
2. 

7. PERFORMANCE EVALUATION 

 For the performance evaluation, we have chosen some 
typical algorithms i.e specifically ones which the authors 
used the Wallflower dataset to evaluate them. This dataset is 
the most used and  consists in a set of image sequences where 
each sequence presents a different type of difficulty that a 
practical task may meet. The performance is evaluated 
against hand-segmented ground truth. Three terms are used 
in evaluation: False Positive (FP) is the number of back-
ground pixels that are wrongly marked as foreground; False 
Negative (FN) is the number of foreground pixels that are 
wrongly marked as background;  

 Total Error (TE) is the sum of FP and FN. A brief 
description of the Wallflower image sequences can be made 
as follows:  

- Moved Object (MO) - A person enters into a roo m, 
makes a phone call, and leaves. The phone and the chair 
are left in a different position.  

- Time of Day (TOD) - The light in a room gradually 
changes from dark to bright. Then, a person enters the 
room and sits down. 

- Light Switch (LS) - A room scene begins with the lights 
on. Then a person enters the room and turns off the 
lights for a long period. Later, a person walks in the 
room, switches on the light, and moves the chair, while 
the door is closed.  

- Waving Trees (WT) - A tree is swaying and a person 
walks in front of the tree.  

- Camouflage (C) - A person walks in front of a monitor, 
which has rolling interference bars on the screen. The 
bars include similar color to the person’s clothing. 

- Boostrapping (B) - The image sequence shows a busy 
cafeteria and each frame contains people. 

- Foreground Aperture (FA) - A person with uniformly 
colored shirt wakes up and begins to move slowly. 

 Table 5 and Fig. (3) group the experimental results found 
in the literature for the algorithms chosen which are: 1) The 
original algorithm: Stauffer and Grimson [1]. 2) Three 
intrinsic improvements: White et al. [138] which used a 
better setting for the learning rates using Particle Swarm 
Optimi-zation (See section 3.4), Wang et al. [70] which 
modified the foreground detection step using a mixed color 



space i.e a normalized RGB color space for pixels  with high 
intensities and in RGB color space for pixels with low 
intensities (See section 3.6) and Setiawan  et al . [118] which 
used the IHLS space (See section 3.7). 3) Three extrinsic 
improvements: Schindler et al. [153] which used the MRFS 
to smooth the results spatially as seen in Section 4, Cristani 
et al. [43] which proposed the Spatial-Time Adaptive Per 
Pixel Mixture Of Gaussian called S-TAPPMOG and Cristani 
et al. [92] which used an adaptive spatio-temporal 
neighborhood analysis called ASTNA. For these two last 
algorithms, the authors don’t give the result for the following 
image sequences: Moved Object, Time of Day and Light 
Switch. So, we have indicated for these the Total Error 
without these image sequences. In Fig. (1), we have repre-
sented the overall performance for the five first algorithms 
and in Fig. (2) for the seven algorithms but without the 
image sequences Moved Object, Time of Day and Light 
Switch. Fig. (1) and Fig. (2) are not intended to be a defi-
nitive ranking of these algorithms. Such a ranking is neces-
sarily task-, sequence-, and application dependent. 

 From Table 5, we can see that the original MOG gives 
the bigger total of error. A better setting of the learning rate 
α  and the threshold T using the PSO [138] divides 
approximately by 2 the number of total errors. The use of the 
IHLS color space instead of the RGB [118] decreases a lot 

the number TE which becomes just under 10 0000. The 
improvement proposed by Wang et al. [70] gives the better 
results for the intrinsic improvements. For the extrinsic 
improvements, the best results are obtained by the MOG 
using the MRF proposed by Schindler et al. [153] followed 
by the S-TAPPMOG [43] and ASTNA [92]. For all the 
methods, the image sequences Light Switch (LS) gives the 
larger amount of false positive. Here, the best result is 
obtained by the method proposed by Schindler et al. [153]. 
The use of IHLS [118] gives it best improvement for the 
image sequences Camouflage (C) and for the method 
proposed by Wang et al. [70], it is the image sequences 
Waving Trees (WT). In resume, this performance evaluation 
shows that taking into account spatial and temporal 
consistency improves the results in  a significant way. 

CURRENT & FUTURE DEVELOPMENTS  

 This paper attempts to provide a comprehensive survey 
of research on background modeling using Mixture of 
Gaussians for foreground detection and to provide some 
structural categories for the strategies described in over 150 
papers. Thus, we have proposed a classification in two 
classes respectively called intrinsic and extrinsic model 
improvements. Strategies adding spatial and temporal 
information in the different steps or in added process have 
shown their abilities to improve the robustness of the original 

 

 

 

 

 

 

 

Fig. (1). Overall performance. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Overall performance without MO, TD and LS.  



MOG model to critical situations. Cooperation with another 
segmentation has shown their interests too. Methods which 
reduce the computation time permit to deal with the 
constraints of real-time application. Although significant 
progress has been made since the paper of Stauffer and 
Grimson [1], there is still work to be done and we believe 
that a systematic comparative evaluation of improvement 
proposed at each step must be made and thus determine the 

best combination of strategies. In this context, we encourage 
the evaluation using all the Wallflower dataset like in [70, 
118, 138, 153]. For a better improvement and understanding 
of the MOG, we believe that a time series analysis like in 
[165] must be done and a reusable and pluggable software 
component must be developed like the one developed by 
Haque et al. [166]. Furthermore, two main investigations 
seem to be very promising:  

Table 5. Experimental Results Obtained by Different Improvements  

  Problem Type   

 Error Moved Time of Light Waving  Camou- Bootstrap Foreground Total 

Algorithm Type  Object Day Switch  Trees flage  Aperture  Errors 

Stauffer et al. [1] False neg. 0 1008  1633 1323 398 1874 2442  

MOG False pos. 0 20 14169 341 3098 217 530 27053 

White et al. [138] False neg. 0 807 1716 43 2386 1551 2392  

MOG  with PSO False pos. 0 6 772 1689  1463  519  572 13916  

Setiawan  et al. [118] False neg. 0 379 1146 31 188 1647 2327  

MOG-IHLS  False pos. 0 99 2298 270 467 333 554 9739 

 Wang et al. [70] False neg. 0 597 1481 44 106 1176 1274   

Improved MOG - FD False pos.  0 358 669  288 413  134 541 7081 

Schindler et al. [153] False neg. 0 47 204 15 16 1060 34  

MOG with MRF False pos.  0 402 546  311 467  102 604 3808 

Cristani et al. [43] False neg. - - - 153 643 1414 1912  

S-TAPPMOG False pos. - - - 1152 1382 811 377 7844 

Cristani et al. [92] False neg. - - - 253 823 2349 1900  

ASTNA False pos. - - - 100 1173 73 360 7031 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Wallflower datasets results. 



- Generalized GMM [167-171] which allows to alleviate 
the constraint of a strict Gaussian.  

- Type-2 Fuzzy GMM [172] which takes into account the 
uncertainty. 

 In conclusion, this paper allows the reader to survey the 
strategies and it can effectively guide him to select the best 
improvement for his specific application. Particularly, this 
survey paper allows: 1) Developers to choose the appropriate 
improvement to tackle the critical situations met in their 
application. 2) Researchers to have a recent state-of-the-art 
and so easily identify new ideas to improve the MOG. 3) 
Reviewers to verify quickly the originality of a paper. Our 
future works concern a recent state-of the-art and a repo-
sitory of the most common background subtraction methods. 
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