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STABILITY AND STABLE GROUPS IN CONTINUOUS LOGIC

ITA[PLEASE INSERT “PRERENDERUNICODE–˝ INTO PREAMBLE] BEN YAACOV

Abstract. We develop several aspects of local and global stability in continuous first
order logic. In particular, we study type-definable groups and genericity.

Introduction

Continuous first order logic was introduced by A. Usvyatsov and the author in [BU],
with the declared purpose of providing a setting in which classical local stability theory
could be developed for metric structures. The actual development of stability theory there
is fairly limited, mostly restricted to the definability of ϕ-types for a stable formula ϕ, the
properties of ϕ-independence, and in case the theory is stable, properties of independence.
Many fundamental results of classical stability theory, and specifically those related to
stable groups, are missing there, and it is this gap that the present article proposes to
fill.

We assume familiarity with [BU] and follow the notation used therein. Throughout
T denotes a continuous theory in a language L. We do not assume that T is complete,
so various constants, such as k(ϕ, ε) of Fact 2.1, are uniform across all completions of T
(provided that ϕ is stable in T , i.e., in every completion of T separately).

By a model we always mean a model of T . Whenever this is convenient, we shall
assume that such a model M is embedded elementarily in a large monster model M, i.e.,
in a strongly κ-homogeneous and saturated model, where κ is much bigger than the size
of any set of parameters under consideration. Notice that we may not simply choose a
single monster model for T , as this would consist of choosing one completion.

1. General reminders

We shall consider throughout a formula ϕ(x̄, ȳ) whose variables are split in two groups.
We recall from [BU] that a definable ϕ-predicate is a definable predicate ψ(x̄), possibly
with parameters, which is equivalent to an infinitary continuous combination of instances
of ϕ:

ψ(x̄) ≡ θ
(

ϕ(x̄, b̄n)
)

n∈N
, θ : [0, 1]N → [0, 1] continuous.
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Equivalently, ϕ(x̄) is a ϕ-predicate if it can be approximated arbitrarily well by finite
continuous combinations of instances of ϕ, possibly restricted to the use of the connectives
¬, 1

2
, −. alone.

Local types, i.e., ϕ-types for a fixed formula ϕ, are discussed in [BU, Section 6]. For
a model M and a tuple ā in some extension N � M, the ϕ-type of ā over M, denoted
tpϕ(ā/M), is the partial type given by {ϕ(x̄, b̄) = ϕ(ā, b̄)}b̄∈M . The space of all ϕ-types
over M is denoted Sϕ(M), and it is a compact Hausdorff quotient of Sn(M). If ψ(x̄)
is a ϕ-predicate over M then tpϕ(ā/M) determines ψ(ā), so we may identify ψ with a

mapping ψ̂ : Sϕ(M) → [0, 1], sending p 7→ ψp. Every such mapping is continuous, and
conversely, every continuous mapping from Sϕ(M) to [0, 1] is of this form.

For A ⊆M we define Sϕ(A) to be the quotient of Sϕ(M) where two types are identified
if all A-definable ϕ-predicates agree on them. This is again a compact Hausdorff space,
a common quotient of Sϕ(M) and of Sk(A) (for the appropriate k), and the continuous
mappings Sϕ(A) → [0, 1] are precisely the A-definable ϕ-predicates. In particular this
does not depend on the choice of M.

Lemma 1.1. Let M be a structure, K ⊆M ℓ a (metrically) compact set and let ϕ(x̄, ȳ) be
a formula (or a definable predicate, which we may always name by a new predicate symbol
without adding any structure). Then inf ȳ∈K ϕ(x̄, ȳ) is a ϕ-predicate (with parameters in
K) and for any tuple x̄, the infimum is attained by some ȳ ∈ K.

In particular, K is definable in M.

Proof. Since K is compact we can find a sequence {c̄n}n∈N ⊆ K such that for every ε > 0
there is m = m(ε) such that K ⊆

⋃

n<mB(c̄n, ε). Then inf ȳ∈K ϕ(x̄, ȳ) is arbitrarily well
approximated by formulae of the form

∧

n<m ϕ(x̄, c̄n) as m → ∞. Finally, the infimum
of a continuous function on a compact set is always attained. �1.1

It will also be convenient to adopt the following somewhat non standard terminology:

Definition 1.2. Let M be a model, A ⊆M a subset. We say that M is saturated over
A if it is strongly (|A| + ℵ0)

+-homogeneous and saturated. (In fact, for all intents and
purposes it will suffice to require M to be strongly ℵ1-homogeneous and saturated once
every member of A is named.)

We say that a partial type π(x̄) over M is A-invariant if M is saturated over A and
π is fixed by the action of Aut(M/A).

Fact 1.3. [BU, Lemma 6.8] Let ϕ(x̄, ȳ) be any formula, A a set, M a saturated model
over A, and let p ∈ Sϕ(A). Then Aut(M/A) acts transitively on the set of extensions of
p in Sϕ(acleq(A)).

Let us also recall:

Definition 1.4. Let X and Y be two type-definable sets. We say that Y is a logical
neighbourhood of X, in symbols X < Y , if there is a set of parameters A over which both
X and Y are defined such that [X] ⊆ [Y ]◦ in Sn(A).
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Notice that the interior of [Y ] does depend on A (i.e., if A′ ⊇ A then [Y ]◦ calculated
in Sn(A

′) may be larger than the pullback of the interior of [Y ] in Sn(A)). We may
nonetheless choose any parameter set we wish:

Lemma 1.5. Assume that X is type-definable with parameters in B, Y type-definable
possibly with additional parameters not in B. Then:

(i) If X < Y then [X] ⊆ [Y ]◦ in Sn(A) for any set A over which both X and Y are
defined.

(ii) If X < Y then there is an intermediate logical neighbourhood X < Z < Y , which
can moreover be taken to be the zero set of a formula with parameters in B.

(iii) If Y ∩X = ∅ then there is a logical neighbourhood Z > X such that Z ∩Y = ∅.
Moreover, we may take Z to be a zero set defined over B.

Proof. Assume X < Y , where X is type-definable over B, and Y over A ⊇ B. Let Φ
consist of all formulae ϕ(x̄) over B which are zero on X. If ϕ, ψ ∈ Φ then ϕ ∨ ψ ∈ Φ,
and X is defined by the partial type p(x̄) = {ϕ(x̄) ≤ r : ϕ ∈ Φ, r > 0}. By compactness
in Sn(A) there is a condition ϕ(x̄) ≤ r in p(x̄) which already implies x̄ ∈ Y . Let Z be
the zero set of the formula ϕ(x̄) −. r′ where 0 < r′ = k

2−m < r.
Then in Sn(A) we have [X] ⊆ [ϕ(x̄) < r′] ⊆ [ϕ(x̄) ≤ r′] ⊆ [ϕ(r̄) < r] ⊆ [Y ], i.e.,

[X] ⊆ [Z]◦ ⊆ [Z] ⊆ [Y ]◦, proving the first two items. The third item now follows from
the fact that Sn(A) is a normal topological space. �1.5

2. Definability and forking of local types

Having fixed a theory T , we shall call here a formula ϕ(x̄, ȳ) stable if it is stable in T ,
that is, if it does not have the order property in any model of T . The order property
was defined for continuous logic in [BU], but the reader may simply use Fact 2.1 below
as the definition of a stable formula.

Let us introduce some convenient notation. If ϕ(x̄, ȳ) is any formula with two groups
of variables, ϕ̃(ȳ, x̄) denotes the same formula with the groups of variables interchanged.
More generally, let us define

ϕ̃n(ȳ, x̄<2n−1) = medn
(

ϕ(x̄i, ȳ)
)

i<2n−1
,

where medn : [0, 1]2n−1 → [0, 1] is the median value combination:

medn(t<2n−1) =
∧

w∈[2n−1]n

∨

i∈w

ti =
∨

w∈[2n−1]n

∧

i∈w

ti.

Thus in particular ϕ̃1 = ϕ̃ and every instance of ϕ̃n is a ϕ̃-predicate.

Fact 2.1. Let ϕ(x̄, ȳ) be a stable formula. Let M be a model and let p ∈ Sϕ(M) be a
complete ϕ-type. Then

(i) The type p is definable over M , i.e., there exists an M-definable ϕ̃-predicate
dpϕ(ȳ) such that ϕ(x, b̄)p = dpϕ(b̄) for all b̄ ∈M .
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(ii) For every ε > 0 there exists a number k = k(ϕ, ε) ∈ N (which depends on ϕ and
on ε but not on p) and a tuple c̄<2k−1 = c̄ε<2k(ϕ,ε)−1 (which does depend on p)
such that

|dpϕ(ȳ) − ϕ̃k(ȳ, c̄<2k−1)| < ε.

(iii) Assume moreover that M is saturated over A ⊆ M , and let ā � p (in some
extension N � M). Then in the previous item the tuples c̄<2k−1 can be chosen
so that each c̄n realises tp(ā/Ac̄<n).

Proof. The first two items come from [BU, Lemma 7.4]. The third item, while not
explicitly stated there, is immediate from the proof. �2.1

We recall that for A ⊆ B ⊆ M, p ∈ Sϕ(B) does not fork over A if it admits an
extension p1 ∈ Sϕ(M) which is definable over acleq(A). In this case p1 itself does not fork
over A or B. A type over a model clearly admits a unique non forking extension to any
larger model (and therefore set), so this definition does not depend on the choice of M.

We proved in [BU, Proposition 7.15] that every ϕ-type over a set A admits a non forking
extension to every model (and therefore every set) containing A. A minor enhancement
of that result will be quite useful.

Fact 2.2 (Existence of non forking extensions). Let ϕ(x̄, ȳ) be a stable formula, A a set,
M ⊇ A a saturated model over A. Let π(x̄) be a consistent A-invariant partial type over
M . Then there exists p ∈ Sϕ(M) compatible with π which does not fork over A.

Proof. Let X = {p ∈ Sϕ(M) : p∪π is consistent}. Then X is non empty and A-invariant.
By [BU, Lemma 7.14], there is Y ⊆ X which is A-good, i.e., which is A-invariant and
metrically compact. By [BU, Lemma 7.13], any p ∈ Y would do. �2.2

Corollary 2.3. Let ϕ(x̄, ȳ) be a stable formula, A a set, M ⊇ A a saturated model over
A. Then p ∈ Sϕ(M) does not fork over A if and only if it is acleq(A)-invariant.

Proof. Left to right follows from the definition, right to left from Fact 2.2. �2.3

Corollary 2.4. Let A be a set, M ⊇ A a saturated model over A and π(x̄) a consistent
A-invariant partial type over M . Then there exists a complete type π ⊆ p ∈ Sn(M), such
that for every stable formula ϕ(x̄, ȳ) the restriction p↾ϕ ∈ Sϕ(M) does not fork over A.

Proof. We may assume that A = acleq(A). Index all stable formulae of the form ϕi(x̄, ȳi)
by i < λ. We define an increasing sequence of consistent A-invariant partial types πi
over M , starting with π0 = π. Given πi, by Fact 2.2 there is pi ∈ Sϕi

(M) be non forking
over A and compatible with πi, so πi+1 = πi ∪ pi is consistent and A-invariant. For limit
i we define πi =

⋃

j<i πj. Finally, let p ∈ Sn(M) be any completion of πλ. Then p will
do. �2.4

It follows that if the theory is stable then every complete type over a set admits non
forking extensions. The same fact was proved in [BU] using a somewhat longer “gluing”
argument.
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Fact 2.5 (Symmetry [BU, Proposition 7.16]). Let M be a model, p(x̄) ∈ Sϕ(M), q(ȳ) ∈
Sϕ̃(M). Then dpϕ(ȳ)q = dqϕ̃(x̄)p.

Proposition 2.6. Let ϕ(x̄, ȳ) be a stable formula, M a model, A ⊆M . For each b̄ ∈M
let χb̄(x̄) be the definition of a non forking extension of tpϕ̃(b̄/ acleq(A)) to M .

(i) Each χb̄(x̄) is a definable ϕ-predicate over acleq(A).
(ii) A ϕ-type p ∈ Sϕ(M) does not fork over A if and only if ϕ(x̄, b̄)p = χb̄(x̄)

p for all
b̄ ∈M .

(iii) A ϕ-type over acleq(A) is stationary, i.e., admits a unique non forking extension
to every larger set.

(iv) Let r(x̄) =
{

|ϕ(x̄, b̄) − χb̄(x̄)| = 0: b̄ ∈ M
}

. Then the partial type r(x̄) defines
the set of ϕ-types which do not fork over A:

ā � r ⇐⇒ tpϕ(ā/M) does not fork over A.

(v) For every B ⊇ A, the set {p ∈ Sϕ(B) : p does not fork over A} is closed.

Proof. The first item is by Fact 2.1 and the definition of non forking.
For the second, fix b̄ ∈ M , let q0 = tpϕ̃(b̄/ acleq(A)) and let q ∈ Sϕ(M) be the non

forking extension defined by χb̄. Assume p ∈ Sϕ(M) does not fork over M , so dpϕ(ȳ) is
a ϕ̃-predicate over acleq(A). By Fact 2.5,

ϕ(x̄, b̄)p = dpϕ(b̄) = dpϕ(ȳ)q0 = dpϕ(ȳ)q = dqϕ̃(x̄)p = χb̄(x̄)
p.

Conversely, assume that ϕ(x̄, b̄)p = χb̄(x̄)
p for all b̄ ∈ M , and let p′ ∈ Sϕ(M) be any non

forking extension of p↾acleq(A). Then p = p′, proving also the third item. The fourth item
is just a re-statement of the second.

For the last item we may assume that B ⊆ M . The set [r] ⊆ Sϕ(M) is closed, and so
is its projection to Sϕ(B). This projection is precisely the set of types which do not fork
over A. �2.6

Proposition 2.6.(iii) is the analogue of the finite equivalence relation theorem in con-
tinuous logic. It has already appeared as [BU, Proposition 7.17]. In case p ∈ Sϕ(A) is
stationary, the unique non forking extension to B ⊇ A will be denoted p↾B. Similarly,
we write dpϕ for the definition of p↾M where M ⊇ A is any model (and this does not
depend on the choice of M). Thus, in hindsight, in the statement of Proposition 2.6, the
definitions χb̄ are uniquely determined, χb̄ = db̄/ acleq(A)ϕ̃.

Corollary 2.7. Let ϕ(x̄, ȳ) be a stable formula, A a set, M a saturated model over A.
Let p ∈ Sϕ(A). Then Aut(M/A) acts transitively on the set of non forking extensions of
p in Sϕ(M). If T is stable and p ∈ Sn(A) then Aut(M/A) acts transitively on the set of
non forking extensions of p to M.

Proof. The first assertion follows from Fact 1.3 and Proposition 2.6.(iii). For the second
we need the even easier fact that Aut(M/A) acts transitively on the extensions of a
complete type p ∈ Sn(A) to acleq(A). �2.7
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Corollary 2.8. Let ϕ(x̄, ȳ) be a stable formula M a model. A type p ∈ Sϕ(M) is definable
over A if and only if it does not fork over A and p↾A is stationary.

Proof. We may assume that M saturated over A. Let p′ ∈ Sϕ(M) be any non forking
extension of p↾A. By Corollary 2.7 there is an automorphism f ∈ Aut(M/A) sending p
to p′. If p is definable over A then p′ = f(p) = p. Conversely, if p does not fork over
A and p↾A is stationary then Aut(M/A) fixes p and therefore fixes dpϕ, so the latter is
over A. �2.8

Corollary 2.9. Let ϕ(x̄, ȳ) be a stable formula, A a set, q(x̄) ∈ Sn(A) a complete type
over A, and let p0 = q↾ϕ ∈ Sϕ(A). Then q is compatible with every non forking extension
of p0.

Proof. By Fact 2.2, q is compatible with at least one non forking extension of p to the
monster model. By Corollary 2.7 it is compatible with all of them. �2.9

We pass to forking of single conditions.

Definition 2.10. Let ϕ(x̄, b̄) be an instance of a stable formula, A a set. We say that a
condition ϕ(x̄, b̄) ≤ r does not fork over A if there exists a ϕ-type p ∈ Sϕ(Ab̄) non forking
over A such that ϕ(x̄, b̄)p ≤ r. We define the non forking degree of ϕ(x̄, b̄) over A to be

nf
(

ϕ(x̄, b̄)/A
)

= inf
{

r : ϕ(x̄, b̄) ≤ r does not fork over A
}

.

Proposition 2.11. Let ϕ(x̄, b̄) be an instance of a stable formula, A a set of parameters.
Then the following are equivalent:

(i) The condition ϕ(x̄, b̄) ≤ r does not fork over A.
(ii) Every family of acleq(A)-conjugates of ϕ(x̄, b̄) ≤ r is consistent.
(iii) For every set B ⊇ A, b̄ there exists a complete type p ∈ Sn(B) such that p↾ψ does

not fork over A for any stable formula ψ (if T is stable: p does not fork over A)
and ϕ(x̄, b̄)p ≤ r.

Proof. (i) =⇒ (ii). Let p witness that ϕ(x̄, b̄) ≤ r does not fork over A. Then any non
forking extension of p to a large model is acleq(A)-invariant.

(ii) =⇒ (iii). We may assume that B = M is saturated over A. Let π consist of
all the acleq(A)-conjugates of ϕ(x̄, b̄) ≤ r in M. It is consistent by assumption and
acleq(A)-invariant by construction so we may apply Corollary 2.4.

(iii) =⇒ (i). Immediate. �2.11

An easy compactness argument shows that the infimum is attained and the condition
ϕ(x̄, b̄) ≤ nf

(

ϕ(x̄, b̄)/A
)

does not fork over A. In addition, by the existence of non-forking

types we have nf
(

ϕ(x̄, b̄)/A
)

+ nf
(

¬ϕ(x̄, b̄)/A
)

≤ 1.

Definition 2.12. A faithful continuous connective in α variables is a continuous function
θ : [0, 1]α → [0, 1] satisfying inf ā ≤ θ(ā) ≤ sup ā.
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If θ : [0, 1]α → [0, 1] is a faithful continuous connective and (ϕi)i<α a sequence of
definable predicates, then the definable predicate θ(ϕi)i<α is called a faithful combination
of (ϕi)i<α.

Since a continuous function to [0, 1] can only take into account countably many
arguments, we may always assume that α ≤ ω. Notice that any connective con-
structed suing ∨ and ∧ alone is faithful (so in particular the median value connective
medn : [0, 1]2n−1 → [0, 1] is). Similarly, any uniform limit of faithful combinations is
faithful.

Lemma 2.13. Let ϕ(x̄, ȳ) be a stable formula. Let A = acleq(A) be a set of parameters,
ā a tuple, |x̄| = |ā|. Let p = tpϕ(ā/A). Then dpϕ(x̄, ȳ) is a faithful combination of
A-conjugates of ϕ(ā, ȳ).

Proof. By the preceding discussion and the last item of Fact 2.1. �2.13

Lemma 2.14. Let ϕ(x̄, b̄) be an instance of a stable formula, A a set of parameters. Then
there exists an A-definable predicate ψ(x̄) such that for every tuple ā (not necessarily in
A):

ψ(ā) = inf{ϕ(x̄, b̄)p : p ∈ Sϕ(Ab̄) is a non forking extension of tpϕ(ā/A)}

= inf{ϕ(ā, ȳ)q : q ∈ Sϕ(Aā) is a non forking extension of tpϕ̃(b̄/A)}.

Moreover, ψ(x̄) can be taken to be a faithful combination of A-conjugates of ϕ(x̄, b̄).

Proof. Fix a model M ⊇ A, b̄, saturated over A. Let G = Aut(M/A). Let q ∈ Sϕ̃(M)
be the unique non forking extension of tpϕ̃(b̄/ acleq(A)). Let χ(x̄, c) = dqϕ̃(x̄), where
c ∈ acleq(A) is the canonical parameter for the definition. By the previous Lemma,
χ(x̄, c) is a faithful combination of acleq(A)-conjugates of ϕ(x̄, b̄).

Let C be the set of A-conjugates of c. Since c is algebraic over A, C is (metrically)
compact. By Lemma 1.1 ψ(x̄) = infc′∈C χ(x̄, c′) is a continuous combination of instances
χ(x̄, c′) with c′ ∈ C, i.e., of A-conjugates of χ(x̄, c), and it is clearly a faithful combination.
Thus ψ(x̄) is a faithful combination of A-conjugates of ϕ(x̄, b̄), and it is clearly over A.

We may assume that ā ∈ M , and let p ∈ Sϕ(M) be the unique non forking extension
of tpϕ(ā/ acleq(A)). Then

ψ(ā) = inf
g∈G

χ(ā, g(c)) = inf
g∈G

dg(q)ϕ̃(ā) = . . .

. . . = inf
g∈G

dg−1(p)ϕ(ȳ)q = inf
g∈G

ϕ(x̄, b̄)g(p),

. . . = inf
g∈G

ϕ(ā, ȳ)g(q).

Since {g(p)}g∈G and {g(q)}g∈G are the sets of non forking extensions of tpϕ(ā/A) and of

tpϕ̃(b̄/A) to M , respective, we are done. �2.14
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Theorem 2.15 (Open Mapping Theorem). Assume T is stable, and let A ⊆ B be any
sets of parameters. Let X ⊆ Sn(B) be the set of types which do not fork over A. Then
X is compact and the restriction mapping ρA : X → Sn(A) sending p 7→ p↾A is an open
continuous surjective mapping.

Proof. We already know that X is compact and that ρA is continuous and surjective.
Consider a basic open subset U ⊆ X, of the form U = X ∩ [ϕ(x̄, b̄) < 1]. Let ψ(x̄) be

as in Lemma 2.14 and let V = [ψ(x̄) < 1] ⊆ Sn(A). By Corollary 2.4 every ϕ-type over
B which does not fork over A extends to a complete type over B which does not fork
over A, whence V = ρA(U). �2.15

Notice that a similar proof yields that if ϕ(x̄, ȳ) is stable then the restriction mapping
ρA,ϕ : Xϕ → Sϕ(A) is open, where Xϕ ⊆ Sϕ(B) denotes the set of ϕ-types which do not
fork over A.

It follows from Lemma 2.14 that a ϕ̃-type (and therefore a ϕ-type) over an arbitrary
set A is definable over A, but of course the same definition applied to a larger set need
to give a consistent complete type. This yields the following (adaptation of a) classical
result:

Theorem 2.16 (Separation of variables). Let ϕ(x̄, b̄) be an instance of a stable formula,
and let X be a type-definable set in the sort of x̄, say with parameters in A. Then
there is a subset (at most countable) B ⊆ X and a B-definable predicate ψ(x̄) such that
ψ(x̄)↾X = ϕ(x̄, b̄)↾X .

Moreover, ψ(x̄) can be taken to be a faithful combination of instances ϕ(x̄, b̄′) such that
b̄′ ≡B b̄ (or even b̄′ ≡B′ b̄ where B′ ⊆ X is an arbitrary small subset).

Proof. Fix a model M ⊇ A, b̄, saturated over A, and let C = X(M). Let ψ(x̄) be as in
Lemma 2.14. Then ψ(x̄) is definable over C and therefore over B where B ⊆ C is an

appropriate countable subset. Then for all ā ∈ C we have ψ(ā) = ϕ(ā, ȳ)tpϕ̃(b̄/C) = ϕ(ā, b̄).
Now let M be the monster model and ā ∈ X = X(M). By saturation of M we can find
there some ā′ ≡ABb̄ ā. Then ā′ ∈ C and ϕ(ā, b̄) = ϕ(ā′, b̄) = ψ(ā′) = ψ(ā), as desired.

The moreover part follows from the proof. �2.16

If follows that if X is an A-type-definable set and Y ⊆ X is a type-definable subset,
then Y is type-definable over AB for some countable B ⊆ X. If, in addition, Y is
definable, then it is definable over AB (since then the predicate d(x̄, Y ) is AB-invariant).

Proposition 2.17. Let ϕ(x̄, b̄) be an instance of a stable formula, A a set of parameters.
Then the following are equivalent:

(i) The condition ϕ(x̄, b̄) ≤ r does not fork over A.
(ii) There is an A-definable predicate ψ(x̄) which is a faithful combination of A-

conjugates of ϕ(x̄, b̄) such that ψ(x̄) ≤ r is consistent.

Proof. Fix a model M ⊇ A, b̄ saturated over A.
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(i) =⇒ (ii). Let ψ(x̄) be as in Lemma 2.14. Let also p ∈ Sϕ(Ab̄) be non forking over
A such that ϕ(x̄, b̄)p ≤ r. Then ψ(x̄)p ≤ ϕ(x̄, b̄)p ≤ r.

(ii) =⇒ (i). Let ψ(x̄) = θ
(

ϕ(x̄, b̄n)
)

n∈N
be definable over A as in the assumption (so

b̄n ≡A b̄ and θ is a faithful continuous connective).
By Fact 2.2 there exists p ∈ Sϕ(M) compatible with ψ(x̄) ≤ r and non forking over

A, so in particular acleq(A)-invariant. Then infn ϕ(x̄, b̄n)
p ≤ r by faithfulness, so for all

r′ > r there exists n such that ϕ(x̄, b̄n)
p < r′. Up to an automorphism fixing A we may

assume that ϕ(x̄, b̄)p < r′, and by invariance ϕ(x̄, b̄′)p < r′ for every b̄′ ≡acleq(A) b̄.
We have thus shown that for every r′ > r, any set of acleq(A)-conjugates of ϕ(x̄, b̄) ≤ r′

is consistent. By compactness the same holds for ϕ(x̄, b̄) ≤ r. �2.17

3. Heir and co-heirs

We turn to study co-heirs, and more generally, approximately realised partial types, in
continuous logic. In the context of stability, approximate realisability serves as a criterion
for non forking.

Definition 3.1. Let A ⊆ B be two sets of parameters. We say that a partial type π
over B is approximately realised in A if every logical neighbourhood (Definition 1.4) of π
over B.

If M is a model, B ⊇ M , and p ∈ Sn(B) is approximately realised in M , we may say
that p is a co-heir of its restriction to M.

Remark 3.2. (i) The classical logic analogue of an approximately realised type is a
finitely realised one, but this terminology would be misleading in the continuous
setting.

(ii) A complete type over a model M is always approximately realised there. (This
is essentially the Tarski-Vaught Criterion.)

Fact 3.3. Let A ⊆ B and let π(x̄) be a partial type over B.

(i) Let X ⊆ Sn(B) consist of all types over B which are realised in A, [π] ⊆ Sn(B)
the closed set defined by π. Then π is approximately realised in A if and only if
[π] ∩ X 6= ∅. In particular, X is the set of all complete n-types over B which
are approximately realised in A.

(ii) If C ⊇ B then π is approximately realised in A as a partial type over B if and
only if it is approximately realised in A as a partial type over C.

(iii) If π is approximately realised in A then it extends to a complete type π ⊆ p ∈
Sn(B) which is approximately realised in A.

(iv) A type over a model M admits extensions to arbitrary sets which are approxi-
mately realised in M .

Proof. We prove the first two items together. Clearly if π is approximately realised in A
as a partial type over C then it is approximately realised in A as a partial type over B,
in which case every neighbourhood of [π] in Sn(B) intersects X and by a compactness
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argument [π] intersects X. Finally, assume [π] ∩X 6= ∅ and assume that π ⊢ ϕ(x̄) > 0.
Let Y = [ϕ = 0] ⊆ Sn(C) and let Z be its projection to Sn(B). Then Z is compact,
Z ∩ [π] = ∅, so U = Sn(B) r Z is a neighbourhood of [π]. By assumption there exists
ā ∈ A such that tp(ā/B) ∈ X ∩ U . Then tp(ā/C) /∈ Y , i.e., ϕ(ā) > 0, as desired.

For the third item, any p ∈ [π] ∩ X will do. For the fourth, use the fact that a type
over a model is approximately realised there. �3.3

Fact 3.4. Let N be a model saturated over A ⊆ N . If p ∈ Sn(N) or p ∈ Sϕ(N) is
approximately realised in A then it is A-invariant.

Proof. We only consider the case p ∈ Sϕ(N), since the case p ∈ Sn(N) follows from it.
Say b̄, c̄ ∈ N , b̄ ≡A c̄, and let ε > 0 be given. By assumption there is ā ∈ A such that

|ϕ(ā, b̄) − ϕ(x̄, b̄)p| < ε/2, |ϕ(ā, c̄) − ϕ(x̄, c̄)p| < ε/2.

As we assumed that b̄ ≡A c̄ we have in particular ϕ(ā, b̄) = ϕ(ā, c̄) and thus |ϕ(x̄, b̄)p −
ϕ(x̄, c̄)p| < ε, for every ε > 0. We conclude that ϕ(x̄, b̄)p = ϕ(x̄, c̄)p, as desired. �3.4

Lemma 3.5. Let A ⊆ B, p(x̄) ∈ Sn(B) approximately realised in A, and assume ϕ(x̄, ȳ)
is stable. Then p↾ϕ ∈ Sϕ(B) does not fork over A.

Proof. Let N ⊇ B be saturated over A and let q ∈ Sn(N) extend p, still approximately
realised in A. Then q, and thus q↾ϕ, are A-invariant, so q↾ϕ does not fork over A and
neither does p↾ϕ. �3.5

Proposition 3.6. Let ϕ(x̄, ȳ) be a stable formula, M a model, A ⊇M . Let also p(x̄) ∈
Sϕ(A) be a complete ϕ-type, and q(x̄) ∈ Sn(M) a complete type over M such that p↾M =
q↾ϕ ∈ Sϕ(M). Then the following are equivalent:

(i) p ∪ q is approximately realised in M .
(ii) p is approximately realised in M .
(iii) p does not fork over M .

Proof. (i) =⇒ (ii). Immediate.
(ii) =⇒ (iii). Find p′(x̄) ∈ Sn(A) extending p which is approximately realised in M

and use Lemma 3.5.
(iii) =⇒ (i). Find q′(x̄) ∈ Sn(A) extending q which is approximately realised in M .

Then q′↾ϕ is non forking over M by Lemma 3.5, so it must be the unique non forking
extension of p↾M = q↾ϕ. Therefore q ∪ p ⊆ q′ is approximately realised in M . �3.6

Similarly,

Proposition 3.7. Assume T is stable. Let M be a model of T , A ⊇ M , p(x̄) ∈ Sn(A).
Then the following are equivalent:

(i) p does not fork over M .
(ii) p is approximately realised in M .

If A = N � M is saturated over M then these are further equivalent to
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(iii) p is M-invariant.

Definition 3.8. Let M be a model, M ⊆ B. A type p ∈ Sn(B) is said to be an heir of
its restriction to M if for every formula ϕ(x̄, b̄, m̄) with b̄ ∈ B and m̄ ∈M , and for every
ε > 0, there are b̄′ ∈M such that |ϕ(x̄, b̄, m̄) − ϕ(x̄, b̄′, m̄)|p < ε.

Clearly every type over a model is an heir of itself. Also, it is not difficult to check
that if M is a model and ā, b̄ are two tuples possibly outside M then

tp(ā/Mb̄) is an heir of tp(ā/M) ⇐⇒ tp(b̄/Mā) is a co-heir of tp(b̄/M).

Finally, a standard compactness argument yields that if M ⊆ B ⊆ C and p ∈ Sn(B) is
an heir of p↾M then it admits an extension to C which is an heir as well.

Lemma 3.9. Let M be a model, p(x̄) ∈ Sn(M). Then p is definable if and only if it has
a unique heir to every superset B ⊇ M.

Proof. For left to right, assume p is definable and let q ∈ Sn(B) be an heir of p, where
B ⊇M . Let ϕ(x̄, b̄) be a formula over B and let dpϕ(ȳ, c) be the ϕ-definition of p, c ∈M .
Assume that dpϕ(b̄, c) 6= ϕ(x̄, b̄)q, i.e., |dpϕ(b̄, c) − ϕ(x̄, b̄)|q > 0. Then there is b̄′ ∈ M
such that |dpϕ(b̄′, c) − ϕ(x̄, b̄′)|q > 0, a contradiction.

Conversely, assume p admits a unique heir to every structure. let L′ be L(M) along
with a new predicate symbol Dϕ(ȳ) for each formula ϕ(x̄, ȳ) (here x̄ is fixed, ȳ may
vary with ϕ). Let T ′ consist of the elementary diagram Diag(M) along with sentences
expressing that the predicates Dϕ define a co-heir of p:

Dϕ−. ψ = Dϕ −. Dψ, . . . , ϕ, ψ ∈ L,

Dϕ(ȳ, m̄) = 0 ϕ(x̄, ȳ, z̄) ∈ L, m̄ ∈M, and ϕ(x̄, b̄′, m̄)p = 0 for all b̄′ ∈M.

A model of T ′ is essentially the same as an elementary extension of M along with an
heir of p. By assumption every elementary extension of M, viewed as an L(M)-structure
(i.e., every model of Diag(M)) admits a unique expansion to an L′-structure which is
a model of T ′. By Beth’s Theorem (see [Benb]) for each formula ϕ(x̄, ȳ) there exists
an M-definable predicate dpϕ(ȳ) such that T ′ ⊢ Dϕ = dpϕ. In particular, ϕ(x̄, m̄)p =
Dϕ(m̄) = dpϕ(m̄) for every m̄ ∈M , and p is definable. �3.9

Notice that for a pair of models M ⊆ N we could have defined a notion of a ϕ-type
over a N being an heir of its restriction to M, in which case Lemma 3.9 holds, with the
same proof, for local types.

Theorem 3.10. The following are equivalent for a theory T :

(i) The theory T is stable.
(ii) Every type over a model has a unique co-heir to any superset.
(iii) Every type over a model has a unique heir to any superset.
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Proof. (i) =⇒ (ii). Assume T is stable, M ⊆ B, and q ∈ Sn(B) is a co-heir of p = q↾M .
Let N ⊇ B be saturated over M and let q′ ∈ Sn(N) extend q, also a co-heir of p. Then
q′ is M-invariant and therefore the unique non forking extension of p to N . Thus q is the
unique non forking extension of p to B.

(ii) =⇒ (iii). Let M be a model, p ∈ Sn(M). In order to show that p has a unique
heir to every B ⊇M it is enough to consider the case B = Mb̄ where b̄ is a finite tuple.
So indeed, assume that ā realises an heir of p to Mb̄. Then tp(b̄/Mā) is a co-heir of
tp(b̄/M) and by assumption it is uniquely determined by tp(b̄/M) and by ā. It follows
that tp(ā/Mb̄) is uniquely determined by b̄ and tp(ā/M), as desired.

(iii) =⇒ (i). The assumption and Lemma 3.9 yield that every type is definable, so T
is stable. �3.10

Using the local version of Lemma 3.9 alluded to above we can prove a local version
of Theorem 3.10, namely that ϕ(x̄, ȳ) is stable if and only if every ϕ-type over a model
admits a unique co-heir to larger sets if and only if every ϕ-type over models admits a
unique heir to larger models.

4. Invariant types, indiscernible sequences and dividing

Fact 4.1. Let M be a model saturated over A ⊆ M , and let p ∈ Sn(M) be A-invariant.
Let (ān)n∈N ⊆M be a sequence constructed inductively, choosing each ān to realise p↾Aā<n

.
Then the sequence (ān)n∈N is A-indiscernible, and its type over A depends only on p.

Proof. Standard. �4.1

The common type over A of such sequences will be denoted by p(ω)↾A. For every finite
or countable B ⊆ M we may construct p(ω)↾A∪B just as well. By a gluing argument,
p(ω) =

⋃
{

p(ω)↾A∪B : B ∈ [M ]ℵ0

}

is a complete type of an M-indiscernible sequence in p,
and is of course A-invariant.

Lemma 4.2. Let A be a set, ϕ(x̄, ȳ) a stable formula, p ∈ Sϕ(A) a stationary ϕ-type.
Let M ⊇ A be saturated over A, and let p ⊆ q ∈ Sn(M), q invariant over A. Let
(c̄n)n∈N � q(ω)↾A be an A-indiscernible sequence as constructed in Fact 4.1.

Then the sequence
{

ϕ̃n(ȳ, c̄<2n−1)
}

n∈N
converges uniformly to the definition dpϕ(ȳ) at

a rate which only depends on ϕ.

Proof. Since q↾ϕ is A-invariant, it does not fork over A, so dpϕ(ȳ) = dqϕ(ȳ).
Fix ε > 0. By Fact 2.1 there is k = k(ϕ, ε) and a sequence (c̄′n)n<2k−1 ⊆ M such that

|dpϕ(ȳ) − ϕ̃k(ȳ, c̄′<2k−1)| ≤ ε, and such that furthermore c̄′n � q↾A,c̄′<n
. By Fact 4.1 we

have c̄<2k−1 ≡A c̄
′
<2k−1. In addition, dpϕ is over A, so |dpϕ(ȳ) − ϕ̃k(ȳ, c̄<2k−1)| ≤ ε.

Consider now n > k. First of all, by exactly the same argument as above, for every
w ∈ [2n − 1]2k−1 we have |dpϕ(ȳ) − ϕ̃k(ȳ, c̄∈w)| ≤ ε. In addition, for any b̄ there exists
a subset w ∈ [2n − 1]2k−1 such that ϕ̃n(b̄, c̄<2n−1) = ϕ̃k(b̄, c̄∈w) (from any set of 2n − 1
reals one can choose a subset of size 2k−1 with the same median value). Thus |dpϕ(ȳ)−
ϕ̃n(ȳ, c̄<2n−1)| ≤ ε for all n ≥ k, where k depends only on ε and ϕ, as desired. �4.2
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Proposition 4.3. Let ϕ(x̄, b̄) be an instance of a stable formula, A a set of parameters.
Then the following are equivalent:

(i) The condition ϕ(x̄, b̄) ≤ r does not fork over A.
(ii) If (b̄n)n∈N is an A-indiscernible sequence, b̄0 = b̄, then the set of conditions

{ϕ(x̄, b̄n) ≤ r}n∈N is consistent (i.e., the condition ϕ(x̄, b̄) ≤ r does not divide
over A).

Proof. (i) =⇒ (ii). If (b̄n)n∈N is an A-indiscernible sequence and b̄0 = b̄ then each b̄n
is an acleq(A)-conjugate of b̄.

(ii) =⇒ (i). Fix models N � M ⊇ A where N is saturated over M . Let q0 =
tp(b̄/ acleq(A)). By Fact 2.2 there exists q ∈ Sm(M) extending q0 such that q↾ϕ̃ does not
fork over A, i.e., such that dqϕ̃ = dq0ϕ̃. Let q1 ∈ Sm(N) be an M-invariant extension of q.

Finally, let (b̄n)n∈N � q
(ω)
1 ↾M . Then (b̄n)n∈N is an M-indiscernible sequence, and a fortiori

A-indiscernible, in tp(b̄/A). Thus by assumption there exists ā such that ϕ(ā, b̄n) ≤ r for
all n. In addition, by Lemma 4.2 we have

dqϕ̃(ā) = lim
n

medn
(

ϕ(ā, b̄i)
)

i<2n−1
≤ r.

Let p ∈ Sϕ(M) be a non forking extension of tpϕ(ā/ acleq(A)). Then ϕ(x̄, b̄)p = dqϕ̃(x̄)p ≤
r, witnessing that ϕ(x̄, b̄) ≤ r does not fork over A, as desired. �4.3

5. Canonical bases

Recall that the canonical base of a stationary type p ∈ Sn(A) in a stable theory is
Cb(p) = {Cb(p↾ϕ) : ϕ(x̄, . . .) ∈ L}, namely the set of all canonical parameters of ϕ-
definitions of p.

Proposition 5.1. Assume T is stable, and let p(x̄) ∈ Sn(A) be stationary. Then:

(i) Cb(p) ⊆ dcleq(A).
(ii) p does not fork over Cb(p).
(iii) p↾Cb(p) is stationary.
(iv) Cb(p) is minimal for the three previous properties, meaning that if B ⊆ dcleq(A)

and p↾B is a stationary non forking restriction then Cb(p) ⊆ dcleq(B).

Proof. The first two items are immediate, while the third is by Corollary 2.8. Under the
assumptions of the fourth we have Cb(p) = Cb(p↾B) ⊆ dcleq(B). �5.1

The four properties listed in Proposition 5.1 determine the canonical base up to inter-
definability. Indeed, if B has all four then Cb(p) ⊆ dcleq(B) but also B ⊆ dcleq(Cb(p)),
whereby dcleq(B) = dcleq(Cb(p)). In this case we say that B is a canonical base for p.

Proposition 5.2. Assume T is stable, and let p(x̄) ∈ Sn(A) be stationary. Let q ∈
Sn(M) be the unique non forking extension of p, where M is saturated over A. Then
a (small) set B ⊆ M is a canonical base for p if and only if, for every f ∈ Aut(M):
f↾B = idB ⇐⇒ f(q) = q.
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Proof. Let C = Cb(p) = Cb(q). It follows directly from the definitions that an automor-
phism of M fixes q if and only if it fixes q↾ϕ for every formula ϕ(x̄, . . .), if and only if
it fixes every member of C. A small set B is another canonical base for p if and only
if dcleq(B) = dcleq(C) which is further equivalent to B and C being fixed by the same
automorphisms. �5.2

We propose an alternative characterisation of canonical bases using Morley sequences.
In the case of classical first order logic it is more or less folklore. Recall that a Morley
sequence in a (stationary) type p(x̄) ∈ Sm(A) is a sequence I = (ān)n∈N of realisations
of p which is independent over A, i.e., such that ān |⌣A

ā<n for all n ∈ N. It follows by

standard independence calculus that ā∈s |⌣A
ā∈t for every two disjoint index sets s, t ⊆ N.

From stationarity of p it follows that the sequence I is indiscernible over A, and its type
over A, which we may denote by p(ω), is uniquely determined by p.

It is not difficult to check that if p satisfies the assumptions of Fact 4.1 then the
definition of p(ω) which appears thereafter agrees with the one given here. In the general
case, let M be saturated over A and let q ∈ Sm(M) be the non forking extension of p.

Then by construction, p(ω) = q
(ω)
A , where the first is the type of a Morley sequence as

defined here, and the second the type defined after Fact 4.1.

Definition 5.3. Let I = (ān)n∈N be a sequence of tuples, or, for that matter, even of
sets. Let I≥k denote the tail (ān)n≥k. We define the tail definable closure of I as

tdcleq(I) =
⋂

k∈N

dcleq(I≥k).

It is not difficult to see that for an indiscernible sequence I, tdcleq(I) consists precisely
of all c ∈ dcleq(I) over which I is indiscernible.

Lemma 5.4. Let I = (ān)n∈N and J = (b̄n)n∈N be indiscernible sequences such that the
concatenation I⌢J is indiscernible as well. Then tdcleq(I) = tdcleq(J). Moreover, every
automorphism which sends I to J necessarily fixes tdcleq(I).

Proof. For k ∈ N let Jk be the sequence ā0, . . . , āk−1, b̄k, b̄k+1, . . ., namely the sequence
obtained by replacing the first k elements of J with the corresponding elements from
I. Since I⌢J is indiscernible so is Jk for each k, and there exists an automorphism fk
sending J 7→ Jk. Now let c ∈ tdcleq(J). Since c is definable over J≥k it is fixed by fk, so
cJ ≡ cJk. This holds for all k, whence cI ≡ cJ .

Fix an automorphism f which sends I to J (which must necessarily exist). Then
f(c)J ≡ cI ≡ cJ , so f(c) = c. Thus f fixes tdcleq(J). Applying f−1 we obtain that
tdcleq(I) = tdcleq(J), as desired. �5.4

Theorem 5.5. Let p ∈ Sm(A) be a stationary type and let I = (ān)n∈N be a Morley
sequence in p. Then tdcleq(I) is a canonical base of p.
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Proof. First of all, we have seen that p↾Cb(p) is stationary, with the same canonical base
as p. It is also not difficult to check that a Morley sequence in p is also a Morley sequence
in p↾Cb(p). It is therefore enough to prove for p↾Cb(p), i.e., we may assume that A = Cb(p).

So let M be saturated over A = Cb(p) and let q ∈ Sm(M) be the non forking extension

of p. As pointed above, I � p(ω) = q
(ω)
A . By Lemma 4.2 p is definable over I, so

Cb(p) ⊆ dcleq(I). Also, every tail of a Morley sequence is a Morley sequence, whence
Cb(p) ⊆ tdcleq(I).

Conversely, let f be an automorphism fixing A = Cb(p). Then f fixes p and therefore
sends I to another Morley sequence in p, say J . Let K be a third Morley sequence in
p, K |⌣A

I, J . Then both I⌢K and J⌢K can be verifies to be Morley sequences in p

(of length ω + ω), and in particular indiscernible. We can decompose f = h ◦ g where
g(I) = K and h(K) = J . By the Lemma tdcleq(I) = tdcleq(K) = tdcleq(J) and this
set is fixed by g, h and therefore by f . Thus tdcleq(I) ⊆ dcl

(

Cb(p)
)

, and the proof is
complete. �5.5

It is also a fact, which we shall not prove here (but is proved as in classical logic), that
in a stable theory every indiscernible sequence I = (ān)n∈N is a Morley sequence in some
type, say q. Let A = tdcleq(I) and p = tp(ān/A), which does not depend on n. By the
Theorem, A = Cb(q) = Cb(p) and I is a Morley sequence in p.

In the case of probability theory this is a well known fact. Indeed, in probability
algebras or in spaces of random variables (say [0, 1]-valued, see [Benc]), the canonical
base of a type (in the real sort) can be represented by a set of real elements, so there is
no need to consider imaginaries. Then Theorem 5.5 tells us that if (Xn)n∈N is sequence
of random variables which is indiscernible (i.e., exchangeable) and A is its tail algebra
then the sequence (Xn)n∈N is i.i.d. over A , meaning that the random variables Xn are
independent over A and have the same conditional distribution over A .

Corollary 5.6. Assume T is stable, and let p(x̄) ∈ Sm(A) be stationary. Let I = (ān)n∈N

be a Morley sequence in p, J = I r ā0. Then ā0 |⌣A
J and ā0 |⌣J

A.

Proof. The first independence is immediate and implies ā0 |⌣Cb(p)
AJ . By Theorem 5.5

we have Cb(p) ⊆ dcleq(J) and the second independence follows. �5.6

6. Stable type-definable groups and their actions

We turn to consider groups, and more generally, homogeneous spaces, which are de-
finable or type-definable in a stable theory.

6.1. Generic elements and types in stable group actions. Let 〈G, S〉 be a homo-
geneous space, type-definable in models of a stable theory T . This is to say that G is
a type-definable group and S a type-definable set, equipped with a type-definable (and
therefore definable) transitive group action G × S → S. For convenience let us assume
that both are defined without parameters. We shall identify G and S with their sets
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of realisations in a monster model M. We are particularly interested in the case where
S = G where G acts on itself either on the left (g, h) 7→ gh or on the right (g, h) 7→ hg−1.

Given a partial type π(x) in the sort of S we let π(S) denote the subset of S defined
by π.

Definition 6.1. (i) A generic set in S is a subset X ⊆ S finitely many G-translates
of which cover S.

(ii) A generic partial type in S is a partial type π(x) such that every logical neigh-
bourhood of π (as per Definition 1.4) defines in S a generic set. Single conditions
as well as complete types are generic if they are generic as partial types.

(iii) We say that an element s ∈ S is generic over a set A if tp(s/A) is generic.
(iv) A left-generic set in G is a subset X ⊆ G which is generic under the action of

G on itself on the left. We define partial types in the sort of G to be left-generic
accordingly. Similarly for right-generic.

Let π(x) be a partial type. Clearly, if π(S) is a generic set then π is a generic partial
type, but the converse is not always true. In classical logic, if π consists of a single
formula (i.e., if π(S) is a relatively definable subset of S, and so is its complement), then
π is its own logical neighbourhood and the two notions coincide. Unfortunately, this will
generally never happen in continuous logic (except for π(S) = S or π(S) = ∅).

Lemma 6.2. The following are equivalent for a partial type π(x) in the sort of S, with
parameters in a set A:

(i) The partial type π is generic in S.
(ii) For every formula ϕ(x, ā) over A, if the condition ϕ(x, ā) = 0 is a logical neigh-

bourhood of π then it is a generic condition.

Proof. One direction is immediate, the other follow from Lemma 1.5. �6.2

Let SS(A) denote the set of all complete types over A implying x ∈ S. Equipped
with the induces topology from Sx(A), it is a compact space, and the set of all generic
complete types over A is closed. Closed subsets of SS(A) are in bijection with partial
types over A implying x ∈ S, i.e., with type-definable subsets of S using parameters in
A. If X, Y ⊆ S are two such sets, say that Y is a logical neighbourhood of X relative
to S, in symbols Y >S X, if [X] ⊆ [Y ]◦ where the interior is calculated in SS(A). This
is equivalent to saying that there exists a true logical neighbourhood Y ′ > X such that
Y = Y ′ ∩ S. Thus a type-definable set X ⊆ S is defined by a generic partial type in S if
and only if every relative logical neighbourhood of X in S defines a generic set.

For g ∈ G and X ⊆ S, let Lg[X] = gX = {gs}s∈X. Somewhat superfluously, we may
also define L−1

g [X] = {s ∈ S : gs ∈ X} = Lg−1 [X].

Lemma 6.3. Let A be a set of parameters, g ∈ G(A) = G ∩ dcl(A).

(i) If X ⊆ S is type-definable over A, say by a partial type π, then Lg[X] is also type-
definable over A by a partial type which will be denoted Lgπ (or gπ). Moreover,
π is generic if and only if gπ is.
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(ii) If p = tp(s/A) ∈ SS(A) is a complete type then Lgp = gp = tp(gp/A), and
Lg : SS(A) → SS(A) is a homeomorphism, and restricts to a homeomorphism of
the set of generic types with itself.

Proof. We only prove the parts regarding genericity. Indeed, assume that π is generic,
and let gX <S Y . Then X <S L−1

g [Y ], so L−1
g [Y ] is a generic subset of S. It follows

immediately that so is Y . Thus gπ is a generic partial type. For the converse replace g
with g−1. �6.3

Similarly, for s ∈ S and X ⊆ G we define Rs[X] = Xs = {gs}g∈X . For X ⊆ S we
define R−1

s [X] = {g ∈ G : gs ∈ X}.

Lemma 6.4. Let A be a set of parameters, s ∈ S(A) = S ∩ dcl(A).

(i) If X ⊆ G is type-definable over A, say by a partial type π, then Rs[X] is also type-
definable over A by a partial type which will be denoted Rsπ (or πs). Moreover,
if π is left-generic then Rsπ is generic.

(ii) If p = tp(g/A) ∈ SG(A) is a complete type then Rsp = ps = tp(gs/A), and
Rs : SG(A) → SS(A) is a continuous surjection, sending left-generic types to
generic types.

Notice that we do not claim that every generic type in SS(A) is the image under Rs of a
left-generic type in SG(A) (this is true if T is stable).

Proof. Essentially identical to that of Lemma 6.3. �6.4

Under the assumption that the theory T = Th(M) is stable we shall show that generic
types exist and study some of their properties. We follow a path similar to that followed in
[Pil96]. Toward this end we construct an auxiliary multi-sorted structure M̂ = 〈G, S, . . .〉

in a language L̂ (in addition to sorts G and S, L̂ consists of additional sorts which we
shall described later). We define the distance on the first two sorts by

dM̂

G (g, g′) = sup
h∈G

dM(hg, hg′), dM̂

S (s, s′) = sup
h∈G

dM(hs, hs′).

This coincides with the original distance in M if the latter is invariant under the action

of G (on the left). In any case, dM̂

G is a distance function, invariant under the action of

G, and satisfies dM̂

G ≥ dM. On the other hand, if gn → g in dM then gn → g in dM̂

G as well
(if not, then by a compactness argument, for some ε > 0 there would exist h ∈ G such

that dM(hg, hg) ≥ ε, an absurd). It follows that (G, dM̂

G ) is a complete metric space. The

same observations hold for (S, dM̂

S ).
Let now ΦS consist of all L-formulae of the form ϕ(x, ȳ) where x is in the sort of S. For

each ϕ ∈ ΦS, there will be a sort Cϕ, consisting of all canonical parameters of instances
of ϕ in M. The canonical parameter of ϕ(x, b̄) will be denote [̄b]ϕ, or [̄b] if there is no
ambiguity. We put on it the standard metric, namely

dϕ([̄b]ϕ, [̄b
′]ϕ) = sup

a∈M

|ϕ(a, b̄) − ϕ(a, b̄′)|.
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The only symbols in the language L̂, in addition to the distance symbols of the various
sorts, are a predicate symbol ϕ̂(xS, yG, zϕ) for each formula ϕ ∈ ΦS, interpreted by

ϕ̂(s, g, [̄b])M̂ = ϕ(g−1s, b̄)M.

Since ϕ is uniformly continuous in all its variables, so is ϕ̂. These definitions make M̂ a
continuous L̂-structure.

If 〈G, S〉 is definable then M̂ is interpretable in M and T̂ = ThL̂(M̂) is stable (assuming

T is). In the general case, all we know is that M̂ is saturated for quantifier-free types
in which only ϕ̂ appear. It follows from stability in T that each formula ϕ̂(x, y, z), with
any partition of the variables, is stable.

For h ∈ G define a mapping θh : M̂ → M̂ by sending g ∈ G to hg, s ∈ S to hs, and
fixing all the auxiliary sorts. This is easily verified to be an automorphism of M̂. Since
the action of G on S is assumed to be transitive, if A ⊆

⋃

ϕ Cϕ then all elements of S

have the same type over A in M̂, and similarly all elements of G.

Lemma 6.5. Assume that ϕ(x, ȳ) ∈ ΦS is stable. Then the following are equivalent for
an instance ϕ(x, b̄):

(i) The condition ϕ(x, b̄) = 0 is generic in S.

(ii) The condition ϕ̂(x, e, [̄b]) = 0 does not fork in M̂ over ∅.

(iii) The condition ϕ̂(x, e, [̄b]) = 0 does not fork in M̂ over [̄b].

Proof. Recall that the L̂-formula ϕ̂(xS, yGzϕ) with this (or any other) partition of the

variables is stable in M̂. For ε > 0 let Xε = {s ∈ S : ϕ(s, b̄) ≤ ε}. By Lemma 6.2, the
condition ϕ(x, b̄) = 0 is generic if and only if Xε is a generic set for all ε > 0.

(i) =⇒ (ii). Assume first that ϕ(x, b̄) = 0 is generic in S, i.e., that the set Xε is
generic for every ε > 0. Find gi ∈ G such that S =

⋃

i<n giXε, and find s ∈ S such that
tpϕ̂(s/[̄b]g<n) does not fork over ∅ (in symbols s |ϕ̂⌣ [̄b]g<n). Since s ∈

⋃

i<n giXε we may

assume that s ∈ g0Xε, so ϕ̂(s, g0, [̄b]) = ϕ(g−1
0 s, b̄) ≤ ε. Thus ϕ̂(x, g0, [̄b]) ≤ ε does not

fork over ∅. Applying θg−1

0

we see that ϕ̂(x, e, [̄b]) ≤ ε does not fork over ∅ either. It

follows that ϕ̂(x, e, [̄b]) = 0 does not fork over ∅.
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Assume now that ϕ̂(x, e, [̄b]) = 0 does not fork over [̄b]. By Propo-

sition 2.17 there are gn ∈ G for n ∈ N and a faithful combination ψ(x, [̄b]) =
θ
(

ϕ̂(x, gn, [̄b])
)

n∈N
which is definable over [̄b] and such that ψ(x, [̄b]) = 0 is consistent.

Since M̂ is saturated for quantifier-free types involving only ϕ̂, there is s ∈ S such that
ψ(s, [̄b]) = 0. Since all elements of S have the same type over [̄b] in M̂, we see that
ψ(s, [̄b]) = 0 for all s ∈ S. Assume (toward a contradiction) that there exists ε > 0
such that ϕ(x, b̄) ≤ ε is not generic. By compactness we can find s ∈ S such that
ϕ(g−1

n s, b̄) ≥ ε for all n, i.e., ϕ̂(s, gn, [̄b]) ≥ ε. Since the combination above was faithful
we get ψ(s, [̄b]) ≥ ε > 0, a contradiction. �6.5
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Lemma 6.6. Assume that ϕ(x, ȳ) ∈ ΦS is stable and that ϕ(x, b̄) = 0 is a generic
condition in S. Then it does not fork over ∅.

Proof. By Proposition 4.3 it will be enough to show that ϕ(x, b̄) = 0 does not divide over
∅. For this purpose let (b̄n)n∈N be any indiscernible sequence with b̄0 = b̄. Since e ∈
dcl(∅), the sequence (e, b̄n)n∈N is indiscernible as well, and thus the sequence (e, [̄bn])n∈N

is indiscernible in M̂. On the other hand, since the condition ϕ(x, b̄) = 0 is generic,
by Lemma 6.5 the condition ϕ̂(x, e, [̄b]) = 0 does not fork over ∅, so {ϕ̂(x, e, [̄bn])}n∈N is

consistent. Since M̂ is saturated for such formulae, there is s ∈ S such that ϕ̂(s, e, [̄bn]) =
0, i.e., ϕ(s, b̄i) = 0, for all n, as desired. �6.6

From now on we assume that T is stable.

Proposition 6.7. Let π(x) be a partial type over A. Then π is generic if and only if
it extends to a complete generic type over A, i.e., if and only if [π] ⊆ SS(A) contains a
generic type. In particular, generic types exist over every set.

Proof. Right to left is clear, so let us prove left to right. Assume therefore that π is a
generic partial type. Since the set of complete generic types is closed it will be enough to
show that every logical neighbourhood of π contains a generic type, and we may further
restrict our attention to logical neighbourhoods defined by a single condition ϕ(x, b̄) = 0.
Since π is generic in S so is ϕ(x, b̄) = 0. By Lemma 6.5 ϕ̂(x, e, [̄b]) = 0 does not fork over

∅ in M̂. By Corollary 2.4 there exists a type p̂ ∈ Sx(M̂) such that ϕ̂(x, e, [̄b])p̂ = 0 and
in addition p↾ψ̂ does not fork over ∅ for every formula ψ ∈ ΦS. Let

p(x) =
{

ψ(x, c̄) = ψ̂(x, e, [c̄])p̂
}

ψ∈ΦS ,c̄∈M
.

This type is approximately finitely realised in M (since p̂ is in M̂) and therefore consistent.
By Lemma 6.5 every condition in p is generic (since p̂ does not fork over ∅), and by
Lemma 6.2, p is generic, and so is p↾A. We have thus found a generic type p↾A ∈
[ϕ(x, b̄) = 0] and the proof is complete. �6.7

Proposition 6.8. Assume A ⊆ B. Then a type p ∈ SS(B) is generic if and only if it
does not fork over A and p↾A is generic. In particular, a generic type does not fork over
∅.

Proof. First of all, the last assertion follows from Lemma 6.6 and the fact that the set of
non forking types is closed.

We now prove the main assertion. For left to right, if p ∈ SS(B) is generic then clearly
so is p↾A, and by the previous paragraph p does not fork over A. For the converse, assume
that p ∈ SS(B) does not fork over A and p0 = p↾A is generic. Replacing p with a non
forking extension we may assume that B = M. By Proposition 6.7 there is p1 ∈ SS(M)
extending p0 which is generic, and by what we have just shown it is also non forking over
A. Since p↾A = p0 = p1↾A there is f ∈ Aut(M/A) sending p1↾acleq(A) to p↾acleq(A), and
therefore p1 to p. Thus p is generic as well. �6.8
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We can also complement Lemma 6.3:

Proposition 6.9. The action of G on the set of generic types in SS(M) is transitive.

Proof. Let p, q ∈ SS(M) be two generic types. Define

p̂ = {ϕ̂(x, g, [̄b]) = ϕ(g−1x, [̄b])p}ϕ∈ΦS ,b̄∈M,g∈G,

and define q̂ similarly. Let Ĉ =
(

acleq(∅)
)M̂

and let p̂0 = p̂↾C , q̂0 = q̂↾C . Since M̂ is

saturated for formulae of this form we may realise p̂0 and q̂0 in M̂, and by transitivity
there exists h ∈ G such that θhp̂0 ∪ q̂0 is realised. Since θh is an automorphism of M̂ we
must have q̂0 = θhp̂0 = (θhp̂)↾C . In addition, neither of p̂, q̂ or θhp̂ forks over ∅, whereby
θhp̂ = q̂, i.e., hp = q. �6.9

Theorem 6.10. Let G be a type-definable group in a stable theory T , acting type-definably
and transitively on a type-definable set S.

(i) If g |⌣A
s (where g ∈ G, s ∈ S) and g is left-generic over A then gs is generic

over A and gs |⌣A
s.

(ii) An element s ∈ S is generic if and only if g |⌣A
s implies gs |⌣A

g for every
g ∈ G. Moreover, in this case gs is generic over A as well.

(iii) An element g ∈ G is left-generic over A if and only if g−1 is.
(iv) An element g ∈ G is left-generic if and only if it is right-generic (over A). From

now on we shall only speak of generic elements and types in G.
(v) An element g ∈ G is generic over A if and only if it is generic over ∅ and g |⌣A.

Proof. We use Proposition 6.8 repeatedly.
For the first item, let s ∈ S, g ∈ G, and assume that g |⌣A

s. If g is left-generic over
A then it is left-generic over A, s. By Lemma 6.4 gs is generic over A, s. It follows that
gs is generic over A and that gs |⌣A, s, as desired.

For the second item, left to right, as well as the moreover part, are proved as in the
previous argument, using Lemma 6.3. For right to left, assume that s |⌣A

g implies

gs |⌣A, g for all g. We may choose g which is left-generic over A such that g |⌣A
s.

Then g−1 |⌣A
gs by assumption, gs is generic over A by the first item, and s = g−1gs is

generic over A by the moreover part.
For the third item, let g ∈ G be left-generic over A. Choose h ∈ G left-generic over

A such that g |⌣A
h. By the first item gh is generic over A and gh |⌣A

h. This can be

re-written as h |⌣A
h−1g−1. By the first item again, g−1 = hh−1g−1 is left-generic over A.

Notice that g−1 is left-generic if and only if g is right-generic, yielding the fourth item as
well.

The last item is just Proposition 6.8. �6.10

6.2. Stabilisers. We have already observed in Lemma 6.3 that for any set of parameters
A, a group element g ∈ G(A) induces a homeomorphism Lg : p 7→ gp on SS(A). It is also
not difficult to check that Lg ◦ Lh = Lgh, whence a group action of G(A) on SS(A). In
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addition, we have seen that it restricts to an action by homeomorphism of G(A) on the
set of generic types in SS(A).

Specifically, we obtain an action of G = G(M) on SS(M). The stabiliser of a type
p ∈ SS(M) under this action is Stab(p) = {g ∈ G : gp = p} ≤ G. For a stationary type
p ∈ SS(A) we define Stab(p) = Stab(p↾M).

Proposition 6.11. Let p ∈ SS(A) be stationary. Then stabiliser Stab(p) is a sub-group
of G type-definable over Cb(p).

Moreover, assume that s � p, g ∈ G and g |⌣A
s. Then g ∈ Stab(p) if and only if

gs � p.

Proof. We may assume that p ∈ SS(M).
Let ϕ(x, z̄) be a formula, x in the sort of S. Let y be a variable in the sort of G.

Then ϕ(yx, z̄) is a definable predicate on G× S × 〈sort of z̄〉, i.e., a continuous function
SG,S,z̄(T ) → [0, 1]. By Tietze’s Extension Theorem this extends to a continuous function
Sx,y,z̄(T ) → [0, 1]. For clarity we shall use ϕ(yx, z̄) to denote the corresponding definable
predicate.

Once this technical preliminary is taken care of we see that Stab(p) is defined by the
following axiom scheme:

π(y) =
{

sup
z̄

|dpϕ(x, z̄) − dpϕ(yx, z̄)| = 0
}

ϕ∈ΦS

.

The moreover part easily follows. �6.11

Lemma 6.12. Let H < G be a type-definable subgroup of bounded index, say with pa-
rameters in A, and let g ∈ H. Then g is generic over A in G if and only if it is generic
over A in H.

Proof. Naming A in the language we may assume that A = ∅. Since H has bounded
index we may enumerate its cosets {giH}i<λ. Let h0 ∈ G be generic over {gi}i<λ. Then
h0 ∈ giH for some i, and h1 = g−1

i h0 ∈ H is generic in G. Now let h2 be generic in H .
Without loss of generality we may assume that h1 |⌣h2. Then h1h2 ∈ H is generic both

in H and in G and h1h2 |⌣h1. Thus h2 = h−1
1 h1h2 is generic in G as well. We have thus

shown that every generic of H is a generic of G. A similar argument shows that every
generic of G in H is generic in H . �6.12

Proposition 6.13. A type p ∈ SS(A) is generic if and only if Stab(p) has bounded index
in G.

Proof. There are only boundedly many generic types over M, since they do not fork over
∅ and therefore determined by their restriction to acleq(∅). In addition, the action of G
on SS(M) restrict to an action of G on the space of generic types, so the stabiliser of a
generic type must be of bounded index.

Conversely, assume Stab(p) has bounded index, and let s � p. Then there exists
g ∈ Stab(p) which is generic in G over A, and we may further assume that g |⌣A

s. Then
gs � p is generic over A, i.e., p is generic. �6.13
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Since G acts transitively on the generic types over M, the stabilisers of generic types
are all conjugate. It is also not difficult to check that if p ∈ SS(M) is generic, q ∈ SG(M)
is a generic type of Stab(p) (and therefore of G), and s � p↾acleq(∅), then qs = p. If q′ is
any other generic of G then (since G acts transitively on its own generic types, on the
left as well as on the right) there exists g ∈ G such that q = q′g and p = q′(gs). Thus
the right action of S on G send each and every generic type of G onto the generic types
of S, complementing Lemma 6.4.

Theorem 6.14. Let G be a type-definable group in a stable theory, say over ∅. Then
G admits a smallest type-definable group of bounded index (over any set of parameters),
called the connected component of G, and denoted G0. It has the following additional
properties.

(i) The connected component G0 is a normal subgroup of G, type-definable over ∅.
(ii) The stabiliser of every generic type is equal to G0.
(iii) Each coset gG0 contains a unique generic type over M.
(iv) The generic type of G0 is definable over ∅.
(v) If p ∈ SG(A) is any stationary generic type over a small set then G0 =

{g−1h : g, h � p}.

Proof. We start by constructing G0 and proving the second item. Since left generic and
right generic are the same, the action of G on the generic types is transitive on either
side. In particular, if p, q ∈ SG(M) are generic then there exists g ∈ G such that q = pg,
and thus Stab(p) = Stab(q). Let this unique stabiliser of generic types be denoted G0.
Then G0 is type-definable, and since G ∅-invariant, so is G0, and we may conclude that
G0 is type-definable over ∅ as well. We also already know that G0 has bounded index in
G. Assume now that H ≤ G0 is another type-definable subgroup of bounded index, say
over ∅ (otherwise name the parameters in the language). Then there exists p ∈ SH(M)
generic in G, so Stab(p) = G0, whereby G0 ⊆ H . Thus G0 is indeed the smallest type-
definable subgroup of G of bounded index. Notice that G0∩gG0g−1 is also type-definable
of bounded index for every g ∈ G, so G0 is normal in G. This concludes the proof of the
first two items.

Let p ∈ SG(M) be generic in G0. Since G0 = Stab(p) acts transitively on its generic
types, p is the unique generic type in G0. It follows that a coset gG0 contains a unique
generic type gp. The uniqueness of the generic type of G0 implies that it is ∅-invariant,
and therefore definable over ∅.

Finally, let p ∈ SG(A) be any stationary generic type over a small set. Then p↾M

is the unique generic type in some coset gG0. It follows that gG0 is A-invariant, so
p ⊢ x ∈ gG0. Thus {g−1h : g, h � p} ⊆ G0. Conversely, let g ∈ G0, and let h � p, g |⌣A

h.

Since G0 must also be the right-stabiliser of p we have hg � p as well, and g = h−1(hg),
as desired. �6.14

It follows that G is connected (i.e., G = G0) if and only if it has a unique generic type.
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6.3. Global group ranks. We have seen that a type of a member of S is generic if
and only if the corresponding type in M̂ is a non forking extension of the unique type
over ∅, i.e., if its ϕ̂-type has the same Cantor-Bendixson ranks as all of S for every
ϕ ∈ ΦS. Thus the various ε-ϕ̂-Cantor-Bendixson ranks play the role of stratified local
ranks characterising genericity. In a superstable (and even more so in an ℵ0-stable) theory
one would expect a similar characterisation via global Lascar and/or Morley ranks. We
do this for Lascar ranks in an intentionally brief and sketchy manner. Morley ranks are
studied in a subsequent paper [Bena], and similar results are proved.

The role of the Lascar ranks will be played by the ranks SUε(ā/B) defined in [Ben06]
(denoted there by SU(āε/B)):

Definition 6.15. (i) We say that an indiscernible sequence (c̄i : i < ω) could be in
tp(c̄/āεB) if there is a B-indiscernible sequence (ā′ic̄

′
i : i < ω) such that ā′0c̄

′
0 = āc̄,

c̄′<ω ≡ c̄<ω (not necessarily over B!) and d(ā′0, ā
′
1) ≤ ε.

(ii) We say that āε |⌣B
c̄ if every indiscernible sequence in tp(c̄/B) could be in

tp(c̄/āεB).
(iii) We define SUε(ā/B) as may be expected: SUε(ā/B) ≥ α+ 1 if and only if there

is c̄ such that āε 6 |⌣B
c̄ and SUε(ā/Bc̄) ≥ α.

It was shown in [Ben06] that T is supersimple if and only if SUε(ā/B) is ordinal
for every finite tuple ā and ε > 0 (and T is superstable if and only if it is stable and
supersimple). Moreover, in a supersimple theory T SUε ranks characterise independence:
ā |⌣B

C if and only if SUε(ā/B) = SUε(ā/C) for all ε > 0.
This notion of rank depends inevitably on a metric resolution parameter ε. We may

therefore only hope to characterise genericity in case the metric is invariant under the
group action, i.e., if the action of each g ∈ G on S is an isometry.

We have seen that if g is generic over s, A then gs is generic over A. We now prove a
converse:

Lemma 6.16. Assume 〈G, S〉 is a type-definable transitive group action in a stable theory
T , s ∈ S generic over a set A, t ∈ S satisfying t |⌣A

s. Then there is g ∈ G, g |⌣A
t

such that gs = t. Moreover, g can be chosen generic over A (i.e., over At).

Proof. We may assume A = ∅. First choose g ∈ G generic, g |⌣ s, t. Then s is generic
over g, t, so gs |⌣ g, t By standard independence calculus we obtain g |⌣ gs, t. Since the
action is transitive we can find h ∈ G such that hgs = t, and we may take it so that
h |⌣gs,t

g. Then g is generic over t, gs, h, and so is gh, and in particular hg |⌣ t. Then

g′ = hg is generic over t as required. �6.16

Theorem 6.17. Assume 〈G, S〉 is a type-definable transitive group action with an in-
variant metric in a superstable continuous theory T , p ∈ SS(A). Then p is generic if and
only if SUε(p) = SUε(S) = sup{SUε(q) : q ∈ SS(∅)} for all ε > 0. In particular, types of
maximal SUε-rank exist.
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Proof. We may assume that A = ∅. We shall use the fact that if p ∈ Sn(B), q ∈ Sm(B)
and f : p(M) → q(M) is B-definable and isometric then SUε(p) = SUε(q) for all ε > 0.
The proof of this fact is left as an exercise to the reader.

Let s � p, and assume first that p is generic. Let t ∈ S realise an arbitrary type over
∅. We may nonetheless assume that t |⌣ s. By the Lemma there exists g |⌣ t such that
gs = t. Since multiplication by g is isometric we obtain SUε(s) ≥ SUε(s/g) = SUε(t/g) =
SUε(t) = SUε(q).

Conversely, let s ∈ S and assume that SUε(s) ≥ SUε(q) for all q ∈ SS(∅) and all ε > 0.
Let g ∈ G, g |⌣A

s. Then SUε(gs/g) = SUε(s/g) = SUε(s) ≥ SUε(gs) ≥ SUε(gs/g).

Thus equality holds all the way for all ε > 0, whereby gs |⌣ g, so s is generic. �6.17
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