
HAL Id: hal-00332722
https://hal.science/hal-00332722v1

Preprint submitted on 21 Oct 2008 (v1), last revised 10 Oct 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Best-effort Group Service in Dynamic Networks
Bertrand Ducourthial, Sofiane Khalfallah, Franck Petit

To cite this version:
Bertrand Ducourthial, Sofiane Khalfallah, Franck Petit. Best-effort Group Service in Dynamic Net-
works. 2008. �hal-00332722v1�

https://hal.science/hal-00332722v1
https://hal.archives-ouvertes.fr


Best-effort Group Service in Dynamic Networks∗
(Extended Abstract)

Bertrand Ducourthial† Sofiane Khalfallah† Franck Petit‡

Abstract

We propose a group membership service for asynchronous wireless dynamic ad hoc net-
works. It maintains as long as possible the existing groups and ensures that the groups’
diameters are always smaller than a constant, fixed according to applications requirements.
The proposed protocol is self-stabilizing in a dynamic distributed system. Moreover, it en-
sures a continuity property, meaning that, while the system is converging, it does not run
away, except if it is forced by a topology change.

1 Introduction

Self-stabilization in dynamic networks. A dynamic network can be seen as an (a priori

infinite) sequence of networks over time. In this paper, we focus on dynamic mobile networks. Ex-
amples are given by Mobile Ad hoc networks (MANETs) or Vehicular Ad hoc networks (VANETs).

Designing applications on top of such networks require to deal with the lack of infrastructure
[8, 28]. One idea consists in building virtual structures such as clusters, backbones, or spanning
trees. However, when the nodes are moving, the maintenance of such structures may require
more control. The dynamicity of the network increases the control overhead. Thus, distributed
algorithms should require less overall organization of the system in order to remain useful in
dynamic networks.

Another paradigm for building distributed protocols in mobile ad hoc networks consists in
designing self-stabilizing algorithms [6]. These algorithms have the ability to recover themselves
from inconsistent states caused by transient failures that may affect a memory or a message. A
topology change can be considered as a transient failure because it leads to an inconsistency in
some memories. Indeed, when a node appears or disappears in the network, all its neighbors
should update their neighborhood knowledge. Self-stabilizing algorithms have been intensively
studied the two last decade for their ability to build robust distributed protocols [14].

It is important to notice that self-stabilization does not ensure all the time the desirable
behavior of the distributed system. Indeed, after a transient fault occurs, the distributed system
falls into an inconsistent state [29]. After a finite time, the protocol will ensure a legitimate
behavior, according to its specification. However, each time a transient fault appears, there
generally exists a convergence period during which the specifications are not ensured.
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The duration of the convergence phase is one of the major performance parameter of self-
stabilizing algorithms, called convergence time. Except if the convergence time is, by construction,
null (snap-stabilization [7]), the system cannot determine whether it is in a convergence phase or if
the specifications are currently satisfied. As a consequence, self-stabilizing algorithms are mainly
useful when the convergence time is much smaller than the delay between two transient faults.
Moreover, for critic applications (those where human security is involved for instance) that need
to face the transient faults, other paradigms may be chosen, such as redundancy schemes. This
shows a limitation of self-stabilization to build robust distributed systems.

Nevertheless, redundancy schemes are not always possible. They generally rely on a consensus
to maintain replication. However, it is well known that it cannot be solved in an asynchronous
error-prone system [20]. Moreover, in a dynamic network, the control overhead of the redundancy
protocols could be too important. To circumvent the impossibility result, a solution consists
in using unreliable failure detector [10]. However their implementations are not straightforward
[2] and, as for replication schemes, the control overhead is not really compatible with dynamic
networks.

It follows from the above discussions that, when the dynamic increases, it becomes illusory to
expect an application that continuously ensures the service for which it has been designed. In
other words, what we can only expect from the distributed algorithms is to behave as “the best” as
possible, the result depending on the dynamic of the network. We borrow the term “best-effort”
from the networking community to qualify these distributed systems. A best effort distributed
system fulfills its specifications if the dynamic of the network allows it, and fulfill them few time
after the network allows it, otherwise.

In such settings, self-stabilizing algorithms appear then to be a kind of unavoidable approach
for designing such best-effort distributed protocols. However, when using the self-stabilization
paradigm to tackle the dynamic in ad hoc networks, it is implicitly assumed that the convergence
time is smaller than the delay between two topology changes. If it is not the case, the system
could never reach a correct state and ensure a correct behavior (with respect to the specifications
of the protocol it is running). Self-stabilization property needs then to be completed. This has
been studied in [21, 15, 23, 30]. In this paper, we propose another way by adding the notion of
continuity to the self-stabilization.

Continuity in dynamic networks. Roughly speaking, a highly dynamic distributed system
is a system in which the distributed protocol cannot achieve its aim before a new topology change
occurs. We introduce the continuity property to complement the self-stabilization in order to
build best effort algorithms in dynamic distributed systems.

While the system is converging to a correct behavior, the continuity property ensures that it
does not run away, except if it is forced by a topology change.

Indeed, the self-stabilization generally ensures the convergence of the system, providing a stable
topology. Moreover, it admits complete reorganization or reset of the whole system whenever a
topology change occurs. In a mobile dynamic ad hoc network, if the topology changes occur
often, it is possible that the system converges rarely, even never. This means that the service
rendered by the distributed protocol will certainly considered (and used) before the convergence.
It is then important to ensure some guarantees along the execution: the result should be “better
and better”, except if a topology change prevents it (but it is expected that not all the topology
changes will prevent it). In many cases, this is more useful than to guarantee an asymptotic
convergence or a convergence after the dynamic decreases.

2



Note that our aim is very close to the one introduced in [15]. The authors use the notion of
passage predicate to define a superstabilizing system, i.e., a system which is stabilizing and when it
is started from a legitimate state and a single topology change occurs, the passage predicate holds
and continues to hold until the protocol reaches a legitimate state. The continuity property is
intended to be fulfilled even before a legitimate configuration has been reached. It must be satisfied
during the stabilization phase, and between two consecutive stabilization phases (convergence
phase followed by stability phase). This is important in dynamic networks because the frequency
of topology changes may delay the convergence to a legitimate configuration. Moreover, to the
contrary of the passage predicate, the continuity property is defined on an n-tuple of successive
configurations, to indicate that any discontinuity in the successive results is forbidden.

We illustrate our scheme with a new group management protocol adapted to vehicular ad hoc
networks, an emblematic case of dynamic ad hoc networks.

Dynamic group service in VANET. The Intelligent Transportation Systems (ITS) currently
attract a lot of attention. It is expected that such systems could improve the road safety, offer a
better resource usage, increase the productivity, reduce the impact of transport on the environ-
ment... ITS is extensively studied by both theoretical and experimental researchers, especially the
vehicular ad hoc networks (VANET), which exhibits characteristics that are dramatically different
from many generic MANETs [4].

Many VANET applications require a cooperation among close vehicles during a given period:
collaborative driving, distributed perception, chats and other infotainment applications. Vehicles
that collaborates form a group. A group is intended to grow until a limit depending on the
application. For instance, the distributed perception should not involve too far vehicles, a chat
should be responsive enough, which limits the number of hops, etc. When the group’s diameter
is larger than the bound given by the application, it should be split into several smaller groups.
However, a group should not be split if this not mandatory by the diameter constraint in order to
ensure the best duration of service to the application relying on it. Even if another partitioning of
the network would have been better (eg. less groups, no alone vehicle), it is preferable to maintain
the composition of existing groups. It is expected that, thanks to the mobility of the nodes, small
groups will succeed in merging. It is then more important to maintain existing groups as long as
possible.

To achieve this best effort group services in VANET, we propose a self-stabilizing distributed
algorithm in asynchronous unreliable message passing. Each node owns a local view of its group;
the algorithm stabilizes these views in such a way that all the members of group will eventually
share the same view, in which all the members and only them appear. In each node, the local
view is used by applications (such as distributed perception or chats). Moreover, our algorithm
admits the following continuity property: the view’s size of any node never decreases except if a
topology change leads to the violation of the diameter constraint (or a node leaves).

Several works deal with the distributed group algorithms in the literature. In static systems,
the membership of a node to a group does not change over the time (except if this node want
to leaver the group). In dynamic systems, since the nodes are not static, a key component
of such structure is the group membership service, which is in charge of adding and removing
nodes from the group along the time [26]. The group membership service must provide to each
node the view of the group to which it belongs to. One important feature is that all the nodes
belonging to the same group must agree on the same view. In the context of dynamic networks,
such agreement on the group view is unsolvable [9]. Dynamic group membership maintenance is
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discussed in [26] and an algorithm is proposed; it relies on a dynamic atomic broadcast (atomic
multicast) protocol provided in the same paper, and assumes failure detectors. In [5], the difficulty
to achieve dynamic group maintenance is circumvented by reducing the group membership service
to the local environment of a node. This protocol provides the local view of each node but the view
of two neighbors could differs. To the best of our knowledge, only a few number of papers addresses
the problem of group membership maintenance in the context of self-stabilization. Recently,
in [12], the authors propose a self-stabilizing k-clustering algorithm for static networks. In [16],
the authors propose a self-stabilizing group communication protocol. It relies on a mobile agent
that collects and distributes information during a random walk. This protocol does not allow to
build a group partition limited to k hops.

Group communication structures have been proposed in the literature to achieve fault-tolerance
in distributed systems [3], by providing for instance replication, virtual synchrony, reliable broad-
cast, or atomic broadcast (e.g., [27, 22]). Other works deal with the k-clustering or k-dominating
set problem [11, 1, 24, 25] where nodes in a group are at most at distance k from a cluster-head

or dominant node. The aim of these algorithms is to optimize the partitioning of the network.
The group service we propose in this paper is different. Its aim is not to optimize any parti-

tioning nor to build group centered to some nodes. Instead, it tries to maintain existing groups as
long as possible while satisfying a constraint on the diameter. It is designed for unreliable message
passing systems on dynamic ad hoc networks. It is self-stabilizing and satisfies a continuity prop-
erty, ensuring that an application relying on groups could run before convergence of the group
service with limited damage.

Contributions. First, we propose a model (Section 2) that take into account the dynamic by
defining the k-dynamic system (in a sens, this definition makes a link between the nodes speed
and the network speed), the k-dynamic self-stabilization and the continuity. Second we specify a
new group service (inspired from VANET) along with a continuity property (Section 3). Third
we give a distributed protocol to solve this dynamic group service (Section 4). Finally, we prove
that the protocol is self-stabilizing in a dynamic system, and fulfills its specifications (Section 5).

2 Model

We consider a system S composed of mobiles nodes that communicate by wireless communication
devices. To fix the ideas, the reader can consider a set of vehicules able to communicate by local
broadcast, using IEEE 802.11 devices in ad hoc mode and link layers’ protocols.

Nodes. Let V be a set of nodes spread out in an Euclidean space. The total number of nodes in
V is finite but unknown. A node is equipped with a processor unit (including local memory) and
a wireless communication device. A node can move in the Euclidean space. A node u is either
active or passive. If it is active, a node u can compute, send and receive messages by executing
a local algorithm. Nodes are not synchronized. A distributed protocol P is composed of all the
local algorithms.

For the needs of our study, we consider a global clock (but nodes do not have access to such a
global clock, the system remains asynchronous). A time instant t (or date) given by this clock is
a positive real: t ∈ R+. The accuracy of the clock is supposed to be enough compared to speed of
the nodes and the communication protocol.
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Transmission. A node u can communicate with a node v if dist(u, v) < r, where r is the range

and dist(u, v) denotes the Euclidean distance between u and v. The range r depends on the
communication devices. We define the vicinity of a node v as the part of the Euclidean space
from where a node can receive a message: the node v can receive a message sent by u only if u
is in the vicinity of v. The vicinity of v is included in the sphere centered in v and of radius r.
Note that a vicinity can be smaller than the sphere of radius r, due to obstacles, power sending,
or antenna characteristics. Also, u can be in the vicinity of v while v is not in the vicinity of u
(eg. different sending power or antenna).

Node v receives the message m sent by u only if there is no other node than u in its vicinity
which is currently sending a message. In the opposite case, the node v will not be able to
understand the message (collision). Moreover, v cannot receive a message if it is currently sending
a message. Thus, when an active node u sends a message at a time instant t, it can be received by
a large set of active nodes into a sphere of range r centered on u. However, a node v can receive
a piece of data (that is, any understandable information) from u if (i) both u and v are active,
(ii) u is into the vicinity of v, (iii) u is sending a message, (iv) no other node in the vicinity of v
is currently sending a message, and (v) v is not sending a message itself (any active node that is
not sending is able to receive). In order to receive a complete message, these conditions must be
satisfied from the begining of the sending by u to the end of the reception by v.

We do not suppose any fair medium access protocol. A node may fail in sending a message
because close nodes are continuously sending. Similarly, a node may fail in receiving a message.
A node that continuously fail in sending a message is considered as a passive node.

Communication link. At any time instant t, there is a communication link from u to v if both
u and v have the state active (at t), and if u is into the vicinity of v (at t). A communication link
is oriented because u could be in the vicinity of v while the converse is false. Note that, while a
communication link exists from u to v at date t, a communication may fail because conditions (iv)
and (v) above are not fulfilled, or because the duration of the link is too short. A communication
link is bounded.

Topology change. Since nodes can move and change their states, the topology of the system
S evolves in the time. The topology can be affected by a node that disappears or appears, change
its state (either active or passive) or moves (leading to some communication link breaks and
creation). However, for a given node, all these effects appear in the same way: a change in its
neighborhood. Hence, a neighborhood change is a common, node-centered characterization of the
topology change, which is more adapted to the design of distributed algorithms.

However, a node will perceive a change either by receiving a message from a new neighbor of
by a timer expiration, which, for instance, indicates that an old neighbor seems to have left the
neighborhood because it did not send a message recently. Since a node cannot send a message as
soon as it want to do it, such timers are generally calibrated with a larger value than the delay
required to send a message. Hence, the minimal unit of time is the delay required to send a single
message. Any topology change shorter than this unit cannot be noticed. In the following, by
topology change we consider a change that can be detected by at least one neighbor.

Configuration. A configuration ct of S is the union of (i) the states of memories of all the
processors at time t and (ii) the contents of all the communication links at t. An empty com-
munication link is denoted in the configuration by a link that contains an empty set of messages;
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obviously a non existing communication link is not reported in the configuration (this is important
to tackle appearance and disappearance of the communication links in the system because of the
nodes’ moves).

Let C be the set of configurations of S. Starting from the date t0, an execution of a distributed
protocol P over S is a sequence of configurations ct0 , ct1 , . . . of S which (i) does not contain suc-
cessive identical configurations (∀i ∈ N, cti 6= cti+1

), (ii) contains all the successive configurations
the system S reached by executing the distributed protocol P, providing that at least one node
can notice the change (∀i ∈ N, ∀t ∈ R

+, ti ≤ t < ti+1 ⇒ ct = cti) and (iii) is either infinite, or the
computation is finite, no action is enabled and no message is in transit in the final configuration
(this implies that links remain stable). By consequence, any topology change (as defined above:
detected by at least one node) leads to a new configuration.

For sake of simplicity, in the following the successive configurations of an execution will be num-
bered by integers: by stating ci = cti , the execution ct0 , ct1 , ct2 . . . is denoted by ec0 = c0, c1, c2 . . ..

Dynamic system. The topology of the distributed system S at time t is the oriented graph
Gt(Vt, Et) defined as follows: Vt ⊂ V is the set of active nodes in S at date t, and Et ⊂ Vt × Vt is
the set of communication links at date t.

By definition of the configuration, there is a single topology per configuration; we then denote
by Gi the topology of S during the i-th configuration. Conversely, any topology change leads
to a new configuration. In a static system S, we have Gi = G0 in every execution c0, c1, c2, . . ..
Otherwise, the system S is said to be dynamic. Given an execution ec0 = c0, c1, . . . of a dynamic
system S, a topological round is a maximal sequence of successive configurations ci, ci+1, . . . , ci+k

during which the topology of S remains unchanged, i.e, ∀j ∈ {i, . . . , i + k}, Gi = Gj .
The system S is δ-dynamic if any node u that experiments a neighborhood change is able to

diffuse a message to all its neighbors at distance smaller than or equal to δ before the end of the
current topological round. More formally, let cp (resp. cr) be the first (resp. last) configuration of
the kth topological round. Let denote by Gp the directed graph modeling the topology of S in this
topological round, and dGp

(u, v) the distance from nodes u to v in the digraph Gp. Let u be a node
that experienced a topology change in cp, that is, its neighborhood’s knowledge in configuration cp

is different than in the previous configuration cp−1. If u diffuses a message in configuration cp and
if other nodes relay this message, then any node v satisfying dGp

(u, v) ≤ δ and active during all the
kth topological round will receive the message in a configuration cq reached before cr (p ≤ q ≤ r).

Note that a δ-dynamic system is also δ′-dynamic for any δ′ satisfying 1 ≤ δ′ ≤ δ. Note also
that if a system is not 1-dynamic, then a node could enter in the neighborhood of another one
while this last were not able to send a message to all its neighbors. This means that, it is not
guaranteed that the two nodes will succeed in exchanging data.

Self-Stabilization. Let C1 and C2 be subsets of C. Then C2 is a closed attractor for C1 if and
only if for any configuration c1 ∈ C1, and for any execution e = c1, c2, . . ., there exists i ≥ 1 such
that for any j ≥ i, cj is in C2.

Define a specification of a task as the predicate Π on the set C of configurations of system S. A
legitimate configuration for this task is a configuration c ∈ C satisfying Π(c). We denote by L ⊂ C
the set of all legitimate configurations for this task. Let P be a distributed protocol solving this
task in the system S. Then P is self-stabilizing in S if L is a close attractor for C.

A distributed protocol is δ-dynamic self-stabilizing with respect to a predicate Π, if it is self-
stabilizing for Π in a δ-dynamic distributed system. The more δ is small, the more the protocol
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is able to stabilize while the dynamic of the system is high.

Continuity property. The properties of a distributed protocol can be characterized by prop-
erties on the successive configurations of the distributed system running it.

A safety property ΠS ensures that any reached configuration admits some properties. It is
generally used to indicate that nothing bad will happen. We introduce the continuity property

(denoted ΠC), which ensures that any new configuration takes into account the previous ones. It
is used to indicate that a new result cannot be less interesting than the previous one. A generic
definition of a continuity property is: for any execution e of the system running the protocol, there
exists l > 0 such that, for any configuration ci ∈ e, ΠC(ci, . . . , ci+l) holds.

3 Dynamic Group Service

In this section, we specify a new group service for dynamic networks. The motivation comes from
vehicular ad hoc networks.

3.1 Informal Description and Motivation

Context. Let consider a vehicular ad hoc network, and assume that, in each vehicle, a passenger
want to participate in a distributed application (such as a chat, or a distributed game), called in the
following (distributed) application. Such an application cannot run correctly if the communication
delay between two participants is too high. Hence, not all the vehicles can play together and
several instances of the distributed application run in the vehicular network. The passenger of a
given vehicle cannot participate simultaneously to several instances of the application. There is a
single passenger per vehicle and we indifferently use vehicle, passenger, participant or node.

Group. The vehicles that play to the same instance of the application form a group. The
diameter of each group is bounded by a given constant, in order to fulfill the application constraint
(assuming here that the communication delay is proportional to the number of hops). Moreover,
groups are disjoint.

When a message related to the distributed application is sent by a vehicle, it will be relayed
by the nodes of its group until all vehicles belonging to the group received it. How to perform
such a message distribution inside the group is out of the scope of this paper. However, a vehicle
will not relay a message sent by a node that does not belong to its group, in order to limit
messages propagation and to reduce bandwidth consumption. As a consequence, the groups must
be connected, meaning that, for any pair of nodes u, v in a given group, there exists a path from
u to v composed with only nodes of the group.

A group always accept a new participant (passenger), providing that the diameter constraint
is still fulfilled when it is accepted.

Continuity. At any time, depending on the vehicles’ moves, the topology of the network is
changing. As a consequence, the diameter of a given group could be larger than the constant fixed
by the distributed application. In this case, some passengers have to leave the group to satisfy
the diameter constraint.
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However, in order to offer the better service to the passengers, the composition of the group
should be modified if and only if the vehicles’ moves modify the group diameter. Hence, if some
vehicles participate to the same instance of the distributed application, the group service should
maintain as long as possible the group. Thus, the problem differs from any optimal overlapping
of the network topology by cliques. Indeed, let us consider a network as a convoy of vehicles
a− b− c− d− e and suppose that the maximal admissible diameter is two. From a global point
of view, an optimal group organization would be for instance (a, b, c) and (d, e). However, if the
passengers of vehicles b, c and d began to play together, the service should prevent any unnecessary
split of the group (b, c, d) in order to ensure a durable service to these passengers.

This constraint is justified by the fact that the topology of a vehicular network is highly
dynamic. The existing groups should then not be challenged by the frequent changes in the
network: the arrival of vehicle a at the end of convoy b − c − d should not interrupt existing
instance of the application. Second, it is illusory to seek any global topological optimization in
such a dynamic network because its duration will be very short. Third, since the topology is
dynamic, the nodes a and e (which were alone in the previous example) will not remain alone
during a long time. For instance, if vehicle a moves close to c, it will be able to join the group
(b, c, d) without changing its diameter.

3.2 Specification

Group organization. This kind of group service builds an organization of the nodes. Let
Dmax be an integer representing the maximal admissible diameter for a group. We define a group

organization of the nodes, denoted Ω, as follows:

• Ω is a partition of the set of vertices V :
∃p ∈ N such that Ω = {Ω1, Ω2, . . . , Ωp} with Ωi ⊂ V for all i ∈ {1, . . . , p}
∀i, j ∈ {1, . . . , p}, Ωi ∩ Ωj = ∅ and

⋃p

i=1
Ωi = V .

• Each Ωi is connected and satisfies the constraint on the diameter:
∀Ωi ∈ Ω, ∀u, v ∈ Ωi, 0 < dΩi

(u, v) ≤ Dmax

where dΩi
is the distance in the subgraph composed of vertices of Ωi.

In the following, a set Ωi ∈ Ω is called a group. We denote by Ω(c) the group organization in
configuration c ∈ C. A group organization is maximal if by merging two of its groups, we cannot
obtain a correct group organization: ∀Ωi, Ωj ∈ Ω, Ω \ {Ωi, Ωj} ∪ {Ωi ∪ Ωj} is not a correct group
organization. For instance, in the convoy of vehicles a − b − c − d − e with Dmax = 2, the group
organization Ω = {{a}, {b, c, d}, {e}} is maximal because Ω \ {{a}, {b, c, d}} ∪ {{a} ∪ {b, c, d}} =
{{a, b, c, d}, {e}} is not a correct group organization (the diameter of the group {a, b, c, d} is larger
than Dmax) and the same holds with other possible merging.

Dynamic group services protocol. The problem statement consists in designing a distributed
protocol that gives, for each node, the composition of its group. This protocol is called Dynamic

group protocol. We suppose that each node v owns a variable viewv, which stores its current
knowledge of its group. The application (distributed game, chat...) running on the node v will
consider the nodes of viewv as the current members of the group of v. We denote by viewv(c) the
value of viewv in configuration c.

A legitimate configuration is a configuration c in which the variables viewv(c), v ∈ V , define
a maximal group organization. Let ΠA be a predicate defined on the configurations and called
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agreement property : PA(c) holds if ∀v ∈ V , ∀w ∈ viewv(c), viewv(c) = vieww(c). Let ΠS be a
predicate defined on the configuration and called safety property : ΠS(c) holds if the diameter of
each group in the configuration c is smaller than Dmax.

Before a legitimate configuration is reached, the distributed application will use information
given by the dynamic group protocol. This protocol should then fulfill some properties to give some
guarantees on its outputs. We define a continuity property ΠC on the two-tuples of configurations
in order to ensure that the successive outputs given to the application are coherent: a node v
leaves its group only if it is necessary to satisfy the safety property after a topology change. More
formally, for two successive configurations ci, ci+1 ∈ C, ΠC(ci, ci+1) is true if

∀v ∈ V, viewv(ci) 6⊆ viewv(ci+1)⇒ ∃w ∈ viewv(ci), dGi
(v, w) > Dmax

where dGi
denotes the distance in the topology of the system in configuration ci.

Remark. Note that this problem is different from graph covering, maximal independent set, or
dominating set problems [24]. Moreover it differs from the k-clustering problem [12]. To the best
of our knowledge, the continuity constraint leads to an original problem.

4 Distributed protocol

4.1 Principe

For a given node, the candidates to form a group are neighbors up to distance Dmax. Nodes
build such lists by diffusing messages in their neighborhood. Only symmetric links are taken into
account. In O(Dmax) the knowledge of the Dmax neighborhood can be known. However, when a
node receives a list which is too long compared to its current list, it will reject it to avoid any
split of its current group. Moreover, bad lists are rejected (such as lists larger than Dmax). When
a node enters in a new group, its arrival will be propagated in O(Dmax) to the group’s members.
Such an arrival can increase the diameter of the group. A new member will be accepted only if
the diameter constraint is respected. In some cases, two nodes can be accepted by two distant
group’s members and the diameter constraint is no more fulfilled. In this case, one of the new
member must leave the group (instead of splitting the existing group). To chose which of them
leaves the group, the protocol uses the lexicographical order on the nodes’ identities.

Truncated lists of neighbors are built using a simple distributed algorithm relying on an r-

operator [17]. This operator computes the complete ordered list of ancestors’ sets [19]. Thanks
to its properties, the protocol is self-stabilizing [13]. The rest of the dynamic group protocol
consists in checking whether a list can be accepted or not in order to fulfill the safety property ΠS

and the continuity property ΠC . Our protocol being self-stabilizing, the agreement property will
eventually be fulfilled. Even if the system has not converged, the applications (chat, distributed
perception...) will use the view built by the dynamic group protocol (best effort approach in
dynamic system). The continuity property ensures that the view cannot be reduced meaning that
a collaborative work which has started will not stop, except if the safety property would not be
respected because of the dynamic of the network.
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4.2 Building the lists of ancestors’ sets

Let denote by d→(u, v) the distance from u to v in the oriented graph G(V, E) (minimal number of
edges to reach v from u). We denote by dv = maxu∈V d→(u, v) the largest distance from any vertex
of V to v. We denote by ai

v = {u ∈ V, d→(u, v) = i} the set of vertices (ancestors) which are at
distance i of v. We state a0

v = {v}. The list of ancestors’ sets of a node v is defined by: (a0
v, a1

v,
. . . , adv

v

)

. A list of ancestors’ sets is partial if some vertices are lacking in some ancestors’ sets.
A list of ancestors’ sets is truncated if some sets are lacking at the end of the list. Note however
that a list of ancestors’ sets of a given node v always admit {v} as first set.

When modeling distributed algorithms with algebraic operators, interesting properties (termi-
nation, self-stabilization) can be ensured by simply checking some local properties of the operator.
To build the list of ancestors’ sets, we use the r-operator ant [17, 19, 13]. We consider the set S

composed of the lists of vertices’ sets. For instance, if a, b, c, d, e are vertices, ({d}, {b}, {a, c}) and
({c}, {a, e}, {b}) belong to S. We define on S the operator ⊕ that merges two lists while delet-
ing needless or repetitive information (a node appears only one time in a list of ancestors’ sets).
For instance, ({d}, {b}, {a, c})⊕ ({c}, {a, e}, {b}) = ({d, c}, {b, a, e}, {a, c, b}) = ({d, c}, {b, a, e}).
Finally, we define the endomorphism r of S, that inserts an empty set at the beginning of a
list. For instance, r({d}, {b}, {a, c}) = (∅, {d}, {b}, {a, c}). We then define the operator ⊳ by:
l1 ⊳ l2 = l1 ⊕ r(l2), where l1 and l2 are lists from S. This is a strictly idempotent r-operator [17]
called ant, that induces a partial order relation. It leads to self-stabilizing static tasks (building
the complete ordered lists of ancestors’ sets) in the register model [19]. Since our communication
model (defined for IEEE 802.11 networks) admits bounded links, these results can be extended
to this kind of message passing model. (Refer to the discussion related to r-operators in wireless
networks in [13].)

4.3 Algorithm

The distributed protocol Dynamic Group Service is composed of a single algorithm per node
(uniform protocol). This algorithm uses a timer to regularly send a message in the neighborhood.
All messages received from the neighborhood are collected. If a neighbor sends more than one
message before the timer expiration, only the last received is kept. If no message has been received
from a neighbor, it disappears from the list of the neighbors. Each time the timer expires, the
node computes the truncated list of ancestors’ sets by using those received from its neighbors in
the messages. This list will be sent in the neighborhood. It also updates the view of its own group
(that is, its knowledge of the composition of its group). The view is the output of the protocol;
it is used by the application (eg. chat, collaborative perception...) which requested the dynamic
group service, and which gave the diameter constraint (which is fixed during all the execution).

The algorithm uses the following variables: msgSet contains the last received messages, nbhSet
contains the identities of the known neighbors, lstAnt contains the truncated list of ancestors,
view is the output, Dmax is a constant integer given by the application (and regularly set to avoid
any fault on this memory), and period is the timer duration. Since the convergence time is at
most Dmax timers (Section 5), only nodes which are present in the list of ancestors’ sets from Dmax

timers are taken into account to build the view. This allows to avoid disturbing the application
during the convergence phase, or when a neighbor tries to join the group until it has been accepted.

The notation msgSet |u denotes the message sent by u and stored in the set msgSet. Since such
a message is a list of ancestors’ sets, the notation msgSet |u.i denotes the ith set of ancestors in the
list. The size of a list l is denoted by s(l). At the reception of a message, the sender u is known
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by the receiver v thanks to the first set of the received list msgSet |u (msgSet |u.0 = {u}). If v does
not belong to the neighbors of u (v 6∈ msgSet |u.1), it suspects an asymmetric link and then marks
the sender in its list of ancestors’ sets (denoted by u). When the link becomes symmetric (u has
also detected v), either u and v belongs to the same group or v deduced that it cannot belong to
the same group of u. In the first case, u is no more marked in the list of v. In the second case, it
is double-marked (denoted by u). The algorithm is given below.

Algorithm Dynamic Group Service (node v)

1 Upon reception of a message msg sent by a node u:
2 nbhSet ← nbhSet ∪ {u} ⊲ updating the set of neighbors
3 msgSet ← msgSet \ {msgSet |u} ∪ {msg} ⊲ updating msgSet |u

4 Upon timer expiration:
5 compute-lstAnt() ⊲ updating lstAnt

6 send( lstAnt ) to the neighbors
7 view ← non marked nodes which are in lstAnt from Dmax timers
8 msgSet ← empty list ⊲ reset of the neighborhood data
9 nbhSet ← empty list

10 restart timer with duration period

The procedure compute-lstAnt() builds the truncated list of ancestors, that will be sent in the
neighborhood. The computation is based on the ant r-operator applied on incoming lists received
by the neighbors. However, not all the lists are taken into account, in order to fulfill the safety
and continuity properties.

First the marked nodes, which indicates asymmetric links, are only admitted in the neigh-
borhood (Line 2). This prevents any propagation of asymmetric link information. Next, only
lists which are coherent are accepted (Line 4). In the converse case, they are replaced by a list
containing only the marked sender, meaning that only the information regarding the sender is
kept. A bad list is a list that does not contain v nor v in place 1, or a list which is too long, or a
list that contains an empty set among the sets of ancestors. Next, only lists which are compatible
with the last computed list is kept (Line 6). An incompatible list is a list sent by a node which
was not already in the last computed list of ancestors’ sets and which does not fulfill the technical
condition of Lemma 1. This condition ensures that, by taken into account the list sent by a new
neighbor, the node will not split its current group. This is important for the continuity property.
A neighbor that sent an incompatible list is double-marked (u) in order to notify that it is not
accepted.

After the purges in the incoming lists, a first computation of the list of ancestors’ sets is
performed, using the ant r-operator (Lines 10-13). Note that this computation ought to be
performed inside the first forall loop but we preferred to separate it for clarity.

While some purges have been done in the incoming lists, the computed list of ancestors could
reach the size of Dmax + 2 while the maximum is Dmax + 1. In this case, a choice has to be done
between either the local node v or the farthest nodes in the received lists. This choice is done
by using the lexicographical order on the identities of the nodes (Line 16). If the local node v is
not smaller than a given too far node w, the list in which w appears is ignored (Line 19). At the
opposite side of the group, node w keeps the list containing v but the end of its ancestors’ list
will be truncated (meaning that v and w will not belong to the same group). Indeed, after all the
too far nodes have been examined, the list of ancestors is computed again (Lines 24-27) and is
truncated (Line 28) in order to delete the too far nodes having less priority.
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Procedure compute-lstAnt()
⊲ Purging the last received lists of ancestors’ sets.

1 for all u ∈ nbhSet do
2 delete marked nodes except v in msgSet |u

3 if badList(msgSet |u) then
4 msgSet ← msgSet \ msgSet |u ∪ (u)
5 end if
6 if incompatibleList(msgSet |u) then
7 msgSet ← msgSet \ msgSet |u ∪ (u)
8 end if
9 end for

⊲ Computing the list of ancestors’ sets.
10 lstAnt ← (v)
11 for all u ∈ nbhSet do
12 lstAnt ← ant(lstAnt, msgSet |u)
13 end for

⊲ Removing incoming lists containing too far nodes with priority.
14 if s(lstAnt) = Dmax+ 1 then ⊲ the list is too long
15 for all w ∈ lstAnt.Dmax do ⊲ scanning the last place of the list
16 if w < v then ⊲ the node has not the priority.
17 for all u ∈ nbhSet do ⊲ looking for lists that provided w.
18 if w ∈ msgSet |u.(Dmax− 1) then

⊲ the neighbor that provided w is ignored.
19 msgSet ← msgSet \ msgSet |u ∪ (u)
20 end if
21 end for
22 end if
23 end for

⊲ Computing the list again and truncate too far node with less priority.
24 lstAnt ← (v)
25 for all u ∈ NbhSet do
26 lstAnt ← ant(lstAnt, MsgSet |u)
27 end for
28 lstAnt ← (lstAnt.1, lstAnt.2 . . . , lstAnt.(min(s(lstAnt), Dmax))
29 end if

Procedure badList(list)
1 if v and v are not in list.1 or s(list) > Dmax or ∅ ∈ list then
2 return true
3 end if

Procedure incompatibleList(list)
1 if list.1 6∈ lstAnt then ⊲ the sender is a new neighbor.
2 if s(lstAnt) + s(list) > Dmax and ∀i ∈ {0, . . . , s(lstAnt)},

lstAnt.i 6⊆ list.1 or
min (s(lstAnt) + s(list) + 1− i, s(list) + 1 + i/2) > Dmax then

3 return true ⊲ see Lemma 1.
4 end if

5 end if
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5 Sketch of proof

To prove the self-stabilizing property of the algorithm, we prove that it converges in finite state
to a maximal group organization after the last transient fault or the last topology change. In
other words, it converges to a legitimate configuration starting from any configuration of C. Then
we prove that the algorithm satisfies the continuous property, which ensure that the groups’
composition is only adapted when necessary. In other words, the arrival of a new vehicle on the
vicinity of a group does not challenge the group composition.

We first prove that incorrect values leave in finite time the network. Thanks to the badList
test, malformed lists disappear after a timer expiration. However a list could still contain bad
identities. When a node sends a list, it will be either ignored by its neighbors or taken into account.
When it is taken into account, all the elements will be shift on the right by the ant computation.
After k hops, the list has been shift by k places to the right. Since the lists are truncated, a node
never sends a list larger than Dmax. Hence, starting from any configuration, the system reaches a
configuration after k timer expirations where all the nodes contain in their msgSet correct partial
lists of ancestors’ sets. Let denote by L′ ⊂ C the set of all such configurations; L′ is a close
attractor for C.

We now prove that, starting from a configuration of L′, the system will stabilize on a legitimate
configuration of L, that is, a configuration where the views on each node define a maximal group
organization.

Let us denote by partnersv(c), the set of non-marked nodes belonging to the variable lstAnt

on node v in the configuration c. We then define the set of nodes groupv(c) as follows: if,
for each node w ∈ partnersv(c), partnersw(c) = partnersv(c) then groupv(c) = partnersv(c),
else groupv(c) = {v}. Hence, groupv(c) denotes the valid group to which node v belongs in
configuration c ∈ L′. Denote by ng(c), the number of different groups in the configuration c:
ng(c) = |{groupv(c), v ∈ V }|. We prove that ng(c) decreases until reaching a minimum. We call
external edge an edge (u, v) ∈ E which connects two nodes that do not share the same group in
the current configuration c: groupu(c) 6= groupv(c). Whenever an external edge disappears, the
number of groups decreases (two groups merged). Whenever the number of groups increases, the
number of external edges increases too.

We prove that no external edges is created starting from a configuration of L′. There are three
cases in the algorithm where a node v does not accept a neighbor u (i.e., u is double-marked).
The first case is when u sends a bad list. This case cannot happen starting from a configuration
in L′. The second case occurs when u sends an incompatible list, which can happen only if u was
not already in the group of v. Thus, an external link is not created between u and v. The third
case happens when u knows a far neighbor w such that both v and w cannot belong to the same
group and w has the priority to v (Line 19). Symmetrically, w will ignore the far neighbor v by
truncating its list (Line 28). However, in this situation, w was not in lstAntv while it was in
lstAntu and then u and v do not belong to the same group. Thus, an external edge is not created
in the third case. Hence, the algorithm does not create external edges starting from configurations
of L′.

We prove that the number of external edges decreases when starting from configurations of
L′ \ L. Let us consider a symmetric edge (u, v) (asymmetric edges are ignored by the algorithm,
thanks to nodes’ marking). Since the edge is symmetric, either u or v will eventually receive a
correct partial list of ancestors from the other extremity of the edge. Let u be the node that first
receive a list from the other extremity. This list does not contain u, and the node u will then
broadcast a list containing v. When v receives such a list, it discovers that (u, v) is a symmetric
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edge and takes into account the list sent by u. Three cases are possible. First, the list sent by u
could be incompatible with v’s. In this case, v sends a list containing u. Second, the list of u is
compatible but the new list computed by v is too long due to a far node w such that w < v. In
this case, the node v will ignore the list sent by u; it sends a list containing u. Third, the list of
u is compatible and it does not provide any too far node w with w < v. In this case, the node v
will send a list that contains u. The node u will eventually receive the list of v. Again, the three
cases already described can apply and u will either send a list with v or with v.

Now, let consider the two cases (either receiving v or v). Whenever u or v sends a list with
the other extremity double-marked, this means that u and v cannot belong to the same group. If
neither u nor v sent a list with the other extremity double-marked, then u and v will eventually
appear in the same group. However, in case of one of them (say v) truncated its list to avoid
a too far node w with less priority than it (v < w), then u and v have not the same list: w
still belongs to the list of u while it does not appear in the list of v). After at most Dmax timer
expirations, w will receive a list containing v. Since v is too far from w and since v < w, w will
ignore the neighbors that sent a list containing w. After at most Dmax timer expirations, u will
receive lists that does not contain w since no more neighbor of w will add w in their list. Thus
w will disappear in at most Dmax timer expirations from the list of u; u and v appear then in
the same group. So, considering an external edge (u, v), either it always remain external (one of
the extremity double-marked the other), or it becomes an internal edge in less than Dmax timer
expirations.

Finally, when no external edge can disappear, this means that no pair of groups can merge
while satisfying the safety property ΠS. As a consequence, a maximal group organization has been
reached. Hence, starting from a configuration of L′, a configuration of L is reached. Moreover,
since the algorithm does not create external edges, it does not split existing groups after the last
transient fault or topology change. Hence, starting from a configuration of L, the system cannot
reach a configuration outside L. Then L is a close attractor for C and the protocol is self-stabilizing
in S (it is Dmax-dynamic self-stabilizing).

It remains to prove the continuity property ΠC . Suppose that, after a node v accepts the list of
a new neighbor, its group is split. Then, by Lemma 1, this means that v accepted an incompatible
list, which is impossible (Line 6). Note that if a node would have a bad list (containing a too far
or inexistent node), then the distance to this node is larger than k, which contradicts the safety
property and the split is allowed.

Lemma 1 Let v and w be two nodes owning the partial truncated lists of ancestors’ sets (a0
v, a

1
v,

. . . , ap
v) and (a0

w, a1
w, . . . , aq

w) respectively, and suppose that w arrives in the vicinity of the group of

v. Then v can accept the list of w without challenging the current groups if and only if there exists

i ∈ {0, . . . , p} such that w is neighbor of all the nodes belonging to ai
v and either p−i+1+q ≤ Dmax

or i/2 + q + 1 ≤ Dmax.

6 Conclusion

This paper introduces the continuity properties to complete the self-stabilization in dynamic ad
hoc networks. A group service for these networks is specified, and a distributed protocol has been
designed to solve it. This protocol maintains the groups’ diameter smaller that Dmax, a bound fixed
by the applications’ requirements. It can recover from transient faults. It ensures the continuity
of the groups’ composition, while the nodes’s moves do not contradict the diameter constraint.
The protocol is implemented; performances are currently studied.
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A Proof of Lemma 1

Let w be the first node of groupw for which the list of ancestors’ set is received by v. Then,
the only external edges between groupv and groupw known by v are those joining w. Indeed, the
external edges are not propagated in the lists (they involve double-marked nodes). Hence, without
loss of generality, we suppose that only these external edges exist between the other groups.

Suppose that the lemma conditions are fulfilled. Let u ∈ ak
v and u′ ∈ al

w be two nodes in the
lists of v and w respectively. There exists at most two families of shortest paths from u to u′,
depending on the external edge used to reach w. Let P1 be a path that includes the edge (v, w).
It starts from u and joins v by k edges in the group of v, joins w by the edge (u, v) and then
reaches u′ by l edges in the group of u. Let P2 be a path from the second family. It starts from
u and joins a node v′ ∈ ai

v by |k − i| internal edges in the group of v, then joins w by the edge
(v′, w) and then reaches u′ by l internal edges in the group of u.

The length of P1 is bounded by k +1+ q. But since P1 is a shortest path, it is shorter to reach
u′ from u by joining a node of a0

v (ie. v) than by joining a node of ai
v (such as v′). Hence we have

k ≤ i/2 and the length of P1 is bounded i/2 + 1 + q, which is smaller than Dmax by hypothesis.
The length of P2 is bounded by p− i + 1 + q, which is also smaller than Dmax by hypothesis.

Hence, for any node u and u′ belonging to the group of v and w respectively, there exists a
path from u to u′ with less than Dmax edges. The list of w is then compatible with the list of v,
and can then be accepted by v.

Suppose now that the conditions are not fulfilled and that v accepts the list of w. Then the
nodes of groupw will be propagated in the lists of nodes of groupv and reciprocally. But at least
one node u ∈ groupv will see that a node u′ ∈ groupw is too far from him and reciprocally.
Either u or u′ will reject the lists of its neighbors that contain the too far node (depending on the
lexicographical order between u and u′) and either the group of v or the group of w split. �

B r-operators: a summary

When modeling the distributed algorithms with algebraic operators, interesting properties (termi-
nation, self-stabilization) can be ensured by simply checking some local properties of the operator.
To stabilize a distributed algorithm while some loops exist in the network, the idempotency is
required (x · x = x). However, the operators of the idempotent semi-groups (such as min(x, y)
in N) cannot converge in presence of transient faults [18]. By using an endomorphism (such as
x 7→ x + 1 in N), these operators can be generalized in r-operators (such as min(x, y + 1) in N).
The Abelian idempotent semi-group is then a particular case of r-semi-groups, where the endomor-
phism is the identity mapping x 7→ x [17]. An r-operator is r-associative (x⊳(y⊳z) = (x⊳y)⊳r(z)),
r-commutative (r(x) ⊳ y = r(y) ⊳ x), r-idempotent (r(x) ⊳ x = r(x)) and admits a left neutral ele-
ment (x ⊳ e⊳ = x). Under certain conditions, an r-semi-group induces a semi-group and this gives
a method to build r-operators [17] : finding an Abelian idempotent semi-group (S,⊕) and then
an endomorphism r : S→ S. These algebraic structures admit an order relation. An idempotent
r-operator satisfies ∀x ∈ S, x �⊕ x where �⊕ is the order relation of the induced semi-group.
When we have ∀x ∈ S, x ≺⊕ x, the r-operator is strictly idempotent. In [13], it has been proved
that the strictly idempotent r-operators that induce a total order relation lead to self-stabilizing
static tasks in unreliable messages passing.
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