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Abstract. High-degree melting of hot dry Hadean mantle
at ocean ridges and plumes resulted in a crust about 30 km
thick, overlain in places by extensive and thick mafic vol-
canic plateaus. Continental crust, by contrast, was relatively
thin and mostly submarine. At constructive and destructive
plate boundaries, and above the many mantle plumes, acidic
hydrothermal springs at∼400◦C contributed Fe and other
transition elements as well as P and H2 to the deep ocean
made acidulous by dissolved CO2 and minor HCl derived
from volcanoes. Away from ocean ridges, submarine hy-
drothermal fluids were cool (≤100◦C), alkaline (pH∼10),
highly reduced and also H2-rich. Reaction of solvents in this
fluid with those in ocean water was catalyzed in a hydrother-
mal mound, a natural self-restoring flow reactor and frac-
tionation column developed above the alkaline spring. The
mound consisted of brucite, Mg-rich clays, ephemeral car-
bonates, Fe-Ni sulfide and green rust. Acetate and glycine
were the main products, some of which were eluted to the
ocean. The rest, along with other organic byproducts were re-
tained and concentrated within Fe-Ni sulfide compartments.
These compartments, comprising the natural hydrothermal
reactor, consisted partly of greigite (Fe5NiS8). It was from
reactions between organic modules confined within these
inorganic compartments that the first prokaryotic organism
evolved. These acetogenic precursors to the bacteria diversi-
fied and migrated down the mound and into the ocean floor
to inaugurate the “deep biosphere”. Once there they were
protected from cataclysmic heating events caused by large
meteoritic impacts. Geodynamic forces led to the eventual
obduction of the deep biosphere into the photic zone where,
initially protected by a thin veneer of sediment, the use of
solar energy was mastered and photosynthesis emerged. The
further evolution to oxygenic photosynthesis was effected as
catalytic [Mn,Ca]-bearing molecules that otherwise would
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have been interred in minerals such as ranciéite and hol-
landite in shallow marine manganiferous sediments, were
sequestered and invaginated within the cyanobacterial pre-
cursor where, energized by light, they could oxidize wa-
ter. Thus, a chemical sedimentary environment was required
both for the emergence of chemosynthesis and of oxygenic
photosynthesis, the two innovations that did most to change
the nature of our planet.

1 Introduction

The Earth’s internal thermal energy is mainly degraded
through convection. Heat is transferred to the surface by a
convecting mantle, to be discharged through volcanoes and
hydrothermal springs into the ocean and atmosphere (the
volatisphere). Chemical disequilibrium between reduced
mantle and oxidized volatisphere is focused at springs and
seepages on land or on the ocean floor. In turn this chemical
energy is degraded through metabolism. Today metabolism
relies on convection for supply of nutrients in the ocean, and
on convection in the atmosphere for irrigation and chemical
weathering of the land. The springs and seepages are oases
of life in both realms.

At a broader scale and at slower rates, global geodynamic
processes generate fresh, reduced rock surfaces that pro-
vide energy and supply nutrients to life. This coupling of
metabolism to convection was directly implicated in the on-
set of life, which probably emerged at least 4 Gyr ago at mod-
erate temperature seepages (Russell et al., 1988, 1994).

Reconstruction of the conditions that drove life to emerge
and evolve its metabolic cycles is the main task of this pa-
per. We begin by considering what present-day processes
offer to the understanding of the conditions on the surface
and in the interior of the Hadean/Archaean Earth, then sug-
gest a scenario for the onset of life and its colonization of
the ocean floor. This journey from geodynamics, through
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Table 1. Examples of high- and moderate-temperature submarine springs.

Parameter J da Fuca1 Rainbow2 Lost City3 Eyjafjordur4

T◦C 224◦ 365◦ 40◦–75◦ 71.4◦

pH 3.2 2.8 ≤9.8 10.03 (24◦C)
duration yr >1000 >1000 >30 000 11 000

H2 mmol na 13 0.43 na
H2S 3.5 1.0 0.064 0.01
SO4 0 (0) 5.9–12.9 0.2
Fe 18.74 24 na 0.00014
Mn 3.58 2.25 na 0.0000018
Mg 0 0 9–19 0.01
Ca 96.4 67 22 0.061
Na 796 553 482 3.4
K 51.6 20 na 4.2

SiO2 23.3 6.9 na 1.6
CO2 ≤4.46 na na 0.57
Cl 1087 380 548 1.26
Co na 0.013 na na
Ni na 0.003 na na
Zn 0.9 0.16 na na
Mo na 0.000002 na na

Data for column1. Von Damm (1990),2. Douville et al. (2002),3. Kelley et al. (2001) and Früh-Green et al. (2003),4. Marteinsson et
al. (2001). Temperatures at the base of the convection cells developed at oceanic spreading centres and the off-ridge systems are presumed
to be∼400◦C and∼115◦C, respectively (Bischoff and Rosenbauer, 1984; Wenner and Taylor, 1971). The pH of the pristine alkaline fluid
is also likely to have been∼11 (Neal and Stanger, 1983, 1984). The estimates of the duration of high-temperature discharge is taken from
Elderfield and Schultz (1996). “na” signifies not analysed.

geochemistry to biochemistry leads us to conclude that ob-
duction of oceanic crust facilitated the evolutionary jump to
photosynthesis.

2 The modern oceanic crust

2.1 Birth and death of oceanic crust

A complete plate tectonic cycle starts with the formation of
crust at a ridge and ends with its recycling to the mantle at
a subduction zone. Continental crust forms above a subduc-
tion zone, a result of the melting of subducting oceanic crust
and/or its dehydration, which triggers partial melting in the
overlying mantle and the development of hydrous magmas.
Superimposed on the plate tectonic cycle is the formation of
oceanic islands and oceanic plateaus, which are generated by
partial melting in mantle plumes.

2.2 Modern hydrothermal systems – how they work

Five main types of hydrothermal fluids circulate through
modern oceanic crust: three high temperature types
(≤400◦C) operate at oceanic ridges, above plumes and in
back-arc basins respectively; an intermediate type occurs on
ridge flanks (≤115◦C); and the last, far cooler, on the deep

ocean floor (Anderson et al., 1977; Bonatti et al., 1983; Von
Damm, 1990, Cathles, 1990; Sedwick et al., 1994; Kelley et
al., 2001; Wheat et al., 2002; Früh-Green et al., 2003) (Ta-
ble 1).

The temperature of the very hot springs, driven by mag-
matic intrusion, is controlled largely by the two-phase
boundary of water and its critical point (Bischoff and Rosen-
bauer, 1984). Temperatures in modern hydrothermal con-
vective systems, which bottom at an overall water column
depth of 4 km or so, tend to peak at∼400◦C. The fluids in
the downdrafts become acidic (pH∼3) through the release
of protons while Mg2+ is fixed in serpentine and brucite
(Janecky and Seyfried, 1983; Douville et al., 2002). These
acidic solutions dissolve, transport and exhale the transition
metals, some phosphate, H2S and H2, at black smokers (Ta-
ble 1) (Von Damm, 1990; Kakegawa et al., 2002).

The temperatures and compositions of intermediate-
temperature hydrothermal convection cells are controlled by
exothermic reactions and the rheology of the newly serpen-
tinized mafic-to-ultramafic wall rock of the conduits. So far
the fluid from only one entirely submarine example of ul-
tramafic interaction has been sampled, the “Lost City” field,
15 km from the Mid Atlantic Ridge (Kelley et al., 2001;
Früh-Green et al., 2003). The pH of this water approaches
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10 as Ca(OH)2, HCO−

3 and H2 are eluted, and the tempera-
ture is 70◦ to 75◦C (Table 1) (Kelley et al., 2001). Another
broadly comparable system has been discovered in a fjord off
the north coast of Iceland (Marteinsson et al., 2001; Geptner
et al., 2002). Porous cones of Mg-rich clay (saponite), some
tens of metres high, characterize this warm (72◦C) alkaline
(pH 10), though fresh-water submarine spring (Table 1).

Still farther from ridges, even cooler circulation is driven
by heat within the uppermost crust. Small closed convection
cells are evenly spaced with a periodicity of about 7 km, with
thermal cusps around 20◦C (Anderson et al., 1977).

3 Hadean/Archaean ocean/atmosphere, oceanic crust
and global dynamics

3.1 The volatisphere

According to oxygen isotope analysis of the oldest known
zircons, an ocean is assumed to have condensed on Earth
by 4.4 Ga (Wilde et al., 2001). The atmosphere contained
CO2 and N2, some HCl, SO2, S0 and minor amounts of H2
and Ar (Kasting, 1993; Kasting and Brown, 1998; Pavlov
and Kasting, 2002). Volcanogenic CO2 and HCl, augmented
by output from high temperature acid springs, rendered the
early ocean acidulous (pH 5–6) (Maisonneuve, 1982; Sed-
wick et al., 1994; Kasting, 1993; Macleod et al., 1994). The
proportion of the CO2 depended on the balance between in-
puts from volcanic emissions and redissolution in the deep
ocean and outputs via carbonation of the crust and of the
dust thrown up by meteorite impacts (Alt and Teagle, 1999;
Nisbet and Sleep, 2001). Transition metals and phosphate
contributed by very hot springs remained in solution in this
acidulous ocean (Kakegawa et al., 2002). Particularly impor-
tant is Fe2+, some of which was photo-oxidized to insolu-
ble flocs of FeOOH at the ocean’s surface (Braterman et al.,
1983; Gaffey, 1997; Russell and Hall, 2002).

3.2 Crustal structure and composition

Heat production in the Hadean was at least 5 times that of
the present day and it is probable that the mantle was sev-
eral hundred degrees hotter than it is today (Turcotte, 1980).
Because the dehydration reactions that control the amount of
water recycled to the mantle are temperature dependent, the
Hadean mantle was drier than its modern counterpart. The
ocean contained most of the Earth’s water and its volume
may have been up to twice that of today’s oceans (Bounama
et al., 2001). Upwelling of hot, dry mantle at oceanic spread-
ing centres generated an early Archaean crust about 30 km
thick (Sleep and Windley, 1982; Arndt and Chauvel, 1990)
(Fig. 1). Oceanic plateaus, even more extensive than Ontong
Java, covered large parts of the oceanic crust with an addi-
tional 30 km of mafic and ultramafic igneous rock. Both the
oceanic crust and plateaus were internally differentiated. In
each an upper∼5 km-thick layer of magnesian basalt overlay

∼10 km of gabbros and troctolites and 10 km or more of ul-
tramafic cumulates (Francis et al., 1999; Foley et al., 2003).

The volume of continental crust in the early Archaean
was a subject of intense debate in the 1980’s. Geochemists
tended to the interpretation that continental crust started to
appear only around 3.8 Ga, the age of the oldest rocks known
at that time. Since then several important discoveries have
been made. The pre 4.2 Ga zircons provide evidence for
the existence of granitic rocks in the Hadean (Froude et al.,
1983; Compston and Pidgeon, 1986) and their oxygen iso-
topic compositions suggest that an ocean had condensed on
Earth by 4.4 Ga (Wilde et al., 2001; Mojzsis et al., 2001). Di-
rect or indirect evidence for very old continental crust is be-
coming more abundant: the 4 Ga Acasta gneisses (Bowring
and Williams, 1999) contain 4.2 Ga zircons (Iizuka et al.,
2002), and the recently discovered 3.8 Ga Porpoise Cove
supracrustal rocks on the east coast of Hudson Bay have Nd
isotopic compositions indicating assimilation of still older
granitoids (Stevenson et al., 2003). Although such an early
age for the onset of subduction and the generation of gran-
ites is not without its critics (e.g. Glikson, 1972; Whitehouse
and Kamber, 2002), ultra-high-pressure metamorphic rocks
do indicate that portions of the continental crust are rou-
tinely cycled deep into the mantle. These discoveries pro-
vide mounting support for Armstrong’s (1981, 1991) model
of rapid early continental growth. In this model, granitic con-
tinental crust was abundant by the end of the Hadean.

The topography of the Hadean planet differed radically
from that of the modern Earth. Because Hadean granitic
crust contained higher concentrations of radioactive elements
it was hotter, less viscous, and thinner than modern conti-
nental crust (Sandiford and McLaren, 2002). And because
the mantle also was hotter, the continental lithosphere was
thinner. Oceanic crust, in contrast, was much thicker than
modern oceanic crust, as thick or thicker than the early Ar-
chaean continental crust. The oceans were more voluminous
and they flooded a greater portion of the Earth’s surface.
Most of the continents were submerged and only mountain
ranges at convergent margins and vast volcanic plateaus oc-
casionally breached the ocean surface (Arndt, 1999) (Fig. 1).
Thus there was little subaerial weathering and erosion of the
mainly submerged continental masses and comparatively lit-
tle clastic sedimentation.

Hydrated oceanic crust was continually cycled back into
the mantle. At the base of the thickest sections, where
oceanic plateaus had erupted onto the oceanic crust, pres-
sures were sufficient to convert plagioclase to garnet. The
downward drag of these dense eclogitised segments and the
underlying dense Fe-rich ultramafic cumulates initiated sub-
duction. Once started, the entire basaltic and gabbroic por-
tion of the crust converted to eclogite, and plunged into the
mantle (cf. Holmes, 1931). The earliest subduction zones
probably were steeply dipping, rather than shallow, as is
commonly assumed (Fig. 1) (Karsten et al., 1996). The upper
layers of the crust dehydrated and triggered the melting in the
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Fig. 1. Cross-section illustrating mantle convection on the Earth at the Hadean/Archaean boundary (Campbell et al., 1989; Davies, 1992;
Foley et al., 2003; Fitton et al., 2004). Life is held to have emerged at an alkaline seepage site. An early batch of prokaryotic colonies was
conveyed toward a plate margin where it was obducted into the photic zone, facilitating the onset of photosynthesis (Fig. 2). (At times and
in places plume-type convective mass transfer may have involved the whole mantle).

over-riding mantle that gave rise to the magmas parental to
continental crust. The uppermost parts of the oceanic crust
obducted to form accretionary prisms of the type discussed
by Maruyama (1997) and Foley et al. (2003). These prisms
obliterated any nascent oceanic trenches, a process that was
highly significant, as we shall see, to the development of pho-
tosynthesis.

3.3 Hydrothermal circulation

If we assume that the 400◦C springs developed at construc-
tive plate margins were comparable to those emanating from
the ultramafic crust at the Rainbow field, the highly reduced
acidic fluids would have carried about 20 mM of Fe2+ to the
ocean (Von Damm, 2000; Douville et al., 2002; Allen and
Seyfried, 2003) (Table 1). With negligible marine sulfate
in the Hadean (Farquar et al., 2000) there were no sponta-
neously precipitated protective anhydrite chimneys, and no
black smokers. Hydrogen sulfide, reacting first with zinc,
produced soluble but stable ZnS clusters as the solutions
cooled on exhalation (Luther et al., 1999). Given the high
remaining metal to sulfide ratio (Walker and Brimblecombe,
1985), much of the Fe and minor Ni stayed in solution in the
acidulous ocean, though photo-oxidation of a proportion of
the Fe2+ generated flocs of FeOOH (Braterman et al., 1983).

In marked contrast, the off-ridge springs would have had
a similar temperature and chemistry to those of the present
day (≤100◦C and pH 9–11, Table 1) (Shock, 1992; Macleod
et al., 1994; Kelley et al., 2001; Russell and Hall, 2002; Fo-
ley et al., 2003). Similar solutions may have exhaled from
faulted zones within the oceanic plateaus. Such alkaline so-

lutions could have provided∼10 mM of HS− to the seep-
age site (Macleod et al., 1994; Rahman, 2003). A mound
of precipitates formed where these seepage waters met the
acidulous ocean. The main precipitates were of brucite,
iron and ephemeral calcium and magnesium carbonates, with
subsidiary ferrous and ferric oxyhydroxides and iron>nickel
sulfides (Russell et al., 1988, 1998).

3.4 Ocean temperatures

The temperature of the Hadean ocean is uncertain. The ef-
fective radiative temperature of the Sun then was about 70%
of its present output (Sagan and Mullen, 1972; Bahcall et
al., 2001). Only the presence of atmospheric greenhouse
gasses, CO2 or CH4, prevented the Earth from completely
freezing over (Kasting, 1993). Indeed, temperatures may, on
occasion, have approached 100◦C. But, as mentioned above,
there were several effective sinks for CO2 including the ex-
tensive volcanic plateaus and the dust raised by meteorite im-
pacts (Nisbet and Sleep, 2001). These impacts on the other
hand may also have vaporized the ocean from time to time,
though temperatures were never so high that a Venus-like at-
mosphere persisted, where H2 loss depleted the hydrosphere.
Very likely there were frequent oscillations from hot (impact
and green-house induced), to cold and partially frozen, a con-
sequence of solar radiation masking by local or galactic dust
clouds (Maher and Stevenson, 1988; Kasting, 1993, Kasting
and Brown, 1998; Alt and Teagle, 1999; Nisbet and Sleep,
2001). Very cold conditions were short-lived because of con-
tinuous and widespread volcanicity and exhalations of CO2.
Without the dampening capacity of large landmasses, con-

Biogeosciences, 2, 97–111, 2005 www.biogeosciences.net/bg/2/97/



M. J. Russell and N. T. Arndt: Geodynamic and metabolic cycles in the Hadean 101

archeabacteris
(isoprenoid lipid

ether membranes)

ocean-floor spreading
& bacterial migration

7) ~ Green sulfur bacteria
with Fe/S clusters (RC1)

8) ~Heliobacteria (RC1)

H2 H2
H2

H2

H2

H2

H2

H2

H
2
S

CH
2
O

volatile-rich
magma

?
CO

2 N
2

FeIII So MnIV

So + SO4
2-

CN-

HS-

CO

RS-

NH
3

syntrophy &
some lateral
gene transfer

Fig. 2. Chemosynthetic life emerges at a warm alkaline seepage, differentiates into the precursors of the bacteria and archaea, and expands
into the surrounding sediments and crust (Martin and Russell, 2003; Russell and Martin, 2004). From here a proportion is conveyed by
ocean floor spreading toward a constructive margin produced partly by obduction. Once at the margin some of the cells happen to invade
manganiferous sediments in the photic zone where, at a sulfurous spring, some evolve to exploit solar photons. Numbers 1–3 relate to life’s
emergence, 4 marks the point of differentiation of the archaea from the bacteria. Roman numerals V-VII mark evolutionary stages of the
archaea, and 5 and 6 show stages of evolution of the bacteria in the deep biosphere. Photon energy may have been first mastered by the green
sulfur bacteria (7), followed by the heliobacteria (8) (Vermaas, 1994; Baymann et al., 2001). These photosynthesizing bacteria had probable
appeared by the early Archaean (Westall et al., 2001). Oxygenic photosynthesis (9) is a further evolutionary development, though the age of
its emergence is highly controversial and its presence in this diagram is speculative (not to scale).

ditions at the ocean surface were likely to have been storm-
wracked whatever the temperature – too tempestuous for the
collection of lipids and the focusing of energy and materi-
als to convert them to cells with enzymes, metabolites and
genomes.

Notwithstanding an earlier suggestion for a thermophilic
start to life (Russell and Hall, 1997), because of the fragility
of RNA, and because the acetogenic pathway operates best
below about 50◦C, we recognise that life is unlikely to have
emerged at temperatures much above 40◦C (Forterre, 1996;
Schink, 1997; Moulton et al., 2000; Brochier and Philippe,
2002). And because a thermal gradient is required to drive
convection, we suggest that life’s emergence had to await a
period, or “window of opportunity” when oceanic tempera-
tures were low, perhaps around 20◦C (but see Schwartzman
and Lineweaver, 2004, for a contrary view). However, once
life had emerged it had to survive the Hadean periods of high
temperature. How this was done will have to be addressed in
our hypothesis of life’s emergence and early evolution.

4 Chemical contribution to the onset of life

4.1 The hydrothermal mound

Haeckel (1892, p. 414) considered life to have emerged from
an “inorganic formative fluid”, and Leduc (1911, p. xv) sug-

gested that “the chain of life is . . . a continuous one, from
the mineral at one end to the most complicated organism at
the other”. In Leduc’s view the first compartments to store
the potential energy that drove life to emerge were also in-
organic. These prescient ideas were ignored, partly because
they seemed to hark back to theories of spontaneous genera-
tion put paid to famously by Pasteur, and partly because sci-
entists were loath to consider anything but an organic origin
for any organic being. The organic view has held sway for 75
years (Bada, 2004). However, the inorganic hypothesis has
since been disinterred and we suggest that a stable, long-lived
alkaline submarine seepage of moderate temperature satis-
fies Haeckel’s expectations (Russell et al., 1988, 2003). Fur-
ther, we suggest that Leduc’s inorganic compartments may
have comprised catalytic iron(nickel) sulfides generated at
this same seepage (Russell et al., 1994). This idea is given
further significance by the recognition that iron and sulfur
comprise the active centres to a protein with the longest pedi-
gree, the electron transfer agent known as ferredoxin – a
metabolic enzyme which is strongly electronegative with a
potential close to that of molecular hydrogen (Eck and Day-
hoff, 1966; Hall et al., 1971).

Portions of a hydrothermal mound comprising freshly pre-
cipitated films of iron sulfide in the form of disordered nano-
metric mackinawite (Fe1+xS) and minor greigite (Fe5NiS8)
offered semipermeable and semiconducting containers for
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both organic synthesis and retainment (Russell and Hall,
1997; Filtness et al., 2003; Wolthers et al., 2003). Strong
gradients developed at the outer margins of such a mound
where the reduced alkaline hydrothermal solution interfaced
the cooler, more oxidized Hadean ocean. Potentials focused
across the iron sulfide membranes were hydrodynamic (be-
tween buoyant hydrothermal solution and ocean), thermal
(<20◦ to 115◦C), chemical (between hydrothermal H2 and
CO2) and electrochemical (between redox couples H+/H2
and Fe3+/Fe2+) (Russell and Martin, 2004). Electrons could
also be gained from H2S and HS−.

Reduction of CO2 or HCO−

3 to CO with activated H2 (as
H·) is assumed to take place on nanocrystals of mackinawite
and greigite (Russell et al., 1998; Russell and Martin, 2004).
Further reduction to methane thiol (CH3S−), involving H· is
activated hydrogen, i.e. a highly reactive hydrogen atom and
HS−, is strongly thermodynamically favoured (Schulte and
Rogers, 2004). Heinen and Lauwers (1996) have produced
methane thiol directly by reduction of CO2 with the con-
comitant oxidation of FeS to pyrite by H2S, as might be ex-
pected of the “pyrite-pulled” hypothesis of Ẅachtersḧauser
(1988). Huber and Ẅachtersḧauser (1997) have reacted CO
and CH3SH to produce acetate (H3C.COO−) in yields of
40% with respect to the thiol. Experimental conditions were
100◦C at a pH of 6.4. These chemical and physical states
can be met near the surface of the hydrothermal mound. It
appears then that the first result of a reaction between an al-
kaline hydrothermal fluid and carbonic ocean water will be
acetate. Indeed, acetate is the product of what is known as
the acetyl coenzyme-A pathway – the most ancient of the
metabolic pathways (Peretó et al., 1999; Russell and Martin,
2004).

In their experiments Huber and Ẅachtersḧauser (1997)
used a slurry of iron sulfide and nickel sulfide. However,
Russell et al. (1998) pointed out that greigite and violarite
(Fe2Ni4S8) are more likely to have been the catalysts. The
high acetate yields are an expression of the thermodynamic
calculations of Shock et al. (1998), who demonstrated the re-
action between CO2 and H2 with the production of acetate to
be extremely favourable (exergonic). The structure of greig-
ite (Fe5NiS8) is strikingly similar to the active centres (e.g.
Fe4NiS5) of the enzymes presently involved in the reduction
of CO2 and the formation of acetate (Vaughan and Craig,
1978; Russell et al., 1994, 1998; Russell and Martin, 2004).
These enzymes are known as carbon monoxide dehydroge-
nase/acetyl co-enzyme-A synthase (CODH/ACS) (Dobbeck
et al., 2001; Drennan et al., 2001; Darnault et al., 2003). The
same enzymes are known to have the facility to activate H2
(Menon and Ragsdale, 2000).

We can say then that the first microbe used the energy and
materials within the hydrothermal solution and the ocean to
generate acetate and water as waste products, i.e. it was an
“acetogen” (Russell and Martin, 2004). The emergence of
life and the generation of acetate waste within the natural
hydrothermal reactor can be considered rather as we might

characterize mineral precipitation at a hot spring, though as
soon as organic molecules are formed in the process they
have the effect of inhibiting mineral growth (e.g. Rickard
et al., 2001). Indeed, we can think of the active centres
of the metalloproteins as “still-born” mineral clusters. The
approximate and highly simplified formula for “proto-life”
used here [C70H129O65N10P(Fe,Ni,Co,Zn,Mo)S] is gleaned
from a number of sources (Redfield et al., 1963; Orr, 1978;
Morel and Hudson, 1985; Faggerbakke et al., 1996; Macal-
ady and Banfield, 2003). The trace metal contents are rather
exaggerated in keeping with their likely contribution to the
first living cells. The reactions that generated this proto-life
and waste can be put notionally as:

{407H2 + 10NH3 + HS−
}
hydrothermal

+{210CO2 + H2PO−

4 + Fe, Ni, Co, Zn2+
}
ocean

→

{C70H129O65N10P(Fe, Ni, Co, Zn)S}
protolife

+{70H3C.COOH+ 219H2O}
waste. (1)

Note the high waste-to-protolife molecular ratio.
In this explanation the hydrothermal mound is viewed

as a self-restoring catalytic flow reactor that synthesized
acetate (Russell and Martin, 2004). More complex or-
ganic molecules were minor by-products of the reaction,
by-products that were to optimize acetate production. Of
particular significance was the amino acetic acid glycine
(+H3N.CH2.COO−), produced in hydrothermal experiments
by Hennet et al. (1992). Once glycine appeared in the sul-
fide compartments, the redox and pH gradients came into ef-
fect (Russell and Hall, 1997, 2002). The alkaline mounds
constituted the hydrogen electrode, or cathode, and the pho-
tolytic ferric iron flocculants (denoted by FeIII ) aggregated
at the mound’s exterior, acted as a positive electrode. The
FeIII /Fe3+ provides a fraction of the potential, augmented by
the exterior protons, that results in polymerization (Russell
and Hall, 1997, 2002). FeIII accepted the electrons ultimately
contributed by hydrothermal H2. Most prokaryotes near the
root of the evolutionary tree can use FeIII as an electron ac-
ceptor, supporting the notion that it was the first to fulfill this
vital role (McFadden and Shively, 1991; Liu et al., 1997;
Pace, 1997; Russell and Hall, 1997; Vargas et al., 1998; Rey-
senbach and Lovley, 2002).

Today we recognize the power of light to directly drive
much metabolism. In the Hadean the photolytic FeIII repre-
sented a “borrowed light” that energized and helped drive
life’s emergence (Cairns-Smith et al., 1992; Russell and
Hall, 2002). In theory, the electrochemical potential ap-
proaches one volt (Russell and Hall, 1997; Russell et al.,
1998); in practice, Russell and Hall (2002) and Filtness et
al. (2003) have demonstrated that an FeS membrane, sponta-
neously precipitated at the interface between solutions con-
taining 10 mM of Fe2+on the one side, and 10 mM HS−

on the other, can hold a tension of 600 to 700 mV for
several hours. The gradients have the potential to drive
the polymerization of inorganic phosphate if water activity
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were low (Baltscheffsky, 1996). Polymerization may have
taken place on the surfaces of closely packed mackinaw-
ite or greigite nanoclusters making up the inorganic mem-
brane (cf. Huber and Ẅachtersḧauser, 1998, 2003; de Zwart
et al., 2004). In turn, and on the same surfaces, the py-
rophosphate might have polymerized the glycine to form ho-
mopeptides. Alternatively, local generation of CO or COS
upon sulfide could have driven polymerization (Huber and
Wächtersḧauser, 1998; Huber et al., 2003; Leman et al.,
2004).

Once primitive peptides formed they will have coordinated
the building blocks of greigite (e.g. [Fe2S2]+, [Fe4S4]2+ and
perhaps [Fe4S6Ni]+) that had been inhibited from further
growth by organic sulfides such as ethane thiol (CH3CH2S−)
(Bonomi et al., 1985; Stevens and Kurtz, 1985). This was the
beginning of the organic take-over from a mineral based pre-
biotic chemistry (Milner-White and Russell, 2005). These
peptides may have contributed to a mixed polymer mem-
brane, more stable and flexible than its inorganic precursor,
yet with sequestered sulfides and phosphate, still able to gain
electrochemical energy and nutrients from outside the indi-
vidual cells (cf. Cole et al., 1994).

4.2 Evolution in the mound

Newly evolved acetogens were the forerunners of the bacte-
ria. However, evolution in the mound extended beyond mere
optimization of the chemotrophic acetate reaction (Martin
and Russell, 2003). The next step was the adaptation to
organotrophy, the digestion of the reduced carbon and energy
to be found in dead cells. A minority of cells, derived from
those that emerged at around 40◦C, exploited the potential
offered at higher temperature elsewhere in the mound where
the kinetic energy was greater and the activation energy re-
quired for reduction, through acetate, all the way to methane,
was lower. That the first “methanogens” may have evolved
while still in the mound, is argued because there is even
more energy to be had in the full reduction of CO2 (Amend
and Shock, 2001). Moreover, the metalloenzymetic machin-
ery required for acetogenesis and methanogenesis is similar,
though the structures of the organic carbon/nitrogen catalysts
are rather different (Fontecilla-Camps and Ragsdale, 1999;
Thauer, 1998). Moreover, methanogenic archaea can derive
energy by generating methane from the acetate waste from
neighbouring acetogens (Madigan et al., 2000):

CH3.COO−
+ H2O→CH4 + HCO−

3 . (2)

Russell and Hall (2002) suggested that such methanogenic
cells were the precursors of the archaea, the sturdy but slowly
evolving second domain of the prokaryotes (Woese et al.,
1990). If so, the last common ancestor of life occupied the
very hatchery in which life first emerged, and the most signif-
icant of all cellular differentiations, that between the bacteria
and the archaea, probably took place before the mound was
evacuated (Koga et al., 1998; Martin and Russell, 2003). Up

till this time of divergence, genes were shared like software
packages in what may be called a cellular cooperative. Even-
tually there was a differentiation of cells as opportunities for
exploratory evolution and specialization in this previously
empty habitat presented themselves, a differentiation partly
driven by entropy – random changes in genes that eventu-
ally gave mutually exclusive phenotypes (Wicken, 1987). By
this stage MnIV and S0 had joined FeIII and CO2 as electron
sinks.

In summary we can say that bacteria were initially suited
to low to moderate temperatures, and the archaea originally
evolved from them to withstand relatively high temperatures
(i.e.∼55◦C). But the propensity to live well above 40◦C was
passed back to the nascent bacteria through genetic transfer.
A period of high ambient temperature, caused either by an
impacting large meteorite or a CO2 greenhouse (Kasting and
Akerman, 1986; Kasting and Brown, 1998; Nisbet and Sleep,
2001) could explain why the last common ancestor of all life
may have been a thermophile, perhaps living at 50◦ to 60◦C
(Gaucher et al., 2003). Whatever the heating event, it was
from the surviving community that the evolutionary tree was
seeded.

Representatives of, and in, both domains found it advan-
tageous to live syntrophically. Cells would have relied upon
their neighbours to swap genes, provide some of the nutrients
and to remove some of the waste (e.g. Eq. 2) (Morita, 2000).
Unfortunates that were entrained within the hydrothermal so-
lution and dispersed to the ocean could not have survived
such dilution of nutrient or ocean-evaporating impact events
(Sleep et al., 1989; Bjerrum and Canfield, 2002). The only
way out was down – down onto the ocean floor and into the
warm chemical sediments and permeable basalts below.

4.3 Inauguration of the deep biosphere

Growth and expansion of the colonies of acetogens and
methanogens followed the redox front laterally out of the
mound and into the surrounding sediments. Colonization
of the entire seafloor and upper crust was relatively rapid as
microbial colonies were entrained in aqueous advection cur-
rents. H2 continued to be the available fuel, diffusing into the
sediments and volcanic rocks from hydrating crust and man-
tle (Apps and van der Kamp, 1993). H2 was also provided by
some of the fellow metabolizing cells within the syntrophic
communities (Wolin, 1982; Towe, 1996). CO2 for biosynthe-
sis continued to be available in downward percolating ocean
water. And photolytic FeIII , already deposited on the ocean
floor, would have continued to act as a terminal electron ac-
ceptor so that electrochemical potential was maintained. At
some stage fatty acids and lipids would have started to space
out and replace much of the protein in the membrane (Martin
and Russell, 2003).

Once life had emerged and gained a foothold in the
sediments and hydrated volcanics of the ocean bottom it
would have been extremely hard to eradicate. Strong Earth
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tides resulting from the shorter day and lunar cycle and
the closer moon continuously pumped the required nutrients
from above and below through fractures in the upper crust
(Davis and Becker, 1999). Only FeIII , the main electron ac-
ceptor in the chemical sediments, may have been in short
supply. Even so, a small flux of H2 was enough to prevent
the decay of cellular material and the racemization of pep-
tides (Morita, 2000).

Thus the deep biosphere was born (Parkes et al., 1990,
1994; Pedersen, 1993; Thorseth et al., 1995; Wellsbury et
al., 1997; Whitman et al., 1998; Kotelnikova and Pedersen,
1997; Furnes et al., 2004). At this depth, as the thermal
conductivity of saturated sediment and basalt is so low, the
prokaryotes were well protected by a layer of insulating sed-
iment and basalt from the thermal effects of impacts, even
of those that may have caused the entire ocean to volatilize
(Sleep et al., 1989).

5 Obduction and the emergence of photosynthesis

Given that conditions for life in the open sea were most in-
hospitable, how do we explain the emergence of photosyn-
thetic organisms in the full glare of hard UV from the young
sun (Canuto et al., 1982)? We suggest that obduction brought
microbial consortia from the deep ocean floor into the photic
zone. Because of the particular geometry of Hadean oceanic
crust, chemical sediment overlying hydrated basaltic crust
was obducted over the subducting, delaminated, eclogitised
lower parts of the slab. Obduction of oceanic sediments,
particularly of hydrated iron and manganese oxyhydroxides
precipitated on the margins of volcanic chains, and of the
hydrated basalt beneath, passively transported some bacte-
rial colonies into shallow water and into the photic zone.
Cells were protected from deleterious solar radiation beneath
a mineral coating, perhaps within a biofilm (Cockell and
Knowland, 1999). Opportunistic protection by superposed
minerals and mineral excretions are well-known prokaryotic
protective gambits (Phoenix et al., 2001). And the absorp-
tion and accumulation of manganese is also likely to have
conferred resistance to radiation (Daly et al., 2004). In these
conditions some bacteria near the surface further augmented
their resistance to solar radiation by developing a UV pig-
ment protector from a ring of organic bases. Pigments com-
prising macrocyclic aromatic rings probably date back to at
least 4 Ga (Pratt, 1993). Single ions of Fe, Mg, Co, Ni, Cu
and Zn can be sequestered individually in variants of what
is known as the corrin or tetrapyrrole ring, itself compris-
ing four C/N rings (Pratt, 1993; Eschenmoser, 1998; Allen,
2005). Pigments developed for photoprotection could then
have been adapted as electron transfer agents, as photosyn-
thetic reaction centres and antenna proteins (Mulkidjanian et
al., 1997; Allen, 2005).

5.1 The first photosynthesists

The process of photosynthesis was mastered at least by the
early Archaean (Westall et al., 2001). The first photosyn-
thesizing bacterium may have been a precursor to the green
sulfur bacteria (Baymann et al., 2001). Like some pre-
photosynthetic bacteria, these bacteria relied lithotrophically
on H2S as an electron donor. Just as in modern island arcs
and accretionary prisms, hydrothermal H2S of magmatic or
metasomatic derivation would have circulated through the
sediments in the obducted pile (Fig. 2). In these conditions,
a photosynthetic reaction centre (RC1) could have developed
that catalysed the generation of elemental sulfur and water
as waste, and gained electrons and protons in the process
(Eq. 3).

2H2S+ CO2 + light → (CH2O)life
+ H2O + 2S0. (3)

As we might expect of gradualistic evolution, the green
sulfur bacteria continued to rely on iron sulfide clusters as
electron transfer agents (Blankenship, 2002).

An evolutionary variant – a photosynthetic precursor of
the heliobacteria bacteria – was able to fix CO2 with elec-
trons supplied indirectly by organic detritus (Vermaas, 1994).
This change of electron source echoes the early evolution of
biosynthesis, beginning with lithotrophs, followed by rapid
and opportunistic adaptation to organotrophy (Sect. 4.2). The
heliobacteria substituted a pigment as an electron transfer
agent in place of some of the iron-sulfur centres (Allen,
2005). But they retained the use of photosynthetic reaction
centre 1 (RC1) (Dismukes et al., 2001; Blankenship, 2002).

5.2 Oxygenic photosynthesis

The photosystem (PS2) employed by all cyanobacteria and
plants to oxidize water only required gene duplication and
gene splitting to descend from RC2 (Baymann et al., 2001).
These genes could have been gained from green sulfur bacte-
ria and/or heliobacteria (Michel and Deisenhofer, 1988; Bay-
mann et al., 2001). In a variant of the hypothesis, Allen
(2005) has argued that photosystem 1 (PS1) and PS2 di-
verged from reaction centres within a common anaerobic an-
cestor, perhaps a green filamentous bacterium. PS2 works
in conjunction with PS1, itself also probably evolved from
the first reaction centre (RC1) (Baymann et al., 2001). PS2
is capable of oxidizing two molecules of H2O (cf. the one
molecule of H2S in the green sulfur bacteria shown in Eq. 3)
during the generation of a single molecule of O2, gaining in-
crementally in the process four electrons and four protons for
the fixation of carbon from CO2 or HCO−

3 for biosynthesis
(Hansson and Wyddrzynski, 1990) (Eqs. 4 and 5).

2H2O + light → 4H+
+ 4e−

+ O2 (4)

2CH2O + 2CO2 + light → (2H2O)life
+ 2O2. (5)

PS2 oxidizes water using what is known as the oxygen-
evolving centre (OEC). Its active site comprises a CaMn4
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centre (Dismukes, 200). At this site the electrons and protons
are stripped from the bonded water in the OEC and trans-
ferred separately to engender biosynthesis, while the two re-
maining oxide ions bond covalently to form waste O2. To
explain such an extraordinary innovation Russell and Hall
(2002) suggested that a small cluster, which otherwise would
have been interred in the phyllomanganate mineral ranciéite
[CaMn4+

4 O9.3H2O], was co-opted on the outer surface of the
membrane of the photosynthetic precursor, and from there
sequestered into a protein complex as a “ready-made” cat-
alytic centre. Such phyllomanganates (e.g. the birnessites)
are produced by hard UV radiation (λ∼225 nm) from Mn2+-
bearing waters (Anbar and Holland, 1992). They occur
widely today in seafloor Mn/Fe nodules as well as in subma-
rine exhalites (Burns and Burns, 1979). In ranciéite the Ca2+

(or a diadochic reduced Mn2+) is coordinated with three oxy-
gens as well as to the oxygens of three water molecules (cf.
Post and Veblen, 1990; Manceau et al., 2002). However, Fer-
reira et al. (2004) have now shown that the OEC comprises
a cubane containing one Ca atom and three Mn ions. This
CaMn3O4 cubane is coordinated to a peripheral Mn (Ferreira
et al., 2004). Yet the two water molecules are bound between
the calcium and the distal manganese. Despite the similar
stoichiometry, as the structure of ranciéite does not involve
a cubane it could not have been a direct precursor. More in
keeping with the Ferreira model are entities of the hollan-
dite [(Ba,Mn2+)Mn4+

7 O16] structure favoured by Sauer and
Yachandra (2004). Such manganese minerals do readily par-
ticipate in redox reactions (Sunda et al., 1983; Post, 1999).

In the light of this information, we now imagine the
precursors to the cyanobacteria embedded at the top of
shallow-water, photolytically precipitated, sedimentary man-
ganese oxides. These precipitates, aptly named umbers
when found in more recent oceanic crust (Constantinou and
Govett, 1972), not only provided some shade to these pre-
cursors, but also contributed the facility to oxidize water,
i.e., a “catalase” activity. Here the cyanobacteria precur-
sors exploited the protons and electrons released to them
from [CaMn4] structures by photons, to reduce bicarbon-
ate ions in pore spaces (Dismukes et al., 2001; Russell et
al., 2003). Eventually these [CaMn4] molecules with pho-
tolytic function were invaginated to become a primitive oxy-
gen evolving complex (OEV). Alternatively, because the ad-
ventitious accumulation of MnII inside a bacterium afforded
strong protection from hard UV and therefore survival, once
there it could, along with Ca2+, have formed a cubane and
been chelated by an aspartate- and glutamate-bearing protein.
Placed within the membrane, it exerted a water-oxidizing ca-
pability. Deinococcus radioduransis known to be tolerant to
high doses of gamma-radiation, a tolerance imparted by the
accumulation of manganese (Daly et al., 2004). Whatever
the details, it does seem likely that this extraordinary inno-
vation, like the emergence of chemosynthetic life itself, also
required chemical sediment for protection, support and as a
source of metal ions.

5.3 The appearance of oxygenic photosynthesis

We do not know when oxygenic photosynthesis started. Did
it appear in the Hadean or at the end of the Archaean, over
a billion years later? Geochemical evidence from the Isua
Banded Iron Formation (Dymek and Klein, 1988), from
radio- and stable isotopes in rocks of the same age (Ros-
ing and Frei, 2003), and 16sRNA evolutionary trees (Pace,
2002), have been taken to imply that it emerged before 3.75
Ga. But soil profiles lacking FeIII and the absence in rocks of
the petrified polysaccharide-rich sheaths around fossil cells
to be expected of cyanobacteria seem to point to a late or post
Archaean age (Westall 2001, 2003, 2004). Indeed, Blank
(2004) suggests that oxygenic photosynthesis did not emerge
until immediately prior to the Great Oxidation Event at ca.
2.3 Ga (Holland, 2002).

In the absence of further discriminatory evidence our own
preference – based on our plate tectonic scenario, the similar-
ity of the oxygen-evolving centre to a hollandite cluster, the
rapidity in which dynamic structures evolve and emerge in
the Universe, the pedigree of PS2 founded in the antecedent
RC2, and the likely concentrations of phyllomanganates, as
well as of manganese ions in pore waters of littoral sediments
– is for the early onset of oxygenic photosynthesis. The ab-
sence of atmospheric oxygen prior to 2.3 Ga would then be
explained by the flooding of the atmosphere with methane
and hydrogen from the deep biosphere, by the buffering ef-
fects of reduced iron and sulfide in the ocean and crust, the
relatively low productivity in the oceans, and by the reduc-
tion of O2 by ambient bacteria in microbial mats (Lécuyer
and Ricard, 1999; Farquar et al., 2000; Hoehler et al., 2001;
Catling et al., 2001; Timmins et al., 2001; Bjerrum and Can-
field, 2002; Arnold et al., 2004).

6 Conclusions

1. Geodynamic and metabolic cycles are closely coupled
on our planet, a coupling that would have been even
more direct at the onset of life when hydrothermal out-
put from an alkaline submarine seepage of moderate
temperature was the input to the first metabolizing sys-
tems (Russell and Martin 2004). These “metabolists”
developed within catalytic iron sulfide compartments in
the hydrothermal mound, gained genetic machinery and
thereby evolved while still within the mound. There
they differentiated into the two prokaryotic domains, the
bacteria and the archaea (Martin and Russell, 2003). It
is likely that life had emerged on the planet at least by
4.2 Ga (Russell and Hall, 1997).

2. Gradual expansion of colonies of prokaryotes from
the mound into the surrounding sediments on the
ocean floor guaranteed a similar protected environment,
though nutrient was at a premium, a factor encouraging
both syntrophic cooperation and evolution. From here
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the colonies were entrained in migrating fluids to depth
in the oceanic crust to inaugurate the deep biosphere
(Parkes et al., 1990, 1994; Pedersen, 1993; Thorseth et
al., 1995). A continual draft of H2 from the crust and
mantle prevented bacterial decay even in periodic ab-
sences of an electron acceptor and bicarbonate and other
feedstock (Morita, 2000).

3. Because of the relatively low conductivity of mafic
rock, the deep biosphere could remain out of reach of
meteorite-induced heating events.

4. Obduction of the deep biosphere into the photic zone
allowed evolution within shallow water chemical sed-
iments, first of photoprotective molecules developed
from aromatic ring compounds previously employed in
group and electron transfer, and from these to photosyn-
thetic reaction centres and antenna proteins (Mulkidja-
nian et al., 1997; Baymann et al., 2001; Allen, 2005).

5. The first photosynthesists, probably precursors of the
green sulfur bacteria, used hydrothermal H2S as an elec-
tron donor and produced S0 and water as waste. The
next, perhaps precursors of the heliobacteria, used or-
ganic waste as the ultimate electron donor (Vermaas,
1994). The biggest evolutionary leap followed, and
either involved the heterodimerization of the reaction
centres of the green sulfur bacteria and the heliobac-
teria (Bayman et al., 2001), or the divergence of PS1
and PS2 from reaction centres within a green filamen-
tous bacterium (Allen, 2005). Either way a combined
cyanobacterial PS1 and PS2 was the result (Blanken-
ship, 2002). This system could oxidize H2O leaving O2
as waste (Dismukes et al., 2001). In doing so, protons
and electrons were entrained and used in biosynthesis.

6. Both chemosynthesis and oxygenic photosynthesis
emerged within the confines of mineral constituents
(iron sulfides and manganese oxides respectively) with
catalytic propensity. Molecules that otherwise would
have been contributed to the growth of sulfide and ox-
ide minerals were sequestered into the first acetogens
and the first oxygen evolving photosynthetic bacteria re-
spectively. Co-opted as vital catalysts, as reactive cen-
tres, these transitional metal complexes are employed in
the same roles in protein complexes to this day.
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