
HAL Id: hal-00375604
https://hal.science/hal-00375604v1

Preprint submitted on 10 Oct 2008 (v1), last revised 14 Jun 2010 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On characterising strong bisimilarity in a fragment of
CCS with replication

Daniel Hirschkoff, Damien Pous

To cite this version:
Daniel Hirschkoff, Damien Pous. On characterising strong bisimilarity in a fragment of CCS with
replication. 2008. �hal-00375604v1�

https://hal.science/hal-00375604v1
https://hal.archives-ouvertes.fr

On characterising strong bisimilarity

in a fragment of CCS with replication

– note –

Daniel Hirschkoff1 and Damien Pous2

1 ENS Lyon, Université de Lyon, CNRS, INRIA
2 SARDES, LIG, Grenoble, CNRS, INRIA

Abstract. We provide a characterisation of strong bisimilarity in a fragment of CCS that contains only
prefix, parallel composition, synchronisation and a limited form of replication. The characterisation is
not an axiomatisation, but is instead presented as a rewriting system.
We discuss how our method allows us to derive a new congruence result in the π-calculus: congruence
holds in the sub-calculus that does not include restriction nor sum, and features a limited form of
replication. We have not formalised the latter result in all details.

1 Introduction

We study algebraic properties of strong bisimilarity in a sub-calculus of CCS. Like in previous work [1], of
which the present study is a continuation, an important aspect of the setting we analyse is the absence of the
sum construct, and, more generally, of any operator that would allow us to decompose parallel composition.

We present a rewriting system that allows us to characterise strong bisimilarity (∼) in a very basic calculus
that only features prefixes, parallel composition, and replicated prefixes, with the additional constraint that
these can occur only at top-level. The restriction and choice (or sum) operators are not included. Handling
replication is the novel aspect w.r.t. [1], and raises several difficulties when trying to analyse the algebraic
properties of ∼.

Let us focus on the properties of replication w.r.t. strong bisimilarity. In our setting, the most important
bisimilarity law for replication is written

!a.P | a.P = !a.P ,

and expresses that a replicated process acts as an unbounded number of copies of that process in parallel.
It appears that we can generalise the above equality, by allowing a replicated process to erase one of its

copies (we are reading the equality from left to right here) not only at top-level, but arbitrarily deep in a
term. In other words, if C is a context (a process with a hole), the law

!a.P |C[a.P] = !a.P |C[0]

should hold for strong bisimilarity (the previous equality is obtained by taking C = []).
This equality, together with the law !a.P |!a.P = !a.P , are the basic ingredients we need in order to

characterise strong bisimilarity between replicated terms. However, these equations are not enough, as the
following example shows: process P1 = !a.(b|a.c)|!a.(c|a.b) is bisimilar to P2 = !a.b|!a.c. It seems reasonable
to consider P2 as the normal form of P1. Intuitively, P1 can be obtained from P2 by inserting a copy of a.b
“inside” !a.c, and, symmetrically, a copy of a.c inside !a.b. A related difficulty appears with equalities like
!a.(b|a.b) = !a.b, where the copy is inserted in the replicated component itself.

Describing this phenomenon of “mutual replication” in all its generality would lead to complicated equa-
tional schemata, and we have not been able to come up with a simple, readable, presentation of strong
bisimilarity based on equational laws. Instead, we introduce a rewriting relation on processes that allows us
to compute normal forms w.r.t. strong bisimilarity (in particular, we are able to rewrite P1 into P2). This

α.F
α

−→ F

F1

α

−→ F
′

1

F1 |F2

α

−→ F
′

1 |F2

F2

α

−→ F
′

2

F1 |F2

α

−→ F1 |F
′

2

!α.F
α

−→ !α.F |F

P1

α

−→ P
′

1

P1 |P2

α

−→ P
′

1 |P2

P2

α

−→ P
′

2

P1 |P2

α

−→ P1 |P
′

2

Fig. 1. Labelled Transition System for our Subset of CCS

has the advantage of exposing the basic laws that are at work when normalising a process. We show that
our characterisation of strong bisimilarity still holds when we enrich the calculus with synchronisation. In
turn, the method we describe can be applied to derive a new congruence result on a subset of the π-calculus
(we must say we have not checked all details of this result yet).

Outline. We describe the subset of CCS we work with in Sect. 2; in Sect. 3, we introduce a notion of normal
forms and prove useful some technical results. The rewriting system is defined in Sect. 4, where we show that
it allows us to reach normal forms. Section 5 is devoted to the extension of our results to a calculus with
synchronisations, closer to the standard CCS. In Sect. 6, we give concluding remarks, discussing in particular
how these results lead to a new congruence property in the π-calculus.

2 The Setting

We work in the subset of CCS defined by the following grammar, where we rely on a countable set of actions
α, β, . . . :

F ::= 0
∣

∣ α.F
∣

∣ F |F P, Q ::= F
∣

∣ !α.F
∣

∣ P |P (processes)

D ::= []
∣

∣ α.D
∣

∣ D|F C ::= D
∣

∣ !α.D
∣

∣ C|P (contexts)

Our calculus features no communication, no restriction, no sum, and allows replication only on prefixes, at
top-level. We use P, Q to range over processes. A finite process (F) is a process which does not contain an oc-
currence of the replication operator. For F = α1.F1 | . . . |αk.Fk, we shall sometime write F as

∏

i∈[1..k] αi.Fi,

and denote by !F or
∏

i∈[1..k] !αi.Fi the process !α1.F1 | . . . |!αk.Fk. Note that !F will always denote a process
having replicated components only.

We use C to range over single-hole contexts mapping finite processes to processes. Accordingly, we use
D to range over (single-hole) finite contexts, mapping finite processes to finite processes. Note that the hole
cannot occur directly under a replication in C.

The labelled transition system associated to this process calculus is standard (Fig. 1 – note that there is
no synchronisation rule, this will be addressed in Sect. 5), and yields a notion of strong bisimilarity, written
∼, which is a congruence.

We shall rely on the following characterisation of strong bismilarity for finite processes, which is estab-
lished in [1]:

Definition 1 (Distribution law) Let ≡ be the smallest congruence generated by the laws of an abelian
monoid for parallel composition (the neutral element being 0), and the following equation schema, called
distribution law, where there are as many occurrences of F on both sides of the equation.

α.(F |α.F | . . . |α.F) = α.F |α.F | . . . |α.F ,

It is easy to show that this congruence is decidable, and we have

Theorem 2 ≡ coincides with strong bisimilarity (∼) on finite processes.

2

3 Preliminary Technical Results

We present some technical results about strong bisimilarity. Most of these help us isolating the replicated
part from the finite part in processes being compared. Indeed, when characterising strong bisimilarity, we
shall prove that P ∼ Q implies that the replicated parts of P and Q are bisimilar, and we also need somehow
to reason about the finite parts of P and Q.

The following property is necessary to derive correction of the rewrite system we define below.

Proposition 3 If C[0] ∼ !α.F |P , then C[0] ∼ C[α.F].

Proof. We show that R= {(C[0], C[α.F]) / ∀C s.t. C[0] ∼ !α.F |P for some P} is a strong bisimulation up
to transitivity and parallel composition (cf. [3, 2]).

There are three cases to consider in the bisimulation game:

– the hole occurs at top-level in the context (C = []|Q) and the right-hand side process does the following

transition: C[α.F]
α
−→ F |Q. By hypothesis, Q ∼ !α.F |P so that we find Q′ such that Q

α
−→ Q′ and

Q′ ∼ !α.F |F |P . By injecting the latter equality, we obtain Q′ ∼ Q|F so that Q′ closes the diagram.
– the hole occurs under a replicated prefix in the context (C = !β.D|Q) and this prefix is fired: we

have C[0]
β
−→ Pl = C[0]|D[0] and C[α.F]

β
−→ Pr = C[α.F]|D[α.F]. This is where we need the up-to

technique: these processes are not related by R (recall that we work with single-hole contexts). However,
we can deduce P1 R Pc = C[0]|D[α.F], by considering the context C′ = C[0]|D[], and checking that
C′[0] ∼ !α.F |P |D[0]. We finally check that Pc and Pr are related by the closure of R under parallel
contexts (by removing the D[α.F] component).

– in the last case, either the hole occurs under a non-replicated prefix in the contexts (C = β.D|Q), or the
contexts triggers a transition that does not involve or duplicate the hole; this case is treated by a simple
reasoning – just play the bisimulation game. ⊓⊔

As a consequence, we obtain the validity of the following laws:

!α.F | C[α.F] ∼ !α.F | C[0] (A) !α.D[α.D[0]] ∼ !α.D[0] (A′)

Lemma 4 If !F ∼ α.F ′|Q, then !F ∼ !F |α.F ′.

Proof. Purely algebraically: replicate everything and add !α.F ′ in parallel, this yields !F |!α.F ′ ∼ !α.F ′|!Q|!α.F ′,
from which we deduce !F |!α.F ′ ∼ !α.F ′|!Q ∼ !α.F ′|!Q|α.F ′ ∼ !F |α.F ′. (Note that, when writing !Q, we ac-
tually refer to the process obtained by adding replication at top-level on the finite components of Q; we
easily show that this operation preserves bisimilarity.) ⊓⊔

Lemma 5 If F =
∏

i αi.Fi and !F ∼ !α.F ′|Q, then there exists j s.t. !F ∼ !α.F ′ |
∏

i6=j !αi.Fi and αj = α.

Proof. By firing α.F ′ on the right-hand side, we find j such that αj = α and !F |Fj ∼ !α.F ′|F ′|Q, from
which we deduce !F |Fj ∼ !F |F ′. Then we show that the singleton relation {(!F, !α.F ′|

∏

i6=j !αi.Fi)} is a
bisimulation up to bisimilarity and parallel contexts.

– when a transition on αi is triggered, with i 6= j, we reason up to parallel composition in order to remove
the Fi component on both sides;

– when a transition on αj (or α) is triggered, we have to relate processes !F |Fj and !α.F ′|F ′|
∏

i6=j !αi.Fi ;
we reason up to bisimilarity in order to rewrite !F |Fj into !F |F ′ and then up to parallel context in order
to remove the F ′ component. ⊓⊔

Now we define our notion of normal forms (seeds).

Definition 6 (Size, seed) The size of P , noted ♯P , is the number of prefixes in P .
A seed of P , noted seed(P) is a process of minimal size such that P ∼ seed(P).

3

The seed of a process is defined modulo bisimilarity. We establish in this section that all seeds of a process
are actually equated by ≡ (Prop. 14). Note that, because ∼ is a congruence in our calculus, if P1|P2 is a
seed, then P1 is a seed. Indeed, if ♯P ′

1 < ♯P1 and P ′
1 ∼ P1, then P1|P2 ∼ P ′

1|P2, which contradicts the fact
that P1|P2 is a seed.

Notations.
We shall use S, S′ to range over seeds having only replicated components. We write P→kQ whenever

there exist α1, .., αk and P0, .., Pk such that P = P0
α1−→ P1 . . .

αk−−→ Pk ≡ Q. Note that P→kα.F for some k if
and only if P ≡ D[α.F] for some finite context D. For S =

∏

i !αi.Si, we write S#F to denote the fact that
¬(∃i, k, F→kαi.Si), i.e., that F does not contain a sub-term of the form αi.Si. On the contrary, we write
S F when there exists k > 0 such that S→kS|F , that is, when F is a parallel composition of sub-terms
of the Sis. In the sequel, we shall use R to range over finite processes satisfying the latter property.

We can remark that if S#F (resp. S F) and F
α
−→ F ′, then S#F ′ (resp. S F ′).

Lemma 7 (i) If S|F is a seed, then S#F ; (ii) if S R, then S#R.

Proof. (i) By contradiction, if F→kαi.Si, then F ≡ D[αi.Si]. By law (A), S|F ∼ S|D[0] which contradicts
the minimality hypothesis about S|F .

(ii) Again, by contradiction, suppose that R ≡ D[αi.Si]. Since, S R, there exist j, D′ such that Sj ≡
D′[D[αi.Si]], from which we deduce S ∼

∏

k 6=j !αk.Sk | !aj .D
′[D[0]] by (A) (we necessarily have

i 6= j). This is contradictory with the fact that S is a seed. ⊓⊔

Lemma 8 S ∼ S|R and S R entail R = 0.

Proof. Suppose by contradiction R = α.R′|R”. By Lemma 4, we have S ∼ S|α.R′ and S ∼ S|!α.R′ by
replicating all processes. By Lemma 5 there exists i such that S ∼ !α.R′|

∏

k 6=i αk.Sk. Now, since S R,
there exist some j, D such that Sj ≡ D[α.R′]; if i = j, we have obtained a smaller seed; otherwise, we use
(A) to show that !α.R′|!αj .D[0]|

∏

k 6=i,j αk.Sk is a smaller seed. ⊓⊔

Lemma 9 !F 1|F
′
1 ∼ !F 2|F

′
2 entails !F 1 ∼ !F 2.

Proof. Write Si for the seed of !F i, i = 1, 2. We have S1|F
′
1 ∼ S2|F

′
2. By emptying F ′

1 on the left1, we obtain
S1 ∼ S2|F”2|R2 for some F”2, R2. Now, by emptying on the right, we get S1|R1 ∼ !S′

2. Injecting the latter
equivalence in the one we have previously obtained gives

S1 ∼ S1|R1|F”2|R2 .

If R1 6∼ 0, we can apply Lemma 4 to deduce S1 ∼ S1|R1. But this gives a contradiction by Lemma 8. Hence
R1 ∼ 0, which gives us, since we have established S1|R1 ∼ S2, that S1 ∼ S2. Finally, !F 1 ∼ !F 2. ⊓⊔

Lemma 10 If S|F ∼ S|R, S#F , and S R, then F ∼ R.

Proof. We proceed by induction on the size of F . If F = 0, we have R = 0 by Lemma 8; otherwise, we first
prove that F and R have the same size:

– if ♯F < ♯R, by emptying F on the left-hand side, we find R′ 6= 0 such that S|R→♯F S|R′, S R′ and
S ∼ S|R′; this is contradictory with Lemma 8;

– if ♯F > ♯R, by emptying R on the right-hand side, we find R′, F ′ with 0 < ♯F ′ ≤ ♯F such that
S|F→♯RS|R′|F ′, S R′, S#F ′ and S|R′|F ′ ∼ S. Then we write F ′ = α.F0|F1 and deduce S|α.F0 ∼ S
by Lemma 4; then, by firing the α prefix, we find i such that α = αi and S|F0 ∼ S|Si. We check that
♯F0 < ♯F so that we can apply the induction hypothesis and deduce that F0 ∼ Si, whence α.F0 ∼ αi.Si,
and α.F0 ≡ α.Si by Thm. 2. This is contradictory with S#F (α.F0 is a sub-term of F).

1 In the present case, ‘emptying F
′

1’ means playing all prefixes in F
′

1 in the bisimulation game between S1|F
′

1 and
S2|F

′

2 – we shall reuse this terminology in some proofs below.

4

This concludes the proof that F and R have the same size. We then show that the relation {(F, R)}∪ ∼ is
a bisimulation:

– when F
α
−→ F ′, we find R′ such that S|R

α
−→ S|R′ and S|F ′ ∼ S|R′; by induction, F ′ ∼ R′, and we deduce

that R′ is a derivative of R, since otherwise, we would have ♯R′ ≥ ♯R = 1 + ♯F ′ which is impossible.
– when R

α
−→ R′, either we find F ′ such that F

α
−→ F ′ and S|F ′ ∼ S|R′, which allows us to close the

diagram, by induction; or we find i such that S|Si|F ∼ S|R′. In this case, we empty R′ on the right-hand
side, yielding R′′ and F ′ 6= 0 such that S|R′′|F ′ ∼ S; by Lemma 4, S|F ′ ∼ S, and F ′ ∼ 0 by induction,
which is contradictory. ⊓⊔

Lemma 11 If S|F1 ∼ S|F2 and S#Fi (i = 1, 2), then F1 ∼ F2.

Proof. First observe that if ♯F1 < ♯F2, then we can empty F1 by playing challenges on the left hand side,
and we obtain S ∼ S|F ′

2 with F ′
2 6∼ 0, which is impossible by Lemma 10. Hence ♯F1 = ♯F2.

We then show that R= {(F1, F2) / S|F1 ∼ S|F2} is a bisimulation. If F1
µ
−→ F ′

1, then S|F1
µ
−→ S|F ′

1, which
by hypothesis entails that S|F2 can answer this challenge. By the remark above, S|F2 necessarily answers
by firing F2, since otherwise we would get equivalent processes with finite parts having different sizes. This
allows us to show that F2 can answer the challenge, and that R is a bisimulation. ⊓⊔

Lemma 12 S|R1 ∼ S|R2 and S Ri (i = 1, 2) entail R1 ≡ R2.

Proof. By Lemma 11, we have R1 ∼ R2 (S#Ri by Lemma 7(ii)). We conclude with Thm. 2: R1 and R2 are
finite processes. ⊓⊔

Lemma 13 If S ∼ S′, then S ≡ S′.

Proof. Write S =
∏

i≤m !αi.Si and S′ =
∏

j≤n !α′
j .S

′
j , play each prefix on the left-hand side and apply

Lemma 12 to show that there exists a map σ : [1..n] → [1..m], such that αi.Si ≡ α′
σ(i).S

′
σ(i). This map is

bijective: otherwise we could construct a smaller seed. ⊓⊔

Proposition 14 (Uniqueness of seeds) Suppose P ∼ P ′, where P and P ′ are seeds. Then P ≡ P ′.

Proof. Write P ≡ S|F and P ′ ≡ S′|F ′. As remarked above, S and S′ are necessarily seeds because P and P ′

are (hence the notation). By Lemma 9, S ∼ S′, whence S ≡ S′ by Lemma 13. Necessarily, S#F and S′#F ′,
which allows us to deduce, using Lemma 11, that F ∼ F ′. Finally, P ≡ P ′, by Thm. 2. ⊓⊔

4 Rewriting Processes to Normal Forms

Definition 15 (Rewriting, convertibility) Any process P induces a relation between processes, written
P
−→, defined by the following axioms, modulo ≡:

C[α.F]
!α.F |F ′

−−−−−→ C[0] (B1) !α.F |!α.F |P
Q
−→ !α.F |P (B2)

The reflexive transitive closure of
P
−→ is written

P
−→

∗

; we say that P and Q are convertible, written P ⇆ Q,

whenever there exists a process T such that P
T
−→

∗

T and Q
T
−→

∗

T .

Example: we can check that process !α.(β|α.β) is normalised into !α.β via the sequence !α.(β|α.β)
!α.β|0
−−−−→

!α.β using axiom (B1). This is the way our rewriting relation proceeds to compute normal forms. In this
case, an equational reasoning would be possible, as follows: !α.(β|α.β) = !(α.β|α.β) = !α.β|!α.β = !α.β (we
use the law (A′) for the first step).

Lemma 16 If Q
T
−→

∗

T , then Q ∼ T .

5

Proof. By induction over the number of rewrite steps. If this number is zero, then this is obvious; suppose

now Q
T
−→ Q′ T

−→
∗

T . The induction hypothesis gives Q′ ∼ T . We reason by cases over the axiom that is used
to rewrite Q into Q′:

– (B1): this means that Q = C[α.P], Q′ = C[0] and T = !α.P |P ′. From !α.P |P ′ ∼ C[0], we deduce
!α.P |P ′ ∼ C[α.P] by Prop. 3, hence Q ∼ T .

– (B2): we easily have Q ∼ Q′, hence Q ∼ T . ⊓⊔

Lemma 17 Given P , the relation
P
−→

∗

terminates.

Proof. The size of processes strictly decreases along reductions. ⊓⊔

Lemma 18 For all P , either P ≡ seed(P), or P
seed(P)
−−−−→ P ′ for some P ′ s.t. P ∼ P ′.

Proof. Write

P = (
∏

i

!αi.Fi) | FP and seed(P) = (
∏

j

!αj .Sj) | FS ,

and set S =
∏

j !αj .Sj . By definition, P ∼ seed(P), which gives, by Lemma 9,

∏

i

!αi.Fi ∼
∏

j

!αj .Sj . (1)

A transition by the left hand side process is answered by the right hand side process, yielding process
∏

i !αi.Fi | Fn ∼ !
∏

j !αj .Sj | Sm, which gives, by injecting equivalence (1), S | Fn ∼ S | Sm.

By Lemma 11, this gives: either (i) Fn ∼ Sm, which means by Theorem 2 Fn ≡ Sm, or (ii) ¬(S#Fn)
(indeed, ¬(S#Sm) is impossible, since this would allow us to compute a seed having a smaller size than
seed(P)). In the latter case, (ii), this means that P can be rewritten using axiom (B1), and the resulting
process is bisimilar to P .

Suppose now that we are in case (i) for all possible transitions from the αi.Fis, that is, for all i, there
exists j such that αi.Fi ≡ αj .Sj . We observe that the converse (associating a i to all js) also holds, and that
the number of parallel components in

∏

i !αi.Fi is necessarily greater than the number of components in S.

In the case where this number is strictly greater, this means that
seed(P)
−−−−→ can be used to rewrite the left

hand side process in (1), using axiom (B2). In this case, the resulting process is bisimilar to P .
We are left with the case where the two processes have the same number of components, which entails

that they are equated by ≡.
To sum up, we have shown that either

∏

i !αi.Fi can be rewritten, or
∏

i !αi.Fi ≡ S. In the latter case,
we can inject equivalence (1) in P ∼ seed(P), which gives S | FP ∼ S | FS . We can apply Lemma 11 again,
which gives two possibilities. The first possibility is that FP ∼ FS , in which case FP ≡ FS , and finally
P ≡ seed(P). The second possibility is that ¬(S#FP) (as above, ¬(S#FS) is not possible since this would
allow us to compute a seed of smaller size). In that case, we can rewrite P using (B1), and getting a process
bisimilar to P .

Finally, either P ≡ seed(P), or P can be rewritten using
seed(P)
−−−−→. ⊓⊔

Proposition 19 For all P , P
seed(P)
−−−−→

∗

seed(P).

Proof. Follows by Lemmas 18 and 17. ⊓⊔

Theorem 20 (Characterisation) P ⇆ Q iff P ∼ Q.

6

Proof. Suppose P ⇆ Q. By definition, this gives the existence of T s.t. P
T
−→

∗

T and Q
T
−→

∗

T . We deduce
P ∼ Q by applying Lemma 16 twice and transitivity of ∼. Hence ⇆ ⊆ ∼.

To establish the converse, suppose P ∼ Q. Write, using Proposition 19, P
seed(P)
−−−−→

∗

seed(P) and

Q
seed(Q)
−−−−−→

∗

seed(Q). By definition, P ∼ seed(P) and Q ∼ seed(Q), which entails seed(P) ∼ seed(Q). This
gives by Proposition 14 seed(P) ≡ seed(Q), which finally gives P ⇆ Q. ⊓⊔

This result gives a way to decide whether P ∼ Q, via⇆. Indeed, although Definition 15 does not tell how
to find process T , that allows one to derive P ⇆ Q, Thm. 20 allows us to reduce this problem to checking

whether Q
seed(P)
−−−−→ seed(P). For this, it suffices to look for seed(P) among all processes of size smaller than

♯P .

5 Adding Synchronisations

We can now move to a calculus closer to standard CCS, called mCCS, by instantiating actions with the
following grammar, where a range over a countable set of names : actions are either input or output prefixes.

α ::= a
∣

∣ a

The LTS we obtain with this definition is not that of CCS: we need to add the following rules for synchro-
nisations, where τ is the label for internal moves.

P
a
−→ P ′ Q

a
−→ Q′

P |Q
τ
−→ P ′|Q′

P
a
−→ P ′ Q

a
−→ Q′

P |Q
τ
−→ P ′|Q′

In doing so, we change the notion of strong bisimilarity: the standard CCS bisimilarity, that we shall
denote using ∼̇, tests internal moves while our notion of bisimilarity (∼) plays visible challenges only.
Therefore, we have ∼̇⊆∼.

The following result says that ⇆ is actually enough to capture strong bisimilarity on mCCS. As a
consequence, we do not need to test τ transitions to obtain the discriminating power of ∼̇.

Proposition 21 Let P and Q be two processes. Then P ∼̇ Q if and only if P ⇆ Q.

Proof. By Thm. 20 and the above remark, it suffices to show that ⇆⊆∼̇. This amounts to check that the
distribution law and Prop. 3 are valid for ∼̇: we just need to check that silent challenges can be answered in
the corresponding bisimulation candidates. ⊓⊔

Note that the τ prefix is not included in this presentation of CCS; indeed, adding τ to the syntax of
actions (α) would a priori break the inclusion ∼̇⊆∼: tests performed by ∼ on τ -transitions would be too
restrictive, since the only way to answer would be to use a τ prefix – synchronisations would not be allowed.
In the light of Prop. 21, we actually believe that τ prefixes could be added, that is, that they are played in
one-to-one correspondence in bisimilarity games.

We conclude this section by proving that bisimilarity is closed under substitutions in mCCS. We use σ to
range over substitutions, that are functions mapping names to names; we write Pσ for the process we obtain
by applying σ on all names of P .

Proposition 22 (∼ is closed under substitutions in mCCS) If P ∼ Q, then for any σ, Pσ ∼ Qσ.

Proof. We show the property for⇆. Suppose P ⇆ Q, which gives the existence of T such that, in particular,

P
T
−→

∗

T . By inspecting the shape of axioms (B1) and (B2), and reasoning by induction over the number of

rewrite steps, we can deduce that Pσ
Tσ
−−→

∗

Tσ. Similarly, Qσ
Tσ
−−→

∗

Tσ. Hence Pσ⇆Qσ. ⊓⊔

7

6 Concluding Remarks

6.1 Extending our Characterisation

In absence of restriction in the calculus, it is easy to see that applying replication to prefixed processes only
is of no harm in terms of expressiveness, because of the following rather standard structural congruence laws
for ≡ (which are of course valid strong bisimilarity laws):

!(P |Q) ≡ !P |!Q !!P ≡ !P !0 ≡ 0

We have started investigating the question of characterising ∼ in the case where replication is not at
top-level (but where nested replications – that is, replications that occur under replications – are forbidden).
The law

α.C[!α.C[0]] = !α.C[0]

seems important to capture ∼ in this setting. We do not know at the moment whether it is sufficient to
characterise ∼.

Handling nested replications seems even more challenging.

6.2 Congruence of Strong Bisimilarity in the π-calculus

Because of the input prefix, congruence of strong bisimilarity requires closure of this relation under substi-
tutions. In presence of sum, this property fails; as [3] shows, this is also the case as soon as replication and
restriction are present in the calculus (in absence of sum).

[1] shows that congruence holds when we renounce to replication, that is, in the sub-calculus that features
input and output prefixes, parallel composition and restriction.

Our investigations have convinced us that the same holds if instead we renounce to restriction: we believe
that the reasoning seen above can be ported to the following subset of the π-calculus:

F ::= 0
∣

∣ F |F
∣

∣ a(x).F
∣

∣ a〈b〉.F P ::= F
∣

∣ !a(x).F
∣

∣ P |P

The analogue of Prop. 22 gives us closure under substitutions of strong bisimilarity, which in turn yields
congruence. Note that when bisimilarity is closed under substitutions, the ground, early and late versions
of the equivalence coincide. To adapt our method from mCCS to the π-calculus, we work with ground
bisimilarity.

References

1. D. Hirschkoff and D. Pous. A Distribution Law for CCS and a New Congruence Result for the Pi-calculus. LMCS,
4(2), 2008.

2. D. Pous. Techniques modulo pour les bisimulations. PhD thesis, ENS Lyon, 2008.
3. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press, 2001.

8

