
HAL Id: hal-00323317
https://hal.science/hal-00323317v1

Submitted on 20 Sep 2008 (v1), last revised 22 Dec 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring Company Structure from Limited Available
Information

Mugurel Ionut Andreica, Angela Andreica, Romulus Andreica

To cite this version:
Mugurel Ionut Andreica, Angela Andreica, Romulus Andreica. Inferring Company Structure from
Limited Available Information. International Symposium on Social Development and Economic Per-
formance, Jun 2008, Satu Mare, Romania. pp.412-416. �hal-00323317v1�

https://hal.science/hal-00323317v1
https://hal.archives-ouvertes.fr

Inferring Company Structure from Limited
Available Information

Mugurel Ionut Andreica, Politehnica University of

Bucharest, mugurel.andreica@cs.pub.ro
Romulus Andreica, Angela Andreica, Commercial

Academy Satu Mare

Abstract: In this paper we present several algorithmic
techniques for inferring the structure of a company when
only a limited amount of information is available. We
consider problems with two types of inputs: the number
of pairs of employees with a given property and
restricted information about the hierarchical structure of
the company. We provide dynamic programming and
greedy algorithms for these problems.

Keywords: inferring company structure, pairs of
employees, hierarchical structure, dynamic programming.

1 Introduction

There are many situations in which an in-depth
analysis of a company needs to be performed, but only
limited information is available about its structure and
hierarchy. In this paper we present algorithmic
techniques for inferring the structure of a company based
on very limited available information. We consider two
types of problems, based on the input which is provided:
problems where the input contains the number of pairs of
employees with a given property and problems where the

input contains restricted information about the
hierarchical structure of the company. We provide
dynamic programming and greedy algorithms for these
problems. The rest of this paper is structured as follows.
In Sections 2, 3 and 4 we discuss problems with the first
type of input. In Section 5 we discuss a problem having
the second type of input. In Section 6 we present related
work and in Section 7 we conclude.

2 Partitioning the Employees into Departments

A company has n employees and d departments. We
know that there are k pairs of employees working in the
same department. We want to infer the values e1, e2, ...,
ed, where ei is the number of employees working in
department i (0≤ei≤n). The following condition must hold

∑ =
=

d

i ei
Ck

1
2 (1)

Moreover, we must have k≤n·(n-1)/2. We will solve a
slightly different problem first: given n and k, determine
the minimum number of departments d the company may
have. We provide a dynamic programming algorithm for
this problem. We will compute a table Dmin(i,j)
representing the minimum number of departments the
company must have if there are i employees and j pairs of
employees working in the same department. We have
Dmin(0,0)=0 and Dmin(0,j>0)=+∞. For i>0 and j=0 we
have Dmin(i,j)=i; for i>0 and 0<j≤i·(i-1)/2 we have:

{ }),(min1),(2
min1min pip

CjpiDjiD −−+=
≤≤

 (2)

The value of p represents the number of employees in
the first department (with i-p employees and j-p·(p-1)/2
pairs of employees remaining for the other departments).

For j>i·(i-1)/2, we have Dmin(i,j)=+∞. Since the values
j>k are of no interest to us, it is easy to see that the time
complexity of the algorithm is O(n2·k). At a first glance,
this problem can be solved by a simple greedy algorithm:
SimpleGreedyAlgorithm(n,k):
d=0
while (k>0) do

find the largest p such that p·(p-1)/2≤k
k=k-p·(p-1)/2
n=n-p

return d+n
However, a counterexample is easy to give (e.g. for

n=12 and k=18). Now we can solve the initial problem. If
Dmin(n,k)≤d, then we have a solution and we can easily
compute this solution by tracing back the way the values
in the table Dmin were computed (we store the value of p
which minimized the value of each entry (i,j)). The
departments Dmin(n,k)+1, ..., d will contain no employees.

3 Partitioning Bosses and Simple Employees into
Departments

A company has an unknown number d of departments.
Within each department i (1≤i≤d), there is an unknown
number of bosses bi (bi≥1) and an unknown number of
simple employees ei (ei≥1). Each boss interacts with each
simple employee in his department. The only information
available is the total number of interactions TI:

∑ =
⋅=

d

i ii ebTI
1

 (3)
For this problem, a trivial valid solution consists of 1

department, 1 boss and TI simple employees. Therefore
we will be interested in finding the structure with the

minimum total number of employees (bosses plus simple
employees) and, in case of ties, that with a minimum
number of bosses. In order to infer an optimal company
structure (the number of departments and the number of
bosses and simple employees within each department),
we will use a dynamic programming algorithm. We will
compute the tables TEmin(i)=the minimum total number
of employees if the total number of interactions is i and
Bmin(i)=the minimum number of bosses if the total
number of interactions is i and the total number of
employees is TEmin(i). We have TEmin(0)=Bmin(0)=0. The
pseudocode of the algorithm is given below:
BossesAndEmployeesDynamicProgramming(TI):
TEmin(0)=Bmin(0)=0
for i=1 to TI do

TEmin(i)=Bmin(i)=+∞
for b=1 to i do
 for e=1 to i/b do
 if ((TEmin(i-b·e)+b+e<TEmin(i)) or
 ((TEmin(i-b·e)+b+e=TEmin(i)) and (Bmin(i-b·e)+b<Bmin(i)))) then
 TEmin(i)=TEmin(i-b·e)+b+e
 Bmin(i)=Bmin(i-b·e)+b

The solution to our problem can be constructed by
tracing back the way the entries in the tables TEmin and
Bmin were computed. The time complexity of the
algorithm is O(1/1+2/1+2/2+...+i/1+i/2+...+i/i+...+TI/1
+TI/2+...+TI/TI)=O(TI2·ln(TI)).

4 Inferring the Communication Structure from
Critical Pairs

A company has n employees and some pairs of them
have the ability (permission) to communicate directly.

Every employee can communicate (directly or indirectly,
through intermediate employees) with all the other
employees. The only pieces of information available are
n and k, where k denotes the number of critical pairs of
employees. A pair of employees (i,j) is critical if there
exists a pair of employees (p,q) which can communicate
directly, but if their direct communication ability ceased,
then the employees i and j would not be able to
communicate at all (directly or indirectly). It is possible
that one or both employees of the pair (p,q) belong to the
pair (i,j). We will describe the communication structure
of the company as an undirected graph, where each
vertex corresponds to an employee and each edge
corresponds to a pair of employees who can
communicate directly. Thus, if all the paths between a
pair of vertices (i,j) pass through a single edge (p,q), then
the pair (i,j) is critical. We are interested in inferring the
communication graph of the company. We must first
notice that if a pair (p,q) is a critical edge [1] in the
communication graph and there n1 employees on one side
of the edge and n2 employees on the other (n1+n2=n),
then the structure contains n1·n2 critical pairs plus the
number of critical pairs in the part of the graph with n1
employees and the number of critical pairs in the part of
the graph with n2 employees. Let’s consider the tree of
connected components of the communication graph,
where each connected component of the graph is a tree
vertex and each critical edge of the graph is a tree edge.
Let’s consider a leaf vertex in this tree. We can reattach
the leaf vertex to any other tree vertex (thus changing the
underlying communication graph) and maintain the same
number of critical pairs. Thus, we could modify the tree

of connected components into a path and still have the
same number of critical pairs. With this observation, we
will use a dynamic programming algorithm and compute
the following table: OK(i,j)=true, if it is possible to build
a communication structure consisting of i employees and
containing j critical pairs (and false, otherwise). We have
OK(0,0)=OK(1,0)=OK(i≥3,0)=true (if i≥3, then we can
build a clique or a cycle with the i vertices of the
communication graph), but OK(2,0)=false. We also have
OK(i≥0, j>i·(i-1)/2)=false. For all the other situations:

⎩
⎨
⎧ =⋅−−∈∃

=
otherwisefalse,

truep))-(ipjp,i}).OK(i,{1,3,4,...(p if true,
j)OK(i, (4)

If OK(n,k)=true, we can construct the communication
graph by tracing back the computation of the OK table
entries. The time complexity of the algorithm is O(n2·k).

5 Inferring the Hierarchical Structure of a
Company

A company has n employees organized into a
hierarchical structure (each employee has one boss,
except the company manager). We will consider this
structure a rooted, directed tree, where each vertex
corresponds to an employee and the parent of a vertex
corresponds to the employee’s boss. Furthermore, the
vertices are numbered from 1 to n. We only know two
orderings of the tree vertices: the ordering corresponding
to the depth-first (DF) traversal of the tree (df(1),
df(2), ..., df(n)) and the one corresponding to the breadth-
first (BF) traversal (bf(1), bf(2), ..., bf(n)). For both
traversals, the first visited vertex is the tree root. The
children of a vertex are ordered in ascending order of

their numbers and are visited (expanded) according to
this order (in both traversals). Based on these two
orderings, we want to infer the tree structure of the
company. We first compute for each vertex i the values
posdf(i) and posbf(i), the positions (from 1 to n) of vertex
i in the DF and BF orderings (i.e. df(posdf(i))=i and
bf(posbf(i))=i). We now present a linear (O(n)) algorithm
solving this problem. We compute a value parent(i) for
each vertex i. Initially, all the parent values are set to 0.
At the end of the algorithm, only the root vertex r
(obviously, r=df(1)=bf(1)) will have parent(r)=0 and the
parent values will define a tree structure which is
consistent with the given DF and BF orderings. The main
function of the algorithm is the function Compute, which
has four parameters: v, df_max_pos, bf_min_pos and
bf_max_pos. The first call will be Compute(r, n, 2, n).
We will consider that df(n+1)=bf(n+1)=0.
Compute(v, df_max_pos, bf_min_pos, bf_max_pos):
if ((posdf(bf(bf_min_pos))≤df_max_pos) and
 (posdf(bf(bf_min_pos))>posdf(v)) and
 (parent(bf(bf_min_pos))=0)) then
 parent(bf(bf_min_pos))=v
 last_son=bf(bf_min_pos); pos_last_son=bf_min_pos
 for i=bf_min_pos+1 to bf_max_pos do
 if ((posdf(bf(i))≤df_max_pos) and (posdf(bf(i))>posdf(v)) and
 (parent(bf(i))=0) and (posdf(bf(i))>posdf(bf(i-1))) and
 (bf(i)>bf(i-1)) then

 parent(bf(i))=v
 last_son=bf(i); pos_last_son=i

 Compute(bf(i-1),posdf(bf(i))-1,posbf(df(posdf(bf(i-1))+1)),n)
 else break // break the loop
 i=posbf(df(posdf(last_son)+1))
 if (i>pos_last_son) then Compute(last_son, df_max_pos, i, n)
else return

6 Related Work

We are not aware of any other attempts of inferring a
company’s structure based only on the number of pairs of
employees having a certain property. Inferring
hierachical structures based on several types of tree
traversals has been achieved before, particularly for
binary trees [2,3].

7 Conclusions and Future Work

In this paper we presented several algorithmic
techniques for inferring the structure of a company
(department structure, communication graph, hierarchy)
using very limited available information. In most
situations, the inferred structure is only one of the many
possible structures which are consistent with the given
input data, but, even so, it may be useful for performing a
more insightful, in-depth analysis of the company.

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
„Introduction to Algorithms”, Ed. Mc-Graw Hill, 2002.
[2] W. Slough, K. Efe, „Efficient Algorithms for Tree
Reconstruction”, BIT Numerical Mathematics, vol. 29 (2),
pp. 361-363, 1989.
[3] A. Andersson, S. Carlsson, „Construction of a Tree
from its Traversals in Optimal Time and Space”,
Information Processing Letters, vol. 34 (1), pp. 21-25,
1990.

