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Abstract: In this paper we present several algorithmic 
techniques for inferring the structure of a company when 
only a limited amount of information is available. We 
consider problems with two types of inputs: the number 
of pairs of employees with a given property and 
restricted information about the hierarchical structure of 
the company. We provide dynamic programming and 
greedy algorithms for these problems. 
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1 Introduction 
 

There are many situations in which an in-depth 
analysis of a company needs to be performed, but only 
limited information is available about its structure and 
hierarchy. In this paper we present algorithmic 
techniques for inferring the structure of a company based 
on very limited available information. We consider two 
types of problems, based on the input which is provided: 
problems where the input contains the number of pairs of 
employees with a given property and problems where the 



input contains restricted information about the 
hierarchical structure of the company. We provide 
dynamic programming and greedy algorithms for these 
problems. The rest of this paper is structured as follows. 
In Sections 2, 3 and 4 we discuss problems with the first 
type of input. In Section 5 we discuss a problem having 
the second type of input. In Section 6 we present related 
work and in Section 7 we conclude. 
 
2 Partitioning the Employees into Departments 
 

A company has n employees and d departments. We 
know that there are k pairs of employees working in the 
same department. We want to infer the values e1, e2, ..., 
ed, where ei is the number of employees working in 
department i (0≤ei≤n). The following condition must hold 
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Moreover, we must have k≤n·(n-1)/2. We will solve a 
slightly different problem first: given n and k, determine 
the minimum number of departments d the company may 
have. We provide a dynamic programming algorithm for 
this problem. We will compute a table Dmin(i,j) 
representing the minimum number of departments the 
company must have if there are i employees and j pairs of 
employees working in the same department. We have 
Dmin(0,0)=0 and Dmin(0,j>0)=+∞. For i>0 and j=0 we 
have Dmin(i,j)=i; for i>0 and 0<j≤i·(i-1)/2 we have: 
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The value of p represents the number of employees in 
the first department (with i-p employees and j-p·(p-1)/2 
pairs of employees remaining for the other departments). 



For j>i·(i-1)/2, we have Dmin(i,j)=+∞. Since the values 
j>k are of no interest to us, it is easy to see that the time 
complexity of the algorithm is O(n2·k). At a first glance, 
this problem can be solved by a simple greedy algorithm: 
SimpleGreedyAlgorithm(n,k): 
d=0 
while (k>0) do 

find the largest p such that p·(p-1)/2≤k 
k=k-p·(p-1)/2 
n=n-p 

return d+n 
However, a counterexample is easy to give (e.g. for 

n=12 and k=18). Now we can solve the initial problem. If 
Dmin(n,k)≤d, then we have a solution and we can easily 
compute this solution by tracing back the way the values 
in the table Dmin were computed (we store the value of p 
which minimized the value of each entry (i,j)). The 
departments Dmin(n,k)+1, ..., d will contain no employees. 
 
3 Partitioning Bosses and Simple Employees into 
Departments 
 

A company has an unknown number d of departments. 
Within each department i (1≤i≤d), there is an unknown 
number of bosses bi (bi≥1) and an unknown number of 
simple employees ei (ei≥1). Each boss interacts with each 
simple employee in his department. The only information 
available is the total number of interactions TI: 
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For this problem, a trivial valid solution consists of 1 

department, 1 boss and TI simple employees. Therefore 
we will be interested in finding the structure with the 



minimum total number of employees (bosses plus simple 
employees) and, in case of ties, that with a minimum 
number of bosses. In order to infer an optimal company 
structure (the number of departments and the number of 
bosses and simple employees within each department), 
we will use a dynamic programming algorithm. We will 
compute the tables TEmin(i)=the minimum total number 
of employees if the total number of interactions is i and 
Bmin(i)=the minimum number of bosses if the total 
number of interactions is i and the total number of 
employees is TEmin(i). We have TEmin(0)=Bmin(0)=0. The 
pseudocode of the algorithm is given below: 
BossesAndEmployeesDynamicProgramming(TI): 
TEmin(0)=Bmin(0)=0 
for i=1 to TI do 

TEmin(i)=Bmin(i)=+∞ 
for b=1 to i do 
  for e=1 to i/b do 
    if ((TEmin(i-b·e)+b+e<TEmin(i)) or  
     ((TEmin(i-b·e)+b+e=TEmin(i)) and (Bmin(i-b·e)+b<Bmin(i)))) then 
      TEmin(i)=TEmin(i-b·e)+b+e 
      Bmin(i)=Bmin(i-b·e)+b 

The solution to our problem can be constructed by 
tracing back the way the entries in the tables TEmin and 
Bmin were computed. The time complexity of the 
algorithm is O(1/1+2/1+2/2+...+i/1+i/2+...+i/i+...+TI/1 
+TI/2+...+TI/TI)=O(TI2·ln(TI)). 
 
4 Inferring the Communication Structure from 
Critical Pairs 
 

A company has n employees and some pairs of them 
have the ability (permission) to communicate directly. 



Every employee can communicate (directly or indirectly, 
through intermediate employees) with all the other 
employees. The only pieces of information available are 
n and k, where k denotes the number of critical pairs of 
employees. A pair of employees (i,j) is critical if there 
exists a pair of employees (p,q) which can communicate 
directly, but if their direct communication ability ceased, 
then the employees i and j would not be able to 
communicate at all (directly or indirectly). It is possible 
that one or both employees of the pair (p,q) belong to the 
pair (i,j). We will describe the communication structure 
of the company as an undirected graph, where each 
vertex corresponds to an employee and each edge 
corresponds to a pair of employees who can 
communicate directly. Thus, if all the paths between a 
pair of vertices (i,j) pass through a single edge (p,q), then 
the pair (i,j) is critical. We are interested in inferring the 
communication graph of the company. We must first 
notice that if a pair (p,q) is a critical edge [1] in the 
communication graph and there n1 employees on one side 
of the edge and n2 employees on the other (n1+n2=n), 
then the structure contains n1·n2 critical pairs plus the 
number of critical pairs in the part of the graph with n1 
employees and the number of critical pairs in the part of 
the graph with n2 employees. Let’s consider the tree of 
connected components of the communication graph, 
where each connected component of the graph is a tree 
vertex and each critical edge of the graph is a tree edge. 
Let’s consider a leaf vertex in this tree. We can reattach 
the leaf vertex to any other tree vertex (thus changing the 
underlying communication graph) and maintain the same 
number of critical pairs. Thus, we could modify the tree 



of connected components into a path and still have the 
same number of critical pairs. With this observation, we 
will use a dynamic programming algorithm and compute 
the following table: OK(i,j)=true, if it is possible to build 
a communication structure consisting of i employees and 
containing j critical pairs (and false, otherwise). We have 
OK(0,0)=OK(1,0)=OK(i≥3,0)=true (if i≥3, then we can 
build a clique or a cycle with the i vertices of the 
communication graph), but OK(2,0)=false. We also have 
OK(i≥0, j>i·(i-1)/2)=false. For all the other situations: 
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If OK(n,k)=true, we can construct the communication 
graph by tracing back the computation of the OK table 
entries. The time complexity of the algorithm is O(n2·k). 
 
5 Inferring the Hierarchical Structure of a 
Company 
 

A company has n employees organized into a 
hierarchical structure (each employee has one boss, 
except the company manager). We will consider this 
structure a rooted, directed tree, where each vertex 
corresponds to an employee and the parent of a vertex 
corresponds to the employee’s boss. Furthermore, the 
vertices are numbered from 1 to n. We only know two 
orderings of the tree vertices: the ordering corresponding 
to the depth-first (DF) traversal of the tree (df(1), 
df(2), ..., df(n)) and the one corresponding to the breadth-
first (BF) traversal (bf(1), bf(2), ..., bf(n)). For both 
traversals, the first visited vertex is the tree root. The 
children of a vertex are ordered in ascending order of 



their numbers and are visited (expanded) according to 
this order (in both traversals). Based on these two 
orderings, we want to infer the tree structure of the 
company. We first compute for each vertex i the values 
posdf(i) and posbf(i), the positions (from 1 to n) of vertex 
i in the DF and BF orderings (i.e. df(posdf(i))=i and 
bf(posbf(i))=i). We now present a linear (O(n)) algorithm 
solving this problem. We compute a value parent(i) for 
each vertex i. Initially, all the parent values are set to 0. 
At the end of the algorithm, only the root vertex r 
(obviously, r=df(1)=bf(1)) will have parent(r)=0 and the 
parent values will define a tree structure which is 
consistent with the given DF and BF orderings. The main 
function of the algorithm is the function Compute, which 
has four parameters: v, df_max_pos, bf_min_pos and 
bf_max_pos. The first call will be Compute(r, n, 2, n). 
We will consider that df(n+1)=bf(n+1)=0. 
Compute(v, df_max_pos, bf_min_pos, bf_max_pos): 
if ((posdf(bf(bf_min_pos))≤df_max_pos) and 
     (posdf(bf(bf_min_pos))>posdf(v)) and 
     (parent(bf(bf_min_pos))=0)) then 
    parent(bf(bf_min_pos))=v 
    last_son=bf(bf_min_pos); pos_last_son=bf_min_pos 
    for i=bf_min_pos+1 to bf_max_pos do 
        if ((posdf(bf(i))≤df_max_pos) and (posdf(bf(i))>posdf(v)) and 
           (parent(bf(i))=0) and (posdf(bf(i))>posdf(bf(i-1))) and 
           (bf(i)>bf(i-1)) then 

            parent(bf(i))=v 
          last_son=bf(i);  pos_last_son=i 

            Compute(bf(i-1),posdf(bf(i))-1,posbf(df(posdf(bf(i-1))+1)),n) 
        else break // break the loop 
    i=posbf(df(posdf(last_son)+1)) 
    if (i>pos_last_son) then Compute(last_son, df_max_pos, i, n) 
else return 

 



6 Related Work 
 

We are not aware of any other attempts of inferring a 
company’s structure based only on the number of pairs of 
employees having a certain property. Inferring 
hierachical structures based on several types of tree 
traversals has been achieved before, particularly for 
binary trees [2,3]. 
 
7 Conclusions and Future Work 
 

In this paper we presented several algorithmic 
techniques for inferring the structure of a company 
(department structure, communication graph, hierarchy) 
using very limited available information. In most 
situations, the inferred structure is only one of the many 
possible structures which are consistent with the given 
input data, but, even so, it may be useful for performing a 
more insightful, in-depth analysis of the company. 
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