
HAL Id: hal-00310147
https://hal.science/hal-00310147v1

Submitted on 7 Aug 2008 (v1), last revised 19 Jan 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimum Dissatisfaction Personnel Scheduling
Mugurel Ionut Andreica, Romulus Andreica, Angela Andreica

To cite this version:
Mugurel Ionut Andreica, Romulus Andreica, Angela Andreica. Minimum Dissatisfaction Personnel
Scheduling. ARA Congress, Jul 2008, Boston, United States. pp.459-463. �hal-00310147v1�

https://hal.science/hal-00310147v1
https://hal.archives-ouvertes.fr

MINIMUM DISSATISFACTION PERSONNEL SCHEDULING

Mugurel Ionut Andreica

Politehnica University of Bucharest

mugurel.andreica@cs.pub.ro

 Romulus Andreica and Angela Andreica
Commercial Academy Satu Mare

academiacomerciala@yahoo.com

Abstract: In this paper we consider two problems regarding the scheduling of available personnel in order to perform a given

quantity of work, which can be arbitrarily decomposed into a sequence of activities. We are interested in schedules which minimize

the overall dissatisfaction, where each employee’s dissatisfaction is modeled as a time-dependent linear function. For the two

situations considered we provide a detailed mathematical analysis, as well as efficient algorithms for determining optimal schedules.

1. Introduction

Personnel scheduling problems are very important in

many activity domains and efficient scheduling

techniques are being sought increasingly often. Common

scheduling objectives are: maximizing productivity,

minimizing losses, maximizing profit and others. In this

paper we consider two problems regarding the scheduling

of employees, in order to perform a given quantity of

work which can be arbitrarily decomposed into a

sequence of activities. The objective is to determine a

time schedule of the activities and an assignment of

employees to the activities which minimizes the overall

dissatisfaction, subject to several types of constraints. The

dissatisfaction of each employee is modeled as a time-

dependent linear function. We present a detailed

mathematical analysis of the problems, as well as efficient

algorithms for determining optimal schedules. Our results

are significant both from a theoretical and a practical

point of view.

The rest of this paper is structured as follows. In Sections

2 and 3 we present the two personnel scheduling

problems we mentioned, together with complete analysis

and algorithms. In Section 4 we discuss related work and

in Section 5 we conclude.

2. Minimum Dissatisfaction Scheduling with Personnel

Ordering Restrictions

An economic agent has N employees, numbered with

natural numbers from 1 to N, which have to perform some

quantity of work. The overall quantity of work can be

divided into any number of activities, which can be

performed sequentially. Each activity i can be realized in

negligible time (zero time), thus its only parameter of

interest will be the moment when the activity is scheduled

tai. Let’s consider that the quantity of work has been

divided into k activities, scheduled at times 0≤ta1<ta2<…<

tak. The dissatisfaction of each employee j is a time-

dependent linear function, ds(j,t)=wj·|t-tej|, where wj is the

“weight” of employee j and tej is the time moment when

the employee j is the most willing (satisfied) to perform

an activity (the optimal employee time). By |X| we denote

the absolute value of X. Assuming that employee j has

been assigned to activity a(j), the overall dissatisfaction

will be

),()(

1

ja

N

j

tajdsD ∑
=

=

We are interested in minimizing the overall

dissatisfaction. In order to do this, we can choose the total

number of activities, the time moments when these

activities are scheduled and the assignment of employees

to activities. The only constraint we need to consider is

that, if u and v are two employees such that 1≤u<v≤N, we

must have a(u)≤a(v). This means that employee u cannot

be assigned to an activity taking place after the activity to

which employee v is assigned. Thus, the ordering of the

employees must correspond to the chronological ordering

of the activities to which they are assigned:

a(1)≤a(2)≤…≤ a(N) (taa(1)≤taa(2)≤…≤taa(N)). We will first

provide a dynamic programming algorithm for computing

an optimal schedule when the maximum value of the time

moments tej (Tmax) is not too large and all the time

moments are integer. We will compute a table

Dmin[i,t]=the minimum overall dissatisfaction of the

employees i, i+1, …, N, if they are assigned to activities

scheduled at time moments t’≥t :

Dmin[N+1, t]=0.

++

+

=

≤≤],1[),(

]1,[
min],[

min

min

1
min

tiDtids

tiD
tiD

Ni

In the first case, no activity is scheduled at time t, thus we

will use the value Dmin[i,t+1]. In the second case, we

schedule an activity at time t and assign the employee i to

it. The employees i+1, …, N can be assigned to the same

activity or to a subsequent one, thus we will consider the

value Dmin[i+1,t]+ds(i,t). The value of t is between 0 and

Tmax and the time complexity of the algorithm is O(N·

Tmax). The minimum overall dissatisfaction is found at

Dmin[1,0]. The schedule can be easily computed from the

table Dmin, by tracing back the way the values of the table

were computed.

We will now present a greedy algorithm which does not

require the time moments tej to be “small”. At first, we

will consider that we have only one activity, scheduled at

time 0 and all the employees are assigned to this activity.

Then, we will iteratively improve this solution by adding

extra activities or by delaying the existing ones and

reassigning the employees to these activities. We will

maintain an array tasgn, where tasgn[i] is the moment

when the activity to which employee is assigned is

scheduled (initially, tasgn[i]=0, 1≤i≤N). If at some step of

the algorithm, an employee i is assigned to an activity

scheduled at time t, it will be possible to reassign this

employee to an activity scheduled at a time moment t’>t

(but not at a time moment t’<t). We will maintain an array

dinc, where dinc[j]=the value by which the dissatisfaction

of employee j increases if the employee is reassigned to

an activity starting at time (tasgn[i]+1): dinc[j]=wj, if

tej≤tasgn[j], or –wj, if tej>tasgn[j]. We will compute an

array incsum, where

∑
=

=

N

jp

pdincjincsum][][

Thus, incsum[j] is the sum of the increases of dissatisfac-

tion of the employees j, j+1, …, N. We will select the

minimum value of the array incsum: let this value be

incsum[p]. If incsum[p]≥0, then the algorithm will stop. If

incsum[p]<0, then, by assigning all the employees p, p+1,

…, N to a an activity scheduled later than their current

activity, the overall dissatisfaction will decrease. We will

find the largest negative value Tshift from the set

{tasgn[q]-teq | p≤q≤N }, i.e. that value which is closest to

0. Then, we will increase all the values tasgn[q] (p≤q≤N)

by |Tshift|. After doing this, we will recompute the arrays

dinc and incsum and perform another iteration. The

pseudocode of the algorithm is given below:

GreedyPersonnelScheduling:
Step 1. for i=1 to N do tasgn[i]=0

Step 2. compute the arrays dinc and incsum

Step 3. choose the minimum value (incsum[p]) in the array

incsum

Step 4. if (incsum[p]≥0) then goto Step 8.

Step 5. find the minimum value Tshift=min{tasgn[q]-teq |

(p≤q≤N) and (tasgn[q]-teq < 0) }

Step 6. for i=p to N do tasgn[p]=tasgn[p]+|Tshift|

Step 7. go to Step 2.

Step 8. compute ∑
=

=
N

1i
tasgn[i])ds(i,D

Step 9. return D

The algorithm above can be easily implemented in time

O(N
2
). We will now explain how its time complexity can

be reduced to O(N·log(N)). For this, we will use the

segment tree data structure and, in particular, the segment

tree framework introduced in [1]. We will maintain three

segment trees, as showed in the pseudocode below:

GreedyPersonnelScheduling-O(N·logN):
for i=1 to N do

tasgn[i]=0

if (tei≤tasgn[i]) then dinc[i]=wi

else dinc[i]=-wi

incsum[N]=dinc[N]

for i=N-1 downto 1 do

incsum[i]=dinc[i]+incsum[i-1]

// compute two auxiliary arrays: incsum_aux and tasgn_aux

for i=1 to N do

incsum_aux[i]=(incsum[i], i)

if (dinc[i]≥0) then tasgn_aux[i]=(-∞, i)

else tasgn_aux[i]=(tasgn[i]-tei, i)

st_iaux = the segment tree for the array incsum_aux, with

update function uFunc=plus_poz and query function

qFunc=min_poz

st_taux = the segment tree for the array tasgn_aux, with update

function uFunc=plus_poz and query function qFunc=max_poz

st_tasgn = the segment tree for the array tasgn, with update

function uFunc=+ and query function qFunc=min

while (true) do

(vmin, pozmin)=STrangeQuery(st_iaux.root, 1, N)

if (vmin≥0) then break

(Tshift, pozshift)=STrangeQuery(st_taux.root, pozmin, N)

STrangeUpdate(st_taux.root, (-Tshift, 0), pozmin, N)

STrangeUpdate(st_tasgn.root, -Tshift, pozmin, N)

STrangeUpdate(st_taux.root, (-∞, 0), pozshift, pozshift)

STrangeUpdate(st_iaux.root, (2·wpozshift, 0), 1, pozshift)

for i=1 to N do

 tasgn[i]=STrangeQuery(st_tasgn.root, i, i)

The functions plus_poz, min_poz and max_poz are

defined below:

plus_poz((vx, pozx), (vy, pozy)):
return ((vx+vy), max(pozx, pozy))

min_poz((vx, pozx), (vy, pozy)):
if (vx<vy) then return (vx, pozx)

else return (vy, pozy)

max_poz((vx, pozx), (vy, pozy)):
if (vx>vy) then return (vx, pozx)

else return (vy, pozy)

The functions STrangeUpdate and STrangeQuery are part

of the segment tree framework defined in [1]. The

algorithm works as follows: we find the minimum value

of the array incsum (vmin) and the position of the

minimum value (pozmin) using the segment tree st_iaux.

If vmin≥0, then the execution ends. Afterwards, we find

the largest non-positive value Tshift in the array tasgn_aux,

together with its position pozshift, using the segment tree

st_taux. Then, we increase by |Tshift| all the positions in the

arrays tasgn_aux and tasgn, between pozmin and N. We

set the value of tasgn_aux[pozshift] to (-∞, pozshift), in

order to ignore this position from now on. After all these

operations, the value dinc[pozshift] changes from -

wpozshift to +wpozshift. Thus, all the values incsum[p]

(1≤p≤pozshift) increase by 2·wpozshift. All the operations

are performed in O(log(N)) time per iteration and the

algorithm performs O(N) iterations, arriving at a time

complexity of O(N·log(N)).

3. Minimum Dissatisfaction Scheduling with

Increasing Optimal Employee Times

This situation is similar to the previous one, except that

the optimal employee times te1, te2, …, teN are sorted in

increasing order, i.e. te1≤te2≤…≤teN. There are also other

restrictions: the number of activities is fixed to a given

value k and they can be scheduled only at time moments

equal to optimal employee time moments. Furthermore,

any two activities must be scheduled at different time

moments. We will enhance the model by considering the

dissatisfaction of the employer in the following way: if an

activity is scheduled at time moment tej, then the

employer’s dissatisfaction will be dej≥0. The objective is

to minimize the overall dissatisfaction (the dissatisfaction

of the employees plus the dissatisfaction of the employer).

We will solve this problem by dynamic programming. We

will compute two sets of values: Dmin[i,j,0] and Dmin[i,j,1]:

• Dmin[i,j,0]=the minimum overall dissatisfaction if the

i
th

 activity is scheduled at time tej (and all the

employees 1,2,…,j are assigned to one of the

activities 1,2,..,i)

• Dmin[i,j,1]=the minimum overall dissatisfaction if the

i
th

 activity is scheduled at a time moment t≤tej (and

all the employees 1,2,…,j are assigned to one of the

activities 1,2,..,i)

We have the following recurrence equations:

})(]1,',1[{min

]0,,[

1'

min
'0

min

∑
+=

<≤

−⋅++−

=

j

jp

pjpj
jj

tetewdejiD

jiD

})(]0,',[{min

]1,,[

1'

'min
'1

min

∑
+=

≤≤

−⋅+

=

j

jp

jpp
jj

tetewjiD

jiD

The initial values are: Dmin[0,0,0]=Dmin[0,0,1]=0 and

Dmin[0,j,0]=Dmin[0,j,1]=+∞ (for j>0). The minimum

overall dissatisfaction is equal to Dmin[k,N,1] and the

activity schedule and assignment of employees to

activities can be determined by tracing back the way the

Dmin[i,j,p] values were computed. A naive algorithm

implements the equations directly and has time

complexity O(N
2
·k), considering that we can evaluate in

O(1) time the sums with the p argument. We can achieve

this by computing the arrays wsum, wright and wleft:

• wsum[i] = the sum of the weights of the employees

1,2,…,i; wsum[0]=0 and wsum[i] = wsum[i-1]+w[i]

• wright[i] = the total dissatisfaction of the employees

i, i+1, …, N, if they are assigned to an activity

scheduled at time teN ; wright[N+1]=0 ; wright[i] =

wright[i+1]+ wi· (teN-tei)

• wleft[i] = the total dissatisfaction of the employees 1,

2,…,i, if they are assigned to an activity scheduled at

time te1 ; wleft[0]=0 ; wleft[i] = wleft[i-1] + wi· (tei-

te1)

With these arrays, we can write ∑
+=

−⋅

j

jp

pjp tetew
1'

)(as

(wright[j’+1] – wright[j+1]– (wsum[j]–wsum[j’])·(teN-

tej)). Similarly, ∑
+=

−⋅

j

jp

jpp tetew
1'

')(is equal to (wleft[j]-

wleft[j’]-(wsum[j]-wsum[j’])·(tej’-te1).

We can improve the algorithm to O(N·K), by introducing

the following concepts: for each activity i (1≤i≤k) and

each employee j (1≤j≤N), we will define two functions: fi,j

and gi,j, which will be used in order to compute the values

Dmin[i,j,0] and Dmin[i,j,1]. The functions fi,j are defined on

the interval [tej, teN]. fi,j(tep) represents the minimum

dissatisfaction of the employees 1,2,…,p if i activities

were scheduled, the i
th

 activity is scheduled at time tep and

the employees j, j+1, .., p are assigned to activity i. With

this definition, Dmin[i,j,0] is the minimum value fi,j’(tej)

(0≤j’<j), plus dej. The important issue now becomes to

find the minimum value of these functions, without

evaluating every function at the time moment tej. (which

would get us back to an O(N
2
·k) algorithm).

The equation of a function fi,j(tep) is: Dmin[i-1, j-1, 1] +

∑
=

−⋅

p

jq

qpq tetew)(. The difference between two

“consecutive” values of a function fi,j is:

 dfi,j(tep+1) = fi,j(tep+1) – fi,j(tep)=(w[j]+w[j+1] + … +

w[p])· (tep+1 – tep). We notice that dfi,j(tep+1)<dfi,j’(tep+1),

when j’<j (the functions which “started” more recently

grow slower than those which have “started” for a longer

time). This is because the sum (w[j]+…+w[p]) is larger

when j is smaller. From this observation we conclude the

following:

• if the value of a function fi,j(tep+1) is larger than the

value of a function fi,j’(tep+1), with j’>j, then the

function fi,j will never have the minimum value

(among all the functions) at any of the subsequent

steps.

• if the value of a function fi,j(tep+1) is smaller than the

value of a function fi,j’(tep+1), with j’>j, then the

function fi,j will be “surpassed” by the function fi,j’ at

a time moment tsurpass,i,j,j’ ; fi,j’ will not have the

minimum value among all the functions fi,j (j≤j’)

before a time moment equal to the maximum value of

the set {tsurpass,i,j,j’|j<j’}.

We can use a double-ended queue (deque), in order to

store all the functions which “started” up to a time step p

(time moment tep). Within the deque, the functions are

sorted according to their value at step p, as well as after

the time moment when their value will be the minimum

one among all the functions which “started” before them

(tearly,i,j for a function fi,j). At every step p, a new function

fi,p is inserted into the deque. This function will remove

from the end of the deque all the functions having a value

which is larger than fi,p at time moment tep, as well as

those functions j for which tsurpass,i,j,p is smaller than tearly,i,j

(because these function will be surpassed by the function

fi,p before getting the chance to have the minimum value

among all the other functions; thus, their values wil never

be globally minimum). Moreover, at every step p, we

iteratively remove the first function from the front of the

deque if the second function fi,j has tearly,i,j<tep.

In order to compute the time moment tsurpass,i,j,j’ when a

function fi,j’ surpasses a function fi,j (j<j’), we must

compute the following values. Let’s assume that we are at

time step p=j’. We will compute dC= fi,j’(tej’) – fi,j(tej’).

We notice that in between two steps j’-1 and j’, the

functions fi,j behave like half-lines, with a slope equal to

dPj=(wj+wj+1+…+wj’-1). The slope of function fi,j’ is

dPj’=0. At every time moment after tej’, the difference

between the slopes of the two functions remains constants

and equal to dPj-dPj’. This is easily noticeable, because

the slopes of the two functions will increase with the

same amount at every step q>j’. Thus, the time moment

when the function fi,j’ surpasses the function fi,j is

tsurpass,i,j,j’=tej’+dC/(dPj-dPj’).

In order to compute the values Dmin[i,j,1], we will proceed

in a similar manner. We will define some functions

gi,j:[wsum[j], wsum[N]], whose values gi,j(wsum[p])

represent the minimum dissatisfaction of the employees

1,2,…,p, if the i
th

 activity is scheduled at time tej and the

employees j, j+1, …,p are assigned to activity i. These

functions are defined on the partial sums of the weights of

the employees, in order to be able to use a similar

reasoning. Every function gi,j will be a half-line (with

constant slope) in between two “consecutive” points

wsum[j’-1] and wsum[j’]. The slope of a function gi,j will

be, according to this definition, equal to tej’-tej. The

pseudocode of the algorithm is given below:

DPPersonnelScheduling:
compute the arrays wsum, wright and wleft

initialize Dmin[0,j,0] and Dmin[0,j,1] (0≤j≤N)

for i=1 to k do

 dq0=empty; dq1=empty

for j=0 to k-1 do

 Dmin[i,j,0]=Dmin[i,j,1]=+∞

for j=k to N do

 // clean up the front of dq0

 while (dq0.size()>1) and (dq0.getSecond().tearly<tej) do

 dq0.removeFirst()

 // compute Dmin[i,j,0]

 tearly,i,j=tej

 while (dq0.size()≥1) do

 e=dq0.getLast()

 x=e.v+wright[e.j]-wright[j+1]-

 (wsum[j]-wsum[e.j-1])·(teN-tej)

 dC=Dmin[i-1,j-1,1]-x

 dP=wsum[j-1]-wsum[e.j-1]

 if (dC≤0) then tsurpass,i,e.j,j=-∞

 else tsurpass,i,e.j,j=tej+(dC/dP)

 if (tsurpass,i,e.j,j≤e.tearly) then

 dq0.removeLast()

 else
 tearly,i,j=tsurpass,i,e.j,j

 break

 dq0.addLast((‘v’=Dmin[i-1,j-1,1], ‘tearly’=tearly,i,j, ‘j’=j))

 e=dq0.getFirst()

 Dmin[i,j,0]=e.v+wright[e.j]-wright[j+1]-

 (wsum[j]-wsum[e.j-1])·(teN-tej)+dej

 // clean up the front of dq1

 while (dq1.size()>1) and (dq1.getSecond().we<wsum[j]) do

 dq1.removeFirst()

 // compute Dmin[i,j,1]

 wearly,i,j=wsum[i]

 while (dq1.size()≥1) do

 e=dq1.getLast()

 x=e.v+wleft[j]-wleft[e.j]-(wsum[j]-wsum[e.j])·(tee.j-te1)

 dC=Dmin[i,j,0]-x

 dP=tej-tee.j

 if (dC≤0) then wsurpass,i,e.j,j=-∞

 else wsurpass,i,e.j,j=wsum[j]+(dC/dP)

 if (wsurpass,i,e.j,j≤e.we) then

 dq1.removeLast()

 else
 wearly,i,j=wsurpass,i,e.j,j

 break

 dq1.addLast((‘v’=Dmin[i,j,0], ‘we’=wearly,i,j, ‘j’=j))

 e=dq1.getFirst()

 Dmin[i,j,1]=e.v+wleft[j]-wleft[e.j]-(wsum[j]-

wsum[e.j])·(tee.j-te1)

The algorithm has O(N·k) amortized complexity. The key

element of the algorithm is the deque data structure. At

every step (i,j), many operations can be performed on the

deque, but only O(N) operations are performed on the

deque for a given value of i (and all the values of j).

4. Related Work

Personnel scheduling is an important research topic and

many papers have addressed such scheduling problems,

using a large variety of techniques: genetic algorithms [2],

memetic algorithms [3], tabu search [4], heuristics [5],

branch and price [9], integer and network programming

[6]. Some techniques from other scheduling domains

could also be applied, like greedy and dynamic

programming algorithms [7] and efficient data structures

[1]. Given a different meaning to the problem parameters,

our second scheduling problem is nearly identical to the

K-Median problem of a set of points on a line, which was

solved in O(N·k) time [8].

5. Conclusions and Future Work

In this paper we considered two personnel scheduling

problems, in which the objective consisted of minimizing

the dissatisfaction of the employees, when they have to

perform a sequence of activities. The dissatisfaction of

each employee was modeled as a time-dependent linear

function. The scheduling constraints consisted either of

personnel ordering restrictions or a fixed number of

activities which needed to be executed. For both problems

we presented efficient algorithms for determining optimal

schedules. As future work, we intend to adopt more

complex dissatisfaction models and consider some multi-

criteria optimization problems.

6. References

[1] Andreica, M. I., Tapus, N., "Optimal Offline TCP

Sender Buffer Management Strategy", Proceedings of the

IEEE International Conference on Communication

Theory, Reliability, and Quality of Service, p. 41, 2008.

[2] Beddoe, G. R., Petrovic, S., “Selecting and Weighting

Features Using a Genetic Algorithm in a Case-Based

Reasoning Approach to Personnel Rostering”, European

Journal of Operational Research, vol. 175, p. 649, 2006.

[3] Burke, E. K., Cowling, P., De Causmaecker, P.,

Vanden Berghe, G., “A Memetic Approach to the Nurse

Rostering Problem”, Applied Intelligence, vol. 15, p.199,

2001.

[4] Burke, E. K., De Causmaecker, P., Vanden Berghe,

G., “A Hybrid Tabu Search Algorithm for the Nurse

Rostering Problem”, Simulated Evolution and Learning,

Springer Lecture Notes in Artificial Intelligence, vol.

1585, p. 187, 1999.

[5] Burke, E. K., Curtois, T., Post, G., Qu, R., Veltman,

B., “A Hybrid Heuristic Ordering and Variable

Neighbourhood Search for the Nurse Rostering Problem”,

Technical Report NOTTCS-TR-2005-3, University of

Nottingham, 2005.

[6] Millar, H. H., Kiragu, M., “Cyclic and non-cyclic

scheduling of 12 h shift nurses by network

programming”, European Journal of Operational

Research, vol. 104, p. 582, 1998.

[7] Andreica, M. I., Tapus, N., "High Multiplicity

Scheduling of File Transfers with Divisible Sizes on

Multiple Classes of Paths", Proceedings of the IEEE

International Symposium on Consumer Electronics, 2008.

[8] Fleischer, R., Golin, M. J., Zhang, Y., “Online

Maintenance of k-Medians and k-Covers on a Line”,

Algorithmica, vol. 45, p. 549, 2006.

[9] Alfieri, A., Kroon, L., van de Veelde, S., “Personnel

scheduling in a complex logistic system: a railway

application case”, Journal of Intelligent Manufacturing,

vol. 18, p. 223, 2007.

