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Abstract: In this paper we consider two problems regarding the scheduling of available personnel in order to perform a given 

quantity of work, which can be arbitrarily decomposed into a sequence of activities. We are interested in schedules which minimize 

the overall dissatisfaction, where each employee’s dissatisfaction is modeled as a time-dependent linear function. For the two 

situations considered we provide a detailed mathematical analysis, as well as efficient algorithms for determining optimal schedules. 

 
1. Introduction 
 

Personnel scheduling problems are very important in 

many activity domains and efficient scheduling 

techniques are being sought increasingly often. Common 

scheduling objectives are: maximizing productivity, 

minimizing losses, maximizing profit and others. In this 

paper we consider two problems regarding the scheduling 

of employees, in order to perform a given quantity of 

work which can be arbitrarily decomposed into a 

sequence of activities. The objective is to determine a 

time schedule of the activities and an assignment of 

employees to the activities which minimizes the overall 

dissatisfaction, subject to several types of constraints. The 

dissatisfaction of each employee is modeled as a time-

dependent linear function. We present a detailed 

mathematical analysis of the problems, as well as efficient 

algorithms for determining optimal schedules. Our results 

are significant both from a theoretical and a practical 

point of view. 

The rest of this paper is structured as follows. In Sections 

2 and 3 we present the two personnel scheduling 

problems we mentioned, together with complete analysis 

and algorithms. In Section 4 we discuss related work and 

in Section 5 we conclude. 

 

2. Minimum Dissatisfaction Scheduling with Personnel 

Ordering Restrictions 

 

An economic agent has N employees, numbered with 

natural numbers from 1 to N, which have to perform some 

quantity of work. The overall quantity of work can be 

divided into any number of activities, which can be 

performed sequentially. Each activity i can be realized in 

negligible time (zero time), thus its only parameter of 

interest will be the moment when the activity is scheduled 

tai. Let’s consider that the quantity of work has been 

divided into k activities, scheduled at times 0≤ta1<ta2<…< 

tak. The dissatisfaction of each employee j is a time-

dependent linear function, ds(j,t)=wj·|t-tej|, where wj is the 

“weight” of employee j and tej is the time moment when 

the employee j is the most willing (satisfied) to perform 

an activity (the optimal employee time). By |X| we denote 

the absolute value of X. Assuming that employee j has 

been assigned to activity a(j), the overall dissatisfaction 

will be 
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We are interested in minimizing the overall 

dissatisfaction. In order to do this, we can choose the total 

number of activities, the time moments when these 

activities are scheduled and the assignment of employees 

to activities. The only constraint we need to consider is 

that, if u and v are two employees such that 1≤u<v≤N, we 

must have a(u)≤a(v). This means that employee u cannot 

be assigned to an activity taking place after the activity to 

which employee v is assigned. Thus, the ordering of the 

employees must correspond to the chronological ordering 

of the activities to which they are assigned: 

a(1)≤a(2)≤…≤ a(N) (taa(1)≤taa(2)≤…≤taa(N)). We will first 

provide a dynamic programming algorithm for computing 

an optimal schedule when the maximum value of the time 

moments tej (Tmax) is not too large and all the time 

moments are integer. We will compute a table 

Dmin[i,t]=the minimum overall dissatisfaction of the 

employees i, i+1, …, N, if they are assigned to activities 

scheduled at time moments t’≥t : 

Dmin[N+1, t]=0. 
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In the first case, no activity is scheduled at time t, thus we 

will use the value Dmin[i,t+1]. In the second case, we 

schedule an activity at time t and assign the employee i to 

it. The employees i+1, …, N can be assigned to the same 

activity or to a subsequent one, thus we will consider the 

value Dmin[i+1,t]+ds(i,t). The value of t is between 0 and 

Tmax and the time complexity of the algorithm is O(N·  

Tmax). The minimum overall dissatisfaction is found at 

Dmin[1,0]. The schedule can be easily computed from the 

table Dmin, by tracing back the way the values of the table 

were computed. 

We will now present a greedy algorithm which does not 

require the time moments tej to be “small”. At first, we 

will consider that we have only one activity, scheduled at 

time 0 and all the employees are assigned to this activity. 



Then, we will iteratively improve this solution by adding 

extra activities or by delaying the existing ones and 

reassigning the employees to these activities. We will 

maintain an array tasgn, where tasgn[i] is the moment 

when the activity to which employee is assigned is 

scheduled (initially, tasgn[i]=0, 1≤i≤N). If at some step of 

the algorithm, an employee i is assigned to an activity 

scheduled at time t, it will be possible to reassign this 

employee to an activity scheduled at a time moment t’>t 

(but not at a time moment t’<t). We will maintain an array 

dinc, where dinc[j]=the value by which the dissatisfaction 

of employee j increases if the employee is reassigned to 

an activity starting at time (tasgn[i]+1): dinc[j]=wj, if 

tej≤tasgn[j], or –wj, if tej>tasgn[j]. We will compute an 

array incsum, where 
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Thus, incsum[j] is the sum of the increases of dissatisfac-

tion of the employees j, j+1, …, N. We will select the 

minimum value of the array incsum: let this value be 

incsum[p]. If incsum[p]≥0, then the algorithm will stop. If 

incsum[p]<0, then, by assigning all the employees p, p+1, 

…, N to a an activity scheduled later than their current 

activity, the overall dissatisfaction will decrease. We will 

find the largest negative value Tshift from the set 

{tasgn[q]-teq | p≤q≤N }, i.e. that value which is closest to 

0. Then, we will increase all the values tasgn[q] (p≤q≤N) 

by |Tshift|. After doing this, we will recompute the arrays 

dinc and incsum and perform another iteration. The 

pseudocode of the algorithm is given below: 

GreedyPersonnelScheduling: 
Step 1. for i=1 to N do tasgn[i]=0 

Step 2. compute the arrays dinc and incsum 

Step 3. choose the minimum value (incsum[p]) in the array 

incsum 

Step 4. if (incsum[p]≥0) then goto Step 8. 

Step 5. find the minimum value Tshift=min{tasgn[q]-teq | 

(p≤q≤N) and (tasgn[q]-teq < 0) } 

Step 6. for i=p to N do tasgn[p]=tasgn[p]+|Tshift| 

Step 7. go to Step 2. 

Step 8. compute ∑
=

=
N
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tasgn[i])ds(i,D  

Step 9. return D 

The algorithm above can be easily implemented in time 

O(N
2
). We will now explain how its time complexity can 

be reduced to O(N·log(N)). For this, we will use the 

segment tree data structure and, in particular, the segment 

tree framework introduced in [1]. We will maintain three 

segment trees, as showed in the pseudocode below: 

GreedyPersonnelScheduling-O(N·logN): 
for i=1 to N do 

tasgn[i]=0 

if (tei≤tasgn[i]) then dinc[i]=wi 

else dinc[i]=-wi 

incsum[N]=dinc[N] 

for i=N-1 downto 1 do 

incsum[i]=dinc[i]+incsum[i-1] 

// compute two auxiliary arrays: incsum_aux and tasgn_aux 

for i=1 to N do 

incsum_aux[i]=(incsum[i], i) 

if (dinc[i]≥0) then tasgn_aux[i]=(-∞, i) 

else tasgn_aux[i]=(tasgn[i]-tei, i) 

st_iaux = the segment tree for the array incsum_aux, with 

update function uFunc=plus_poz and query function 

qFunc=min_poz 

st_taux = the segment tree for the array tasgn_aux, with update 

function uFunc=plus_poz and query function qFunc=max_poz 

st_tasgn = the segment tree for the array tasgn, with update 

function uFunc=+ and query function qFunc=min 

while (true) do 

(vmin, pozmin)=STrangeQuery(st_iaux.root, 1, N) 

if (vmin≥0) then break 

(Tshift, pozshift)=STrangeQuery(st_taux.root, pozmin, N) 

STrangeUpdate(st_taux.root, (-Tshift, 0), pozmin, N) 

STrangeUpdate(st_tasgn.root, -Tshift, pozmin, N) 

STrangeUpdate(st_taux.root, (-∞, 0), pozshift, pozshift) 

STrangeUpdate(st_iaux.root, (2·wpozshift, 0), 1, pozshift) 

for i=1 to N do 

  tasgn[i]=STrangeQuery(st_tasgn.root, i, i) 

The functions plus_poz, min_poz and max_poz are 

defined below: 

plus_poz((vx, pozx), (vy, pozy)): 
return ((vx+vy), max(pozx, pozy)) 

min_poz((vx, pozx), (vy, pozy)): 
if (vx<vy) then return (vx, pozx) 

else return (vy, pozy) 

max_poz((vx, pozx), (vy, pozy)): 
if (vx>vy) then return (vx, pozx) 

else return (vy, pozy) 

The functions STrangeUpdate and STrangeQuery are part 

of the segment tree framework defined in [1]. The 

algorithm works as follows: we find the minimum value 

of the array incsum (vmin) and the position of the 

minimum value (pozmin) using the segment tree st_iaux. 

If vmin≥0, then the execution ends. Afterwards, we find 

the largest non-positive value Tshift in the array tasgn_aux, 

together with its position pozshift, using the segment tree 

st_taux. Then, we increase by |Tshift| all the positions in the 

arrays tasgn_aux and tasgn, between pozmin and N. We 

set the value of  tasgn_aux[pozshift] to (-∞, pozshift), in 

order to ignore this position from now on. After all these 

operations, the value dinc[pozshift] changes from   -

wpozshift to +wpozshift. Thus, all the values incsum[p] 

(1≤p≤pozshift) increase by 2·wpozshift. All the operations 

are performed in O(log(N)) time per iteration and the 

algorithm performs O(N) iterations, arriving at a time 

complexity of O(N·log(N)). 

 

3. Minimum Dissatisfaction Scheduling with 

Increasing Optimal Employee Times 

 

This situation is similar to the previous one, except that 

the optimal employee times te1, te2, …, teN are sorted in 

increasing order, i.e. te1≤te2≤…≤teN. There are also other 

restrictions: the number of activities is fixed to a given 

value k and they can be scheduled only at time moments 

equal to optimal employee time moments. Furthermore, 

any two activities must be scheduled at different time 

moments. We will enhance the model by considering the 

dissatisfaction of the employer in the following way: if an 

activity is scheduled at time moment tej, then the 

employer’s dissatisfaction will be dej≥0. The objective is 

to minimize the overall dissatisfaction (the dissatisfaction 

of the employees plus the dissatisfaction of the employer). 

We will solve this problem by dynamic programming. We 

will compute two sets of values: Dmin[i,j,0] and Dmin[i,j,1]: 

• Dmin[i,j,0]=the minimum overall dissatisfaction if the 

i
th

 activity is scheduled at time tej (and all the 



employees 1,2,…,j are assigned to one of the 

activities 1,2,..,i) 

• Dmin[i,j,1]=the minimum overall dissatisfaction if the 

i
th

 activity is scheduled at a time moment t≤tej (and 

all the employees 1,2,…,j are assigned to one of the 

activities 1,2,..,i) 

We have the following recurrence equations: 
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The initial values are: Dmin[0,0,0]=Dmin[0,0,1]=0 and 

Dmin[0,j,0]=Dmin[0,j,1]=+∞ (for j>0). The minimum 

overall dissatisfaction is equal to Dmin[k,N,1] and the 

activity schedule and assignment of employees to 

activities can be determined by tracing back the way the 

Dmin[i,j,p] values were computed. A naive algorithm 

implements the equations directly and has time 

complexity O(N
2
·k), considering that we can evaluate in 

O(1) time the sums with the p argument. We can achieve 

this by computing the arrays wsum, wright and wleft: 

• wsum[i] = the sum of the weights of the employees 

1,2,…,i; wsum[0]=0 and wsum[i] = wsum[i-1]+w[i] 

• wright[i] = the total dissatisfaction of the employees 

i, i+1, …, N, if they are assigned to an activity 

scheduled at time teN ; wright[N+1]=0 ; wright[i] = 

wright[i+1]+ wi· (teN-tei) 

• wleft[i] = the total dissatisfaction of the employees 1, 

2,…,i, if they are assigned to an activity scheduled at 

time te1 ; wleft[0]=0 ; wleft[i] = wleft[i-1] + wi· (tei-

te1) 

With these arrays, we can write ∑
+=

−⋅

j

jp

pjp tetew
1'

)( as 

(wright[j’+1] – wright[j+1]– (wsum[j]–wsum[j’])·(teN-

tej)). Similarly, ∑
+=

−⋅

j

jp

jpp tetew
1'

')( is equal to (wleft[j]-

wleft[j’]-(wsum[j]-wsum[j’])·(tej’-te1). 

We can improve the algorithm to O(N·K), by introducing 

the following concepts: for each  activity i (1≤i≤k) and 

each employee j (1≤j≤N), we will define two functions: fi,j 

and gi,j, which will be used in order to compute the values 

Dmin[i,j,0] and Dmin[i,j,1]. The functions fi,j are defined on 

the interval [tej, teN]. fi,j(tep) represents the minimum 

dissatisfaction of the employees 1,2,…,p if i activities 

were scheduled, the i
th

 activity is scheduled at time tep and 

the employees j, j+1, .., p are assigned to activity i. With 

this definition, Dmin[i,j,0] is the minimum value fi,j’(tej) 

(0≤j’<j), plus dej. The important issue now becomes to 

find the minimum value of these functions, without 

evaluating every function at the time moment tej. (which 

would get us back to an O(N
2
·k) algorithm). 

The equation of a function fi,j(tep) is: Dmin[i-1, j-1, 1] + 

∑
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“consecutive” values of a function fi,j is: 

 dfi,j(tep+1) = fi,j(tep+1) – fi,j(tep)=(w[j]+w[j+1] + … + 

w[p])·  (tep+1 – tep). We notice that dfi,j(tep+1)<dfi,j’(tep+1), 

when j’<j (the functions which “started” more recently 

grow slower than those which have “started” for a longer 

time). This is because the sum (w[j]+…+w[p]) is larger 

when j is smaller. From this observation we conclude the 

following: 

• if the value of a function fi,j(tep+1) is larger than the 

value of a function fi,j’(tep+1), with j’>j, then the 

function fi,j will never have the minimum value 

(among all the functions) at any of the subsequent 

steps. 

• if the value of a function fi,j(tep+1) is smaller than the 

value of a function fi,j’(tep+1), with j’>j, then the 

function fi,j will be “surpassed” by the function fi,j’ at 

a time moment tsurpass,i,j,j’ ; fi,j’ will not have the 

minimum value among all the functions fi,j (j≤j’) 

before a time moment equal to the maximum value of 

the set {tsurpass,i,j,j’|j<j’}. 

We can use a double-ended queue (deque), in order to 

store all the functions which “started” up to a time step p 

(time moment tep). Within the deque, the functions are 

sorted according to their value at step p, as well as after 

the time moment when their value will be the minimum 

one among all the functions which “started” before them 

(tearly,i,j for a function fi,j). At every step p, a new function 

fi,p is inserted into the deque. This function will remove 

from the end of the deque all the functions having a value 

which is larger than fi,p at time moment tep, as well as 

those functions j for which tsurpass,i,j,p is smaller than tearly,i,j 

(because these function will be surpassed by the function 

fi,p before getting the chance to have the minimum value 

among all the other functions; thus, their values wil never 

be globally minimum). Moreover, at every step p, we 

iteratively remove the first function from the front of the 

deque if the second function fi,j has tearly,i,j<tep. 

In order to compute the time moment tsurpass,i,j,j’ when a 

function fi,j’ surpasses a function fi,j (j<j’), we must 

compute the following values. Let’s assume that we are at 

time step p=j’. We will compute dC= fi,j’(tej’) – fi,j(tej’). 

We notice that in between two steps j’-1 and j’, the 

functions fi,j behave like half-lines, with a slope equal to 

dPj=(wj+wj+1+…+wj’-1). The slope of function fi,j’ is 

dPj’=0. At every time moment after tej’, the difference 

between the slopes of the two functions remains constants 

and equal to dPj-dPj’. This is easily noticeable, because 

the slopes of the two functions  will increase with the 

same amount at every step q>j’. Thus, the time moment 

when the function fi,j’ surpasses the function fi,j is 

tsurpass,i,j,j’=tej’+dC/(dPj-dPj’). 

In order to compute the values Dmin[i,j,1], we will proceed 

in a similar manner. We will define some functions 

gi,j:[wsum[j], wsum[N]], whose values gi,j(wsum[p]) 

represent the minimum dissatisfaction of the employees 

1,2,…,p, if the i
th

 activity is scheduled at time tej and the 

employees j, j+1, …,p are assigned to activity i. These 

functions are defined on the partial sums of the weights of 

the employees, in order to be able to use a similar 

reasoning. Every function gi,j will be a half-line (with 

constant slope) in between two “consecutive” points 

wsum[j’-1] and wsum[j’]. The slope of a function gi,j will 

be, according to this definition, equal to tej’-tej. The 

pseudocode of the algorithm is given below: 



DPPersonnelScheduling: 
compute the arrays wsum, wright and wleft 

initialize Dmin[0,j,0] and Dmin[0,j,1] (0≤j≤N) 

for i=1 to k do 

  dq0=empty; dq1=empty 

for j=0 to k-1 do 

    Dmin[i,j,0]=Dmin[i,j,1]=+∞ 

for j=k to N do 

  // clean up the front of dq0 

  while (dq0.size()>1) and (dq0.getSecond().tearly<tej) do 

    dq0.removeFirst() 

  // compute Dmin[i,j,0] 

  tearly,i,j=tej 

  while (dq0.size()≥1) do 

    e=dq0.getLast() 

    x=e.v+wright[e.j]-wright[j+1]- 

                                   (wsum[j]-wsum[e.j-1])·(teN-tej) 

    dC=Dmin[i-1,j-1,1]-x 

    dP=wsum[j-1]-wsum[e.j-1] 

    if (dC≤0) then tsurpass,i,e.j,j=-∞ 

    else tsurpass,i,e.j,j=tej+(dC/dP) 

    if (tsurpass,i,e.j,j≤e.tearly) then 

      dq0.removeLast() 

    else 
      tearly,i,j=tsurpass,i,e.j,j 

      break 

    dq0.addLast((‘v’=Dmin[i-1,j-1,1], ‘tearly’=tearly,i,j, ‘j’=j)) 

    e=dq0.getFirst() 

    Dmin[i,j,0]=e.v+wright[e.j]-wright[j+1]- 

                              (wsum[j]-wsum[e.j-1])·(teN-tej)+dej 

  // clean up the front of dq1 

  while (dq1.size()>1) and (dq1.getSecond().we<wsum[j]) do 

    dq1.removeFirst() 

  // compute Dmin[i,j,1] 

    wearly,i,j=wsum[i] 

    while (dq1.size()≥1) do 

      e=dq1.getLast() 

      x=e.v+wleft[j]-wleft[e.j]-(wsum[j]-wsum[e.j])·(tee.j-te1) 

      dC=Dmin[i,j,0]-x 

      dP=tej-tee.j 

    if (dC≤0) then wsurpass,i,e.j,j=-∞ 

    else wsurpass,i,e.j,j=wsum[j]+(dC/dP) 

    if (wsurpass,i,e.j,j≤e.we) then 

      dq1.removeLast() 

    else 
      wearly,i,j=wsurpass,i,e.j,j 

      break 

    dq1.addLast((‘v’=Dmin[i,j,0], ‘we’=wearly,i,j, ‘j’=j)) 

    e=dq1.getFirst() 

    Dmin[i,j,1]=e.v+wleft[j]-wleft[e.j]-(wsum[j]-

wsum[e.j])·(tee.j-te1) 

The algorithm has O(N·k) amortized complexity. The key 

element of the algorithm is the deque data structure. At 

every step (i,j), many operations can be performed on the 

deque, but only O(N) operations are performed on the 

deque for a given value of i (and all the values of j). 

 

4. Related Work 

 

Personnel scheduling is an important research topic and 

many papers have addressed such scheduling problems, 

using a large variety of techniques: genetic algorithms [2], 

memetic algorithms [3], tabu search [4], heuristics [5], 

branch and price [9], integer and network programming 

[6]. Some techniques from other scheduling domains 

could also be applied, like greedy and dynamic 

programming algorithms [7] and efficient data structures 

[1]. Given a different meaning to the problem parameters, 

our second scheduling problem is nearly identical to the 

K-Median problem of a set of points on a line, which was 

solved in O(N·k) time [8]. 

 

5. Conclusions and Future Work 

 
In this paper we considered two personnel scheduling 

problems, in which the objective consisted of minimizing 

the dissatisfaction of the employees, when they have to 

perform a sequence of activities. The dissatisfaction of 

each employee was modeled as a time-dependent linear 

function. The scheduling constraints consisted either of 

personnel ordering restrictions or a fixed number of 

activities which needed to be executed. For both problems 

we presented efficient algorithms for determining optimal 

schedules. As future work, we intend to adopt more 

complex dissatisfaction models and consider some multi-

criteria optimization problems. 

 

6. References 

 

[1] Andreica, M. I., Tapus, N., "Optimal Offline TCP 

Sender Buffer Management Strategy", Proceedings of the 

IEEE International Conference on Communication 

Theory, Reliability, and Quality of Service, p. 41, 2008. 

[2] Beddoe, G. R., Petrovic, S., “Selecting and Weighting 

Features Using a Genetic Algorithm in a Case-Based 

Reasoning Approach to Personnel Rostering”, European 

Journal of Operational Research, vol. 175, p. 649, 2006. 

[3] Burke, E. K., Cowling, P., De Causmaecker, P., 

Vanden Berghe, G., “A Memetic Approach to the Nurse 

Rostering Problem”, Applied Intelligence, vol. 15, p.199, 

2001. 

[4] Burke, E. K., De Causmaecker, P., Vanden Berghe, 

G., “A Hybrid Tabu Search Algorithm for the Nurse 

Rostering Problem”, Simulated Evolution and Learning, 

Springer Lecture Notes in Artificial Intelligence, vol. 

1585, p. 187, 1999. 

[5] Burke, E. K., Curtois, T., Post, G., Qu, R., Veltman, 

B., “A Hybrid Heuristic Ordering and Variable 

Neighbourhood Search for the Nurse Rostering Problem”, 

Technical Report NOTTCS-TR-2005-3, University of 

Nottingham, 2005. 

[6] Millar, H. H., Kiragu, M., “Cyclic and non-cyclic 

scheduling of 12 h shift nurses by network 

programming”, European Journal of Operational 

Research, vol. 104, p. 582, 1998. 

[7] Andreica, M. I., Tapus, N., "High Multiplicity 

Scheduling of File Transfers with Divisible Sizes on 

Multiple Classes of Paths", Proceedings of the IEEE 

International Symposium on Consumer Electronics, 2008. 

[8] Fleischer, R., Golin, M. J., Zhang, Y., “Online 

Maintenance of k-Medians and k-Covers on a Line”, 

Algorithmica, vol. 45, p. 549, 2006.  

[9] Alfieri, A., Kroon, L., van de Veelde, S., “Personnel 

scheduling in a complex logistic system: a railway 

application case”, Journal of Intelligent Manufacturing, 

vol. 18, p. 223, 2007. 

 


