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Abstract : 

In order to qualify the fluctuating nature of solar radiation under tropical climate, we 

classify daily distributions of the clearness index kt by estimating a finite mixture of 

Dirichlet distributions without assuming any parametric hypothesis on these daily 

distributions. The method is applied to solar radiation measurements performed in 

Guadeloupe (16°2 N, 61 W) where important fluctuations can be observed even within a 

short period of a few minutes. The results put in evidence four distinct classes of 

distributions corresponding to different types of days. The sequence of such classes can be 

of interest for prediction. 

 

Keywords: clearness index kt; daily distributions; Dirichlet mixture; classification; solar 

radiation; solar systems 

1. Introduction 

Under tropical climate solar radiation is a very fluctuating data, notably because of 

numerous clouds. Fast changes in the local meteorological conditions, as observed in 

tropical climate can provoke large variation of solar radiation. The amplitude of these 

variations can reach 700 W/m² and occur within a short time interval, from few seconds to 

few minutes according to the geographical location. These variations depend on the clouds 

size, speed and number. 

*corresponding author: ted.soubdhan@univ-ag.fr 



Studies of solar energy systems are traditionally performed using daily or hourly data [1], 

[2]. Such data do not take into account the fluctuations mentioned previously although it 

has been shown that the fractional time distribution for instantaneous radiation differs 

significantly from that obtained with daily values [3] [4]. 

 

Rapid variations of solar energy induce rapid and large variations of the output of solar 

systems, such as photovoltaic solar cells (PV) used for electrical production, due to their 

very short response time [5]. Therefore in power distribution grids with high density of PV, 

rapid fluctuations of the produced electrical power can appear, leading to unpredictable 

variations of node voltage and power in electric networks. In small grids as they exist on 

islands (such as in Guadeloupe, FWI) such fluctuations can cause instabilities. 

Hence management of the electrical network and of the alternative power sources requires 

a better identification of these small time scales variations. This stresses the need for power 

system operators to develop real time estimation tools for such disturbances in order to 

anticipate power shortages and power surges.  

In this paper, we first summarize the variations of each daily solar radiation by an 

histogram which estimates the distribution of the daily solar radiation from measurements 

performed in Guadeloupe with a sampling rate of 1 Hz. Then we classify these histograms 

by estimating a finite mixture of Dirichlet distribution. This yields four classes 

corresponding to four types of days. The sequence of the classes can be of interest for 

prediction.  

The paper is organized as follows. Section 2concerns the experimental set-up of solar 

radiation measurements. We present our method for creating empirical histograms from the 

measurements in section 3. In section 4, we present an overview of solar radiation 

classification and present the main ideas of our method. In section 5 and 6 we present the 

theoretical framework of the method. In section 7 and 8 we present the classification results 

and an analysis of the sequence of classes. In section 9 we discuss of the interest of such a 

classification for PV systems and we conclude in section 10. 

2. Solar global radiation measurements 

Our global solar radiations measurements were performed in Guadeloupe, an island in the 

West Indies which is located at 16°15 N latitude and 60° 30 W longitudes. In such a 

tropical zone, solar radiation is an important climatic data to be taken into account as the 

daily average for the solar load for a horizontal surface is around 5 kWh/m². A constant 
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sunshine combined with the thermal inertia of the ocean makes the air temperature 

variation quite weak, between 17°C and 33°C with an average of 25°C to 26°C. Relative 

humidity ranges from 70% to 80% and the trade winds are relatively constant all along the 

year. 

Our measurements sampled at 1 Hz were performed during one year, from September 2005 

to December 2006. Only few authors have performed measurements with such a time step 

[3], [6], [7]. The measurements made with two pyranometers from KIPP&ZONEN were 

recorded by a CAMPBELL SCIENTIFIC data logger. 

On Figure 1 below, are presented two examples of measurements and their corresponding 

pdf. 

3. Data representation 

We consider a sample (h1,..., hi,...,hn) of n=365 daily histograms of kt based on a fixed 

partition of the clearness index range into l=20 intervals of equal length. Each histogram hi 

of kt has therefore l bins, say , such that , 0 and . ),...,( ,1, liii hhh = 1
1

, =∑
=

l

j
jih

Figure 1: Two examples of day: daily radiation (a), clearness index kt, (b) and corresponding histogram (c). 
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In the sequel it will be important to consider that conditionally to the observed data, 

is a probability vector on the finite set V={1,…,l}. ),...,( ,1, liii hhh =
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The choice l=20 was decided empirically as a compromise between accurate estimation of 

the distribution and getting nonempty bins.  

4. Daily solar radiation classification 

4.1 An overview of solar radiation classification 

Classification of days based on daily solar radiation properties has been investigated in 

many studies, generally using a supervised and a parametric approach. 

For example, Boullier and Le Chapellier [9] present a classification based on twelve 

parameters (horizontal irradiation, air temperature, wind speed, humidity, nebulosity, and 

so on) which allow a study of the transitions between diurnal and nocturnal periods. They 

get 4 groups (9 sub-classes) for “day” periods and also 4 groups (9 sub-classes) for “night”' 

periods by combining the discriminant character of each variable. 

Fabero et al. [10] put in evidence nine “typical” day periods by decomposing each studied 

day in three periods. This study, performed in Madrid (Spain), use global horizontal 

irradiation recorded at 1/600 Hz to point out transitions within a day in order to evaluate a 

solar potential. 

Muselli et al [11] propose a classification methodology with parameters defined from 

hourly clearness index profiles. A Ward aggregation classification method is then applied 

on these parameters. This study done with a monthly (resp. an annual) time step leads to 3, 

4 or 5 classes (resp. 3 classes).  

Maafi et al [12] and Harrouni et al [13] use fractal dimension and daily clearness index kt 

as classification parameters. Three classes obtained by some specific thresholds of these 

parameters correspond to clear sky, partially clouded and overcast sky, respectively.  

4.2 Main ideas of our classification method 

Our aim is to apply statistical inference techniques for identifying classes of daily kt 

histograms as well as for evaluating the probability that a daily kt histogram belongs to 

each of these classes. We proceed as follows. 

First we consider a sample of daily kt histograms obtained from one second measurements. 

Such histograms are nonparametric estimators of distributions so that they incorporate 

many aspects of a day behaviour, such as all order moments or tail behaviour. 

Next a classification algorithm is performed on the sample of histograms so that we get 

classes of distributions. The variability of the distributions within a specific class is 
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represented by a random distribution which depends on this class. A very popular example 

of random distribution is the Dirichlet distribution which is suitable for representing a wide 

variety of distributions. The variability of the whole sample will be represented by a 

mixture of Dirichlet distributions.  

To estimate the parameters of the mixture as well as the parameters of each Dirichlet 

distribution we use the SAEM algorithm which is a stochastic version improving the 

celebrated EM algorithm. 

The above method is interesting not only for capturing the entire range of daily solar 

radiation behaviour with all its statistical characteristics, and also for dealing with almost 

any type of distribution but also for describing a class by a random distribution. This last 

point is much more general and interesting than describing classes by tuples (e.g., mean-

variance) or by thresholds, as seen in the overview section. 

Note that this method has been applied for Internet traffic flow classification [14]. A 

contribution of the present paper is to study the applicability of this method for daily solar 

radiation classification. 

5. Statistical setting 

5.1 Random Distribution 

A random distribution (RD) is a measurable map from a probability space (Ω ,F, P) to the 

space P(V) of all probability measures defined on a fixed measurable set (V, V). 

If  is a RD, its distribution PX is then a probability measure on P(V). )(: VPX →Ω

If V = {1, . . . ,l} is the above finite set, then note that P(V), the set of all probability 

measures defined over V ntified to be the set   , can be ide

{x = (x1, ...,xl) such that 0 and } 1
1

=∑
=

l

j
jx

A popular example of RD is the following one. 

5.2 Dirichlet distribution and Dirichlet density 

Consider l independent random variables Z1, ..., Zl following a gamma distribution γ(α1, 1), 

..., γ(αl,1)  respectively, where γ(a, b)(x) = 1)1(
)(

1 −−−
Γ

axba xebx
a

 , (x)dx. 
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If we normalize each random variable Zl by the sum Z = Z1 + ... + Zl, then the distribution 

of the random vector X= ),...,( 1

Z
Z

Z
Z l   is called the Dirichlet distribution D ),...,( 1 Lαα .  

Observe that since 0≥
Z
Z j and 1

1

=∑
=

l

j

j

Z
Z

, X is a random distribution on P(V), V = {1 . . . ,l}. 

Hence the Dirichlet distribution is a first natural example of distribution of a random 

distribution, that is a probability measure on P(V), V = {1,…,l}. 

It can be shown that the l-1dimensionnal random vector ),...,( 11

Z
Z

Z
Z l −  has the following 

density with respect to the Lebesgue measure on the set: 

Tl={x = (x1, ...,xl-1) such that 0 and }, 1
1

1

≤∑
−

=

l

j
jx

the so-called Dirichlet density: 

, , … , , , … ,
Γ
Γ Γ …Γ 1  

for (x1, ...,xl-1)  Tl 

5.3 Mixture of Dirichlet distributions 

Let  be a RD, with, as above, V = {1, . . . ,l} and )(: VPX →Ω

P(V)={ x = (x1, ...,xl) such that 0 and }. 1
1

=∑
=

l

j
jx

The distribution of PX of X is a finite mixture of Dirichlet distributions if it is a convex 

combination of K standard Dirichlet distributions : ),...,( 1
k
l

kD αα

PX=  with >0 and  ),...,( 1
k
l

k
K

k Dp αα∑
1k=

kp
1

1

=∑
=

K

k
kp

The mixture problem consists in estimating the parameters  and . kp Kk
k
l

k
≤≤11 ),...,( αα

To achieve this aim we use an iterative algorithm where the inputs are the n histograms 

vectors , i=1,2,…,n as described before and the number of classes, K: ),...,( ,1, liii hhh =
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5.4 Dirichlet distribution properties 

The Dirichlet distribution has the following nice property that is particularly useful. If 

X=(X1, ...,Xl) has a Dirichlet distribution, D ),...,( 1 lαα , then the marginal distribution of 

each component Xl follows a beta distribution : 

),( A llα α−  Xl ∼ B

where A = is the massvalue. ∑
=l

l
1

α
L

),Recall that the Beta distribution B ( βα  is defined by the probability density function on 

[0;1]:  

11)1(
)()(

)( −−−
ΓΓ

)( +Γ
= αβ

βα
βα xxxf

 
These properties make the Dirichlet distribution very attractive for modelling random 

distributions. Moreover Dirichlet distributions, and more specially the mixtures of Dirichlet 

distributions are very suitable to encompass a very large spectrum of various distributions 

appearing in the real world [15, 6, 7]. 

6. Estimation procedure 

In the present work, as said before, we want to classify daily pdfs of kt based on the 

similarity of their distribution. We assume that the observed empirical histograms are 

coming from a source governed by a random distribution. Rather than finding a single 

distribution to represent all the histograms, it makes intuitive sense to think that each class 

of days is represented by a specific Dirichlet distribution while the entire ensemble of days 

is represented by a finite mixture of K Dirichlet distributions  where 

component D(  describes class k, and pk  is its weight.  

),...,( 1
1

k
l

k

k
k Dp αα∑

=

K

),...,1
k
l

k αα

However in practice these parameters are unknown and in order to fit our model, we need 

to estimate them. 

6.1 Algorithm 

The point is to consider the above daily kt histograms as iid, (independent and identically 

distributed) outcomes of a random distribution X having for distribution a finite mixture of 

Dirichlet distributions. The number K of components of the mixture will be fixed by the 

user. The following SAEM procedure is a stochastic variant of the EM alogorithm. 
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Description of the algorithm:  

Initialization step: Assign randomly each histogram hi, ni ,...,1= to a class 

Simulation step: Generate randomly  representing the initial a posteriori 

probability that a histogram i is in a class K where 

),...,1(, nit ki =

k

)0(

K≤≤1  

For q=0 to Q do  

 Stochastic step: Generate random multinomial numbers following the 

probability distribution { } where all the are 0 except one of them equal to 1. We 

then get a partition C  of the set of histograms 

)( qiqi ee = k

)(
,
q
kit

kkC )

)(k
qie

K,...,1( ==

  If    
)(,...,1 nc

N

e
Ni

qi

<
∑
=

k

for some k 

  then return back to the initialisation step. 

Maximisation step: Estimate the mixing weights: 

∑∑
==

+−=
Ni

k
qiq

Ni

q
ikq

q
k et

n
p

,...,1,...,1

)( ])1[( γγ1

 
and the parameter value: 

∑
∑

∑
∑

=

=

=

= +−=

Ni

k
qi

Ni
iqi

q

Ni

q
ik

Ni
iik

q
q

k e

fbe

t

fbt

,...,1

,...,1

,...,1

,...,1)(

)()(
)1( γγα

kq

 
Estimation step: Update the a posteriori probability of a histogram i belongs to class k 

according to: 

∑
=

+++

++++ =

Kk
i

k
ql

k
qqk

iqlqkqq
ik yDp

yDp
t

,...,1
1,1,11,

1,1,1,1)1(

))(,...,(
))(,...,(

αα
αα kk

types of solar radiation days: Clear sky days, Intermittent clear sky days, Cloudy sky days, 

Intermittent cloudy sky days. 

 
End For 

 

7. Results 

The proposed algorithm is applied on the whole set of n=365 daily histograms of kt in order 

to find K classes which is also the number of components in the Dirichlet mixture model.  

The above algorithm has been tested with K=2,3,4,5,…. With the dataset used here, the 

most suitable value is K=4, which corresponds to the following 4 different representative 
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Let us define 3 characteristics of a day:  

Sunshine (S) with S=1 for an important solar radiation and S=0 otherwise.  

ynamic 

 (high D corresponding to frequent passages). 

The first class is composed of monomodal distributions of kt having a maximum 

occurrence istributions are representative of clear 

 
Figure 2: daily distributions of kt in class 1    Figure 3: A clear sky day 

 

Class 2: Intermittent clear sky days (S=1, C=1, D=1)  

The second class is composed of monomodal distributions of kt having a maximum around 

kt =0.75 ( 1. This is 

Cloudy level (C) with C=0, 1, 2. 

Dynamic level (D) with D=0, 1 , 2 corresponding to the solar radiation d

due to cloud sizes and cloud speed

Class 1: Clear sky days (S=1, C=0, D=0) 

 value around kt =0.75 (Figure 2). These d

sky conditions, that is days of solar radiation with very few clouds and thus a very slow 

dynamic, as shown in Figure 3. This can be observed on the light tailed distributions where 

the pdf of kt is less than 0.1 on the range kt 0; 0.6 . The weight of this small class of 30 

days is 8%. 
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Figure 4) but with heavier tails compared to distributions of class 

representative of days with an important solar radiation with some clouds corresponding to 

a medium level dynamic as shown in Figure 5. The weight of this class of 128 days is 35%. 
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Figure 4: Daily distributions of kt in class 2   Figure 5: A day of class 2 

 

Class 3: Cloudy sky days (S=0, C=2, D=0) 

The third class is composed of monomodal distributions of kt having a maximum value for 

kt=0.1 (Figure 6). These distributions are representative of completely cloudy sky days 

with big size clouds having a slow speed so that the dynamical level is weak (see figure 7). 

In that case the solar radiation is mainly diffused by clouds. The weight of this class of 25 

days is 7%.  
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Figure 6: Daily distributions of kt in class 3    Figure 7: A day of class 3 
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Class 4: Intermittent cloudy days (S=1, C=2, D=2) 

The fourth class is composed of bimodal distributions of kt. They have two maximum 

value, one around kt =0.25 and the other one around kt =0.75 (Figure 8). These 

distributions are representative of days with an important sunshine combined with a large 

number of small clouds with high speed of passages and thus with high dynamic level 

(Figure 9). In this class we have 190 days that is 52% of the measured data . 
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Figure 8: Daily distributions of kt in class 4   Figure 9: A day of solar radiation in class 4 

 

Mean pdf and weight of each class 

Each class mean PDF and weight is plotted in figure 10, respectively in figure 11. 
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Figure 10: Mean pdf of kt for each class    Figure 11: Weight of each class 

 

According to figure 11, days of class 1 and class 3 are in minority as they correspond to 

rare meteorological events. Days of class 3 which are intermittent cloudy, form the major 

component of our dataset. 
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8. Sequence of Classes 

Once the n=365 days are classified into 4 classes, each day can be replaced by its class 

number, so that we obtain a {1, 2, 3, 4}-valued sequence of length n=365 as plotted in 

figure 12. This can represent the yearly evolution of the type of solar radiation days. 

It can be observed that this sequence has some interesting statistical properties such as an 

exponential residence time distribution in each class (figure 13) and also the transition from 

a class to another. 

This leads us to think that such a sequence can be a path of a discrete Markov chain or a 

Hidden Markov Chain Model having 4 states {1, 2, 3, 4}. This can be of interest for further 

research on solar radiation prediction. 
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Figure 12: sequence of classes 
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Figure 13: resident time distribution for each class 

9. Interest for solar PV systems 

As said in the introduction, a good knowledge of solar radiation and its dynamic is of major 

interest for solar energy systems particularly for PV systems. 

In the studied dataset we observe a majority (52%) of intermittent cloudy days (Class 4) 

with a high solar radiation level and high dynamic due to small clouds passages. In spite of 

high solar radiation level, such days can cause instabilities in an electrical network with PV 

systems because of high fluctuations on the PV output.  

Class 1, with low dynamic and high level of sunshine, is very suitable for electricity 

production with PV, but for the given site it only represents 10 days over a year. 

Class 2 (35% of days), with a high level of sunshine and medium dynamic level is also 

suitable for PV systems. 

Some interesting information can be observed from the sequence of classes. While class 2 

and class 4 appear all along the year, class 1 do not appear from October to December and 

class 3 mainly occur from March to June. This suggests the existence of various regimes in 

solar radiation and leads us to think that Hidden Markov Model (HMM) should be a more 

suitable model.  
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Finally observe that duration of class 3 is always 1 day (figure 13-c)). 

 

10.  Conclusion 

We have first summarized the daily solar radiation fluctuations under tropical climate by 

the distributions of the clearness index kt, estimated by histograms having l= 20 bins. Then, 

conditionally to the measurements data, these histograms have been classified by 

estimating a finite mixture of Dirichlet distributions without assuming any parametric 

hypothesis on the daily distributions.  

It has been proved in [15] [16] that if the sampling rate of the measurement is higher and 

the histograms are refined with a larger number of bins then the classification procedure is 

consistent, that is the classes will remain quite identical. 

The method has been applied to solar radiation measurements performed in Guadeloupe 

(16°2 N, 61 W) where important fluctuations can be observed even within a short period of 

a few minutes. The results put in evidence four different classes of distributions 

corresponding to different types of days: 

Clear sky days, with high level of sunshine, very few clouds and thus low dynamic;  

Intermittent clear sky days, with high level of sunshine, small clouds and medium 

dynamic; 

Cloudy sky days, with low level of sunshine, big size clouds and low dynamic 

Intermittent cloudy sky days, with high level of sunshine, high number of small 

clouds, and high dynamic. 

Classes 1 and 3 are small (8% and 7% respectively) while classes 2 and 4 are large (35% 

and 52% respectively). 

Analyzing the time sequence of classes leads us to think that the solar radiation days are 

governed by a Hidden Markov Chain having 4 states {1, 2, 3, 4} with some underlying 

unobservable regimes of solar radiation. This can be of interest for further researches, 

notably for the prediction of a specific class of days. 
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