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Abstract. The purpose of the present work was to compare the well-documented results of experiments on steel
rectangular plates subjected to blast loading, carried out by Jones, Uran and Tekin [1], with the explicit finite
element analysis (ABAQUS/Explicit [2]) and the simplified analytical solution, based on a kinematic approach. This
study was undertaken in order to establish the conclusions concerning the possible application of the simplified
approach, and evaluate the capacity of material modelling in ABAQUS/Explicit in a case of extremely high
velocities of deformation.

Résumé. L'objectif du present travail €tait la comparaison des résultats des expérimentations pour les plaques
rectangulaires en acier chargées d'explosion, réalisées par Jones, Uran et Tekin [1] 4 l'analyse par la méthode des
€éléments finis (programme ABAQUS/Explicit [2]) de méme qu'a la solution analytique simplifige.

Ces recherche étaient entreprises afin d'obtenir les conclusions concernant l'utilisation éventuelle de la jonction
simplifiee de méme que de préciser l'efficacité du modéle matériel employé dans le programme ABAQUS/Explicit
dans le cas d'une trés grande vitesse de déformation.

1. INTRODUCTION

Study of large deformation dynamic plastic response of structures is of at most importance in engineering
problems, such as these due to explosion and impact loading. Civil applications concern safety
assessment of structural components in industrial installations, like nuclear and thermal power plants.
which may be impinged by the pressure wave generated by a nearby accidental explosion. Other common
applications can be found in offshore, aerospace and automotive industry.

Complexity of these problems increases appreciably when effects due to nonlinear variation of yield stress
with strain rate are considered. Because of this the transient response of structures subjected to the loads
of such kind must in general be analyzed by numerical methods implemented in computer codes.

These available numerical approaches are generally time consuming, costly and often provide results
which agree only qualitatively with the real dynamic response. The results of computer simulation of a
dynamic response in a case of impulsive loads are available in literature [3,4,5]. The simplified methods
are the alternative for a numerical approach, providing a first-hand, inexpensive estimate of a maximum
permanent deflection of structures subjected to the uniform impulsive load. Mostly they are limited to the
relatively simple structures: beams and plates of a regular shape [1,6,7,8], but they take into account many
important features as strain-rate sensitivity, large displacements, and assume the rigid-plastic behaviour
for the material, obeying either von Mises or Tresca yielding criterion.

The aim of this work was to compare the results of the numerical analysis, carried out by means of
commercial computer code ABAQUS/Explicit V. 5.5, and the results of the simplified analysis by
so-called kinematic approach with adequate experimental data available in literature [1].

Special attention was focused on the influence of the rate-dependent formulation according to Cowper-
Symonds model on the final results. Finally, the various discrete models of the problem have been tested
and critically compared.
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2. DESCRIPTION OF EXPERIMENT

The experiment was made by Jones et al. [1]. The authors presented the results of over 40 tesis
rectangular plates, fully clamped around the outer boundary, which were subjected to uniform
distributed initial velocities with an initial energy considerably larger than the maximum elastic sig;
energy capacity of the corresponding structure.

The target areas of all specimens measured 76.20 x 128.59 mm. The specimens were made from et
hot-rolled mild steel or aluminium 6061-T6 and had the average mechanical properties listed in Tables|
and 2. The thickness was varying from 1.63 mm to 4.39 mm for a mild steel specimens, and from 3 Jj
mm to 6.20 mm for the aluminium ones. The rectangular plate specimen is shown in the Fig. 1.

Nominal 0 [MPa] | oy, [MPa] Nominal oo [MPa] | oy [MPa]
thickness [mm] thickness [mm]
1.62 248 326 3.10 284 316
2.49 233 296 4.78 281 313
4.39 254 331 6.20 286 -
Table 1. Mechanical properties Table 2. Mechanical properties
of mild steel (p = 7723 kg/m3) of aluminium (p = 2735 kg/m3)

3. NUMERICAL SIMULATION

Figure 3 shows the geometry of the discretize model that was adopted. Generally the mode! comprises
1/4 part of the plate with adequate boundary conditions. Load produced by an explosion is modelled asm
uniform initial velocity of the plate.
As a material model, the classical von Mises yielding criterion with kinematic hardening and associativc
flow rule has been adopted. The rate sensitivity is captured in a simple way by the Cowper-Symonds
model. This model, in uniaxial and also in Mises equivalent variables, reads:

1

c VP \p
—y=1+[§-D—]p (1
So

where o denotes the quasi-static yield limit, €*P the inelastic (viscoplastic) strain, and D, p are two
material parameters. For mild steel the standard values are: D =40.4 s p=35, for aluminium
D =6500s"1,p=4[9].

To examine the importance of rate-dependent material behaviour, the entire analysis has been madetwice.
with and without rate-dependence. No failure assumption was taken into account, because only ligh
damage of the plates has been noted upon completion of the experiments.

Two types of finite elements were considered: a 4 node quadrilateral shell element (with 1 point of Gauss
on the surface, and 5 points of integration across the thickness), and a 4-node quadrilateral membrai
element (with 1 point of Gauss). This was to evaluate the importance of bending behaviour for the totdl
dynamic response of the structure, in a case of the large plastic deformation.

The finite element code ABAQUS/Explicit V.5.5 was applied. All the calculation were made on the
workstation Silicon Graphics INDY.

4. SIMPLIFIED METHOD

A kinematic approach is proposed here, where a deflected configuration with a constant shape and varying
amplitude is sought. Following the previous work by Nurick et al. [6] the flexural resistance of the plat
was omitted. As shown by Jones [10], in a clamped rigid - plastic plate the bending resistance is vanishin?
as the transverse deflection is approaching the depth of the beam section, due to the interaction betweet
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bending moments and axial forces in a sectional plastic yield condition. In the subsequent deformation the
plate behaves as a plastic membrane.

We pursue 2 kinematic approach using cosinusoidal shape functions in both directions. The underlying

assumptions are summarized below:

2)rigid - plastic behaviour without hardening obeying von Mises criterion;

b) negligible in-plane displacements on the plate mid-plane;

¢) strain-rate sensitivity according to Perzyna's model;

d) moderately large displacements - von Karman plate theory can be applied;

¢) transverse deflection expressed in a modal form;

) negligible bending resistance of the plate;

g) uniformly distributed impulsive loading.

The dissipation rate per unit surface can be easily expressed in each point of the plate, as:
2

d =Ny +Nyfg =—=Non 2
«/§ 0'l1 @
where: Nj,Nyj are the principal membrane forces, Ng = ogH is the membrane force at the elastic limit;
. 2Ny{-Np. . 2Njy-Nj.
=————=A, =——X, 3
n 2N, i 2N, 3)

L is a scalar plastic multiplier.
Reference is made to rectangular plates with sides L and B (B = L/B). The plate deflection is expressed as
aproduct of the function W of time and the shape function ¢ which vanishes at the plate edges.

W(x,y;t) = W()o(x,y) @
The approximated expression of the dissipation density reads:
i 2 s 2 % 2 2
d=—=Ngyn=—=N W(t)W(t)[ (x,y)+ X, )] 5
= No==No 8% (xy)+47, (x.y (5)
The energy dissipated throughout the deformation process is given by:
B tf[??d( )dxd ]d L Now? 1142 +42 bxa ©
= X,y;t)dxdy |[dt = —=NgWwZ [”+ xdy
oLoo V3 Fool X Y

where: t; - final time (when velocity W(t¢) = 0), W = W(ty).
The final deflection can be easily computed in a closed form by imposing that the total dissipation equals
the initial kinetic energy K, imparted to the plate by the external impulse. However, a more accurate

estimate is obtained by assuming D = K:) = 64K, /T, where K; is the effective initial kinetic energy
obtained according to the optimization procedure proposed in [11]. If the cosine functions are used in both
directions for the transverse deflection:
Ix Iy
X,V) = COS—COS—— 7
o(x,y) L g ™)
the closed form estimate of the final deflection is as follows:
*
43 p K,
Wi =, |——
1% 1+B N,

Assuming the viscoplastic model of Perzyna, the following equation was obtained:
1

2 2 . n
=—=Ngl|1+| —=— ©
Ni V3 0 +[\/§é0 m) )

where €,n are material parameters.

Upon adequate substitution for 'F][, an expression is obtained for d which is not explicitly integrable in
time. At this stage, starting from the assumed displacement field, a possible solution is to construct the
one d.o.f. equation of motion and to integrate it by a step-by-step numerical technique.

®
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5. ANALYSIS OF RESULTS AND FINAL REMARKS

In the Figure 2 the results obtained by the simplified method are compared with experimental dy,
expressed as a function of so-called load factor @, defined as follows:

v-2 “B—pwo (16)

2H L8]

where p is the material density, and W is the uniformly distributed assigned initial velocity. As one ¢
see, the experimental results agree enough with analytical simplified rigid-viscoplastic estimation.
A small part of numerical results obtained with the use of ABAQUS/Explicit code is presenteq
in Figs 4-8. First, the dissipated energies of plastic deformation for various options of discrete modelling
are shown in the Fig. 4. As it was expected, there is a great difference between results obtained with, ang
without assumption of rate-dependent sensitivity of the material constitutive model. This assumption has
no influence on the time tf (the end of plastic dissipation), which is almost equal in all cases.

Figures 5 and 6 show the final distribution of plastic equivalent strain egq (t) on the surfaces of shell an¢

membrane structure. For the shell, the values in the midsurface (third point of integration across the
thickness) are shown.

In the Figs 7 and 8 the permanent profiles of deformed steel and aluminium specimens are compared with
results of numerical analyses with wvarious options of modelling. The assumed values of
Cowper-Symonds parameters give the results close enough the experimental data for the steel specimens,
but the the results for aluminium differ much more from the experimental ones.

In conclusions we can state that both simplified and numerical analyses may be applied to solve (k
problems concerning the impact loadnings of the structures modelled as a simple quadrilateral plate
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