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Abstract. A multilinear relaxation of any kind may have various representations which aid to comprehend 

natural phenomena concerning not only anelastic relaxation but also dielectric, magnetic and thermal 
relaxations. Five representations are given: representation 1 by n+l non-equivalent conjugate variables 

composed of density and partial potential, representation 2 by a Voigt-type general linear solid of order n, 

representation 4 by a Maxwell-type general linear solid of order n, representation 4 by n different 

d l ) ( i =  1,2,.. . , n) or n different 6 ~ ( ' ' ( i  = 1,2; .., n) , and representation 5 by n Debye peaks of internal friction. 

1. INTRODUCTION 

The elasticity is a well-known property of solid since the work of Hooke [I] in the 17th century. 

Hooke's law is, however, not always valid. It occurs that strain is not uniquely determined even 

for a small stress, and strain lags behind a periodically variational harmonic-stress by a certain 

phase angle. Creep, elastic aftereffect and stress relaxation are typical quasi-static relaxations, 

while internal friction, frequency dependence of elastic modulus (or simply modulus) and 

compliance are dynamic phenomena different from the elasticity. Relaxations are also observed in 

ferromagnetic materials through magnetic field and magnetic flux density, and in ferroelectric 

materials through electric field and electric flux density. These relaxations are thermodynamically 

irreversible process ; that is , irreversible process represented phenomenologically by equations 

without terms of higher than and equal to the 2nd order of general force. Zener [2] defined the 

irreversible linear process on stress-strain as anelasticity, and stimulated researchers to lead to 

many theoretical and experimental works. This paper describes a general theory of relaxation 

with discrete relaxation spectra in solids, valid not only for mechanical but also for thermal, 

electric, magnetic and any other relaxations. 

2. VARIOUS REPRESENTATIONS 

A relaxation represented by a relaxation time is called a single relaxation and one represented by n 

different relaxation times, a multi-relaxation of order n or, simply, a relaxation of order n. 
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2.1 Representation by conjugate variables 

Two physical quantities x, 5 , the product of which has the dimension of energy density, are 

called a conjugate variable and written as {x ,  51, where x is called a partial potential and 5 a 

density. Two conjugatevariables are equivalent, if their relaxationtimes are equal. A necessary 

and sufficient condition for the occurrence of a  line^ relaxation in solids is that there involves at 

least two non-equivalent pairs of conjugate variables in the relaxation, and a condition for the 

occurrence of a phenomenon yielding a multi-relaxation of order k is that there exist k 

non-equivalent pairs of conjugate variables other than a pair of conjugate variables for the use of 

observing the phenomenon. Further discussion gives two different expressions for the relaxation 

of the compliance in terms of the linear algebra. Although the following discussion is general 

enough, terminology for the anelasticity is used in this theory unless it leads to misunderstanding. 

The elasticity is the property that the conjugatevariable {x ,  5) satisfies Hooke's law: 

x = J <  o r < = M x ,  M = ~ / J ,  

where Jand M are the compliance and modulus, respectively. As for the anelasticity, a conjugate 

variable is fixed for the use of observing a relaxation, called the observing conjugate variable and 

denoted by { x ( ~ ) , < ( ~ ) } .  Furthermore, other n conjugate variables {xl ' ) ,  <(')} (1,2,.-., n )  and k 

different relaxationtimes at constant <('I, ri;), (i = 1,2,. - ., k ) ,  involve in the relaxation. The solid in 

an equilibriumstate suffers a changein density <(o) from 0 (defined as 0 for the eqilibriurnstate ) 

to a smallnon-zero constant value c. For each r j$ there are n(') equivalent conjugatevariables 

{ x ! i ) , < ~ i ) } ( j  = 1,2,..., n(') ) ,  so that n = 2 niii . The observing potential is decomposed into two 
i=l 

terms according to time dependence. The time-independent term is called the elastic partial 

potential written as $ 1 ,  and the time-dependent term the anelastic partial potential written as 

x!), such that 

r =I 

x(o)  = 2 ' )  - ( ; I  
0 .  0 5  (1) 

where j!) is the unrelaxed compliance for the observing conjugate variable, are anelastic 

- ( i )  - ( i )  
terms induced by the conjugate variables { x  ,< ] ( ' d i )  = (x,(j), xi1), .  . ., x!?)), 'I$') = ( < , ( I ) ,  < i i ) , .  . ., 
<!?))), and 2 ' )  l ?('I is the inner product of the two vectors. Eachcomponent of the density ?(') 

in equilibrium, denoted by $'), is proportional to $') , namely, = c f i ( ' ) ,  where f i ( ' )  is the 

vector composed of the proportional constants. 



2.1.1 Dzfision of Density 

The diffusion of density is represented by the equation: 

Operating [$ + $Ito both sides of eqn.(l) , is obtained 
,lo) 

The partial potential ?(')stands for the driving force of the density $')for diffusion , bringing x t j  

to an equilibrium. The differential of the compliance, denoted by a,'")($), is defmed as 

@(t) = X t j  (t)/$), 

and, especially, the relaxation of the compliance is given by 

at; = G(-)/f . 
Combined with eqn.(2), is derived 

= $4 ji(4. (3) 

2.1.2 Condition of Equilibrium 

The equilibrium state resulted from the onset of ?is attained by the condition that the driving 

force vanishes, i.e., ,-(') = 6. Since ?(') is given by 

with a symmetric n(i) square matrix B:;!, , the relaxation of the compliance is expressed in a form 

other than eqn.(3) as 

where DL$ and 4; are .li) square diagonal and orthogonal matrices, respectively, such that 
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2.2 Representation by relaxation models 

The multi-relaxation of order k may be represented by the relaxation models of the general linear 

solid of either Voigt-type or Maxwell-type [3]. Here, reciprocity and more strictly, equivalence 

between the two-type general linear solids are discussed. The permutation: 6 +-+ x, 

J t, M ,  t, -6M enables one to exchange the stress-strain equation of the Voigt-type with 

that of the Maxwell-type and vice versa. From the equations: 

a(') &4(') 
and by neglecting terms of higher than and equal to the 2nd order of - and - , the 

JU M R  

equivalence of the two-type general linear solids is proved. 

2.3 Other representations 

2.3.1 The relaxations of the compliance and the modulus 

The internal friction in the Voigt-type general linear solid of order k is expressed as 

and that in the Maxwell-type general linear solid of order k is expressed in a similar form. 

References 
[1] Hooke R., De Potentia Restitutiva (London,1678). 

[2] Zener C., Elasticity and Anelasticity of Metals (The University of Chicago Press, Chicago, 

1948). 

[3] Iwasaki Y. and Fujimoto K., J Phys. D: Appl. Phys., 13 (1980) 823-34. 


