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Abstract. Statistical theory of defect evolution allows us to obtain non-linear kinetic 
equations for tensor parameter of microcrack density. Investigation of non-linear 
properties of kinetic equation showed the existence of specific type of self-similar 
solution at the developed stage of damage, which is characterized by explosion-like 
kinetics of the microcrack growth on the spectrum of spatial scales. The system 
behaviour is controlled by the type of attractor determining non-linear dynamics of 
failure evolution, the scale transition due to the failure cluster formation and 
topological regularities of fracture. The scale distribution of damage localization 
corresponds to the laws of the free energy release in solids with microcracks. The laws 
of spatial damage localization on various structural levels are defined by the non- 
linearity of the microcrack accumulation in the condition of intensive interaction of the 
defects. This leads to the multiscale generation of failure centers. The relation between 
typical non-linearity of damage kinetics and spatial failure localization is the 
theoretical background for the explanation of experimental results and numerical 
simulation of fracture in heterogeneous materials. Topological features of fracture 
development were investigated numerically using percolation mode1 of failure cluster 
growth. 

1. STATISTICAL MODEL 

It has been established that failure and deformation of solids are accompanied by multiple 
nucleation and growth of microshears and microcracks. Damage as result of evolution of these 
defects usually takes place due to heterogeneity or imperfection of solids. There are two typical 
ways of microcrack initiation: either from preexisting structural defects, or due to creation of new 
structural defects. In metals microcracks are caused by plastic deformation and the arise of the 
latter preceded by a critical structure formation [ l ,  21. In polymers, ceramics, high strength 
composites microcracks are initiated as a result of the high initial structural heterogeneity [3, 4, 51. 
It is reasonable concerning critical structure formation to introduce the conception of critical 
microcrack nuclei in the initial pile-ups of defects, grain boundaries, structural imperfections, 
which will be develop into a microcrack at specified conditions [6]. A detailed description of 
microcracks and microshears ensembles behaviour requires estimation of structural parameters 
which play role of independent thermodynamical variables. These variables can be determined in 
terms of dislocations structure characteristics of solids, taking into account that the microcracking 
process and plastic deformation are associated with evolution of dislocation ensembles [l ,7]. There 
are two reasons for incorporating dislocation representations in the theory of continuum damage. 
One of their natural significance for physics of fracture and plastic flow and other is the possibility 
of using them as the base elements for the considered defects simulation. This can be explained by 
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the fact that microcracks as a kind of incompatibility in continuous medium are equivalent to 
some continuous distributions of dislocations [8]. The existence of different types of microcracks 
and diversity of mechanisms of their generation and development require the adequate choice of 
parameters characterizing the microcracks. It should be noted that microcracks, both in ductile 
and brittle materials, are oriented by the stress field and are characterized by the form anisotropy, 
which is higher for brittle solids (- 1:lO) and lower for ductile ones (-1:2) [1,9]. The volume 
concentration of these defects reaches the values of about 1 0 ' ~  -loi4 cm-" and the evolution of 
mesoscopic defects is close to the evolution of thermodynamic systems but with very important 
difference: single mesoscopic defect represents the dislocation ensemble and possesses this ensemble 
properties. Each mesoscopic defect is the dislocation ensemble with the properties determined by 
the dislocation pile-up. Typical mesoscopic defects are the microcracks. These defects can be 
represented by symmetrical tensor [10,11,12]. 

S& = S nink, (1) 

Tensor sik corresponds to disk-shape microcracks with the volume S = SOB where S, = nR2 is 

the microcrack base and 2 = Bii is the total Burgers vector of the dislocation pile-up modelling 
mesoscopic defects. It is well known that collective properties of the dislocation pile-up are 
appeared in the creation of the long-range stress field, the collective mobility and the orientational 
instability [13]. Evolution of mesoscopic defects is caused by the statistical distribution of defect 
nuclei, interaction between defects and the latter with external fields. The distribution function 
w(s,,) is given by the Fokker-Plank equation [l41 

d d 
-W at = - - (K, (S ,~)W)  + i g ~ ( ~ v ) ,  

"ik 2 asik ds, 
where K, is the deterministic part of interaction forces, Q is the correlator which characterizes 
the potential relief of the initial structural heterogeneity (nonequilibrium potential). In [IS] the 
statistical self-similarity of the defect distribution in solid was established for various conditions of 
the loading. Statistically self-similar solutions correspond to the stationary solution of the Fokker- 
Plank equation. The form of the solution follows from (2) for boundary conditions w(s ik )  + 0 

where Z is the normalizing parameter. The hypothesis of the statistical self-similarity introduces 

into consideration the defect distribution for which the ratio of the energy E = ~ K ( S , ) ~ S I ~  to 

Figure 1: Nonlinear solid responses on microcrack+growth. 



the correlator Q is constant. The energy of the microcracks as a dislocation pile-up was estimated 
in [l] and can be represented in a form 

where r,, is the radius of the nuclei of the dislocation pile-up, p is the shear modulus. The 

constraint parameter a = p / (4n'R3)ln(~ / r,) depends on the volume (- R') of structural 

elements (blocks or grains in solid). Taking into account (4) and the important role of long-range 
stresses produced by the defect ensemble the energy of the mesodefects was introduced 

E = - H,s,, + as,: . (5) 

The effective stress field Hi, = ys,, + hn(si,) determines the intensity of stress acting on the single 

mesodefect from the external stress field a,, and the "mean" stress field hn(~,,) . Averaging S,, with 

the distribution function W w e  obtain the self-consistency equation for microcrack density 
tensor p, = n(sL,) ( B  is the microcrack concentration) 

Equation (6) was solved in [l01 for the case of uniaxial and shear loading for various values of the 
dimensionless parameter 6 = ta/(hn) (Fig. 1). The value hn(s,,) determines the intensity of long- 
range interactions in ensemble of mesodefects. There are three responses of material to the defect 
growth : monotonous (6 > 6,), metastable < 6 < 6,) and unstable (6 < ; 8, and 

6cbeing the bifurcation points correspond to the change of the asymptotes. The monotonous 

response (6 > 6,) is characteristic for a week interaction between defects. In metastable area the 

jump-like change of p, corresponds to the orientation ordering of the mesodefect ensemble. The 

pass over the 6c-asymptotics leads to the infinite jump of p, . The passes over the asymptotics can 
be recognized as topological transitions that lead to symmetry changes due to the new 
organization in the system. Mathematically speaking these transitions occur under the change of 
differential equation types and their group properties. 

2. FRACTALITY AND DAMAGE LOCALIZATION 

Kinetics of the damage accumulation was studied in [l21 and based on the assumption that free 
energy of materials with considered type of defects is determined by the statistical model and 
depends on the parameter pL,. When analyzing nonlinear regularities of the microcrack 
accumulation, especially, damage localization it is very important to take into consideration the 
spatial non-homogeneity of the defect distribution. The non-locality effect appears due to the high 
gradient of internal stresses caused by the non-homogeneous defect distribution at the mesoscopic 
level [16]. These gradients are determined by the scales from lpm to lcm and more. 

Non-local potentials is written in the form Y* = Y + (1 / 2)~(dp,, / dx,)', where the 
quadratic gradient term describes the non-local effect in the so-called long wave approximation, X 
is the nonlocality parameter. To follow the Ginsburg Landau approach 1171 we obtain as the 
consequence of the evolution inequality 6Y / 62 = (6Y / 6p,,)(dpL, / df) l0 ( 6Y / 6p,, is the 

variational derivative) the kinetic equation for the p,, tensor 
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--p (7) 

where z p  is the relaxation time for p,. This equation coupled with the constitutive equation of 

elastic medium with microcracks [l01 

uik = ciklm oik + Z'ik (8) 

where u, and CiMm are the strain and elastic compliance tensors. 

X 
Figure 2: Various complexity eigenfunctions of the microcrack evolution equation. 

The characteristic features of microcrack ensemble evolution are associated with group properties 
of the non-linear operator (7), which in turn define the eigenfunction spectrum of a non-linear 
problem [18, 191. These eigenfunctions correspond to the self-similar solutions of the equation (7) 
at the developed stage of the system behaviour (8 < 8c, p > pf ) and define for a particular form 

of non-linearity the spectrum of spatial-time forms of solutions (dissipative structures of various 
complexity, Fig.2). The spatial-time invariants of these solutions at different scale-structure levels 
reflect the similarity that exists between mechanisms of defect accumulation, in particular between 
mechanisms of damage localization. 
It was shown in [l01 that there are several types of self-similar solutions, corresponding to a 
localized infinite growth of p, over a range of constant or "growing" space scales. This situation is 
typical for solid in case of initiation of stabilizing or extending fracture centers. The evolution of 
dissipative structures for equation (7) is described by the self-similar solution [19,20, 211 

P(., t ) = g(t)f (G), 5 = X/' 4(t) 7 (9) 

where g(t)governs the growth law of parameterpand ((t)defines variations over the half-width 

of the localization region. From equation (9) follows that the time dependence of p remain self- 
similar: this is simply an extension along the X and p-axes. The substitution (9) into the equation 

(7) allows to clarify the form of the function g(t) 

where zc is so called "peak time" ( p  -+ W at t --+ zc [20]); G > 0,m > 0 are the parameters of 

nonlinearity, which characterize the rate of the free energy release m/@ with the increase of the 

volume microcrack concentration in the region p > p,, (6 < S.). Concurrently the eigenvalue 

problem is formulated for the eigenfunction f Its solution gives the spectrum of eigenforms 



(S) "living" during z: time in the discrete ranges of eigenvalues gZ , specifying the damage 
localization scales. The solution (9) refers to the class of nonlinear singular solutions, describing an 
infinite growth of p(t) over localization scale 5, (fundamentals lengths [20]) at t -+ r e .  

The high-strength nonhomogeneous materials with multiple interacting microcracks are 
dissipative systems, the behaviour of which changes from a regular to a random one at small 
variations of certain parameters. This phenomenon is caused by local instabilities of p,, beyond 

the thermodynamic branch of p(o) relation for 6 < 6c.  Local instabilities in ensemble of defects 
are accompanied by alteration of the topological properties of the system. It is interesting that the 
same form of the relation (curve 6 < h,, Fig. l .) between the scalar measure of damage P and 
stress was proposed by Bolotin [22] 

p = F,. (g(0, P)), (1 1) 
where 

(12) 

is the Weibull distribution function of the short-time strength, g ( ~ ,  P) is the real stress in the 

structural elements, = <(v~/v~)' '~ is a characteristic strength of the structural elements, 5 is the 

strength of the specimen, and a is the Weibull modulus. Assuming g(o, P )  = o e x p ( ~ ,  P ) ,  we 

obtain a concrete form of equation (l l) 

p = (olr " ~ ( P P ) ) ~ ,  (13) 

wherep is the parameter controlling the effective stress growth under damage accumulation. The 
relation such as equation (13) follows from (6)  for the equilibrium condition of elastic medium 

fl 
with microcracks - = 0 .  Phenomenological analog of expression (7) appears from the above 

'pi, 

The regularities of transitions from damage to fracture were examined numerically for carbon- 
carbon composites. Tensile loading tests of carbon-carbon specimens demonstrate characteristic 

5, MPa 4 

1 .  103 E 

Figure 3: Typical deformation curves of the carbon-carbon specimens. 
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features of deformation and fracture: the presence of microcracks in the bulk of the specimen; the 
influence of microcracking on the deformation behaviour of materials; fragmentation of the 
specimen across the regions subject to damage and highly statistical scattering of the specimen 
strength (Fig. 3). For the case of uni-axial tension only the component pp of the tensor pi, is 
sufficient to characterize the microcrack accumulation process. The problem of quasi-brittle 
fracture of the carbon-carbon composite has been solved numerically [18,19] by the finite 

Table 1: Statistics of tensile test measurements 

p p -  P p 

N dispersion characteristic strength Weibull modulus 
series r, , MPa a 

element method based on the equilibrium equation da,/d X, = 0 (k = 1,2), the constitutive 
equation of elastic medium with microcracks (8), the kinetic equation of damage accumulation 
(14), and boundary condition and initial conditions. Phenomenological parameters (a,p,rc) were 

determined from the results of statistical analysis (Table 1, Fig. 3, Fig. 4) of tensile test 
h 

rS=8j'.7 MPa 

h 

Q ,  MPa rS ,  MPa 

a) b) 
Figure 4: Distribution function of the specimen strength for one series (a); distribution function of characteristic 
strength for all series (b). 

measurements on carbon-carbon composite specimens (Fig. 3). Simulation of the deformation and 
fracture processes starts with random assignment of (according to Table 1 and Fig.4) the strength 



y and Weibull modulus a to each element of the finite element approximation (number of the 
elements is 5000). At every step of the time we calculate a new value of the elastic modulus taking 
into account the influence of microcrack accumulation, and solve the elasticity problem and define 
the value of parameterpYY. The element is broken, when p, reaches the critical value pc 

(pe  = 3 .  104 is an experimental estimate). The macroscopic fracture corresponds to the formation 
of a percolation cluster that consists of fractured elements. The final step of fracture simulation is 
the fractal analysis of the percolation cluster. The cluster appears to be fractal in nature and with 
an increase of linear dimension L of the damaged array [23] its mass M(the number of failured 
elements) increases on the average as: 

M ( L )  = ALD , (15) 
where D is the fractal dimension, A is the effective amplitude. The mean value of A is 
obtained by averaging over the manifold realization of the percolation cluster. This approach was 
used to simulate failure development in carbon-carbon specimens with an initial macroscopic 
defect located in the center (the macrocrack is normal to the tension direction) with characteristic 
size Na (Fig. 5). The dependence M(L) consists of two linear parts with the slopes determined 

by the fractal dimension D . Simulation of damage has demonstrated that under loading the 
initial stage is accompanied by preferential failure of elements located in the vicinity of the 
macroscopic defect ( D  = 1). The percolation cluster across the specimen results from 
coalescence of the cluster originating from the initial macrodefect with clusters in its immediate 

Figure 5: Topological characteristics (fi-actal dmensions) of the damage cluster growth. 

neighbourhood ( D =  1.4 - 1.7). This is indicative of the qualitative change in the topology of 
damage accumulation process and the fracture mechanism replacement. The fractal dimension 
D = 1 supports the validity of approaches of fracture mechanics only at the initial stage of crack 
evolution. 

The results of statistical simulation for the time of complete formation of the main cluster are 

plotted in Fig. 6 .  This dependence involves two parts with two asymptotics X: and X:. The right 

part corresponds to the formation of branched cluster with the fractal dimensionD = 1.4 - 1.7. 
The transient region between these parts defines the critical size N: of the initial defect, which 
specifies two qualitatively different mechanisms of fracture according to the size of initial defects. 
It means that' the highest reliability of materials is reached when the size of initial defect is not 

larger than N{ . In this case, the material exhibits the maximum of "dissipative capacity" and the 
damage accumulation in the specimen is more homogeneous. 
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Figure 6: Dependence of critical concentration of failed elements X c  on initial macrodefect size N o .  

A fracture zone formation is connected with the nucleation of localized damage zones in the 
form of dissipative structures which are developed in a peak regime. This is accompanied by the 
generation of simple and complex structures of the localized failure and it reflects the self- 
similarity of damage development at various scale levels. 
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