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Abstract. Crack growth along an interface joining an elastic-plastic solid to a solid that does not yield plastically is 
studied numerically, accounting for mixed mode loading under conditions of small scale yielding. The fracture process 
is represented in terms of a cohesive zone model, for which the work of separation per unit area and the peak stress 
required for separation are basic parameters; but where also a plastic strain effect on the fracture process is incorpo- 
rated. This additional effect is included to model accelerated void nucleation and growth at the interface, resulting 
from intense plastic straining just in front of the crack tip. 

1. INTRODUCTION 

Dissipation in the plastic zone surrounding a crack tip gives a major contribution to the work of fracture of 
ductile materials. Thus, the macroscopic work of fracture is typically much larger than the work absorbed by 
the local fracture process required to separate the crack surfaces. This role of plastic dissipation in amplifying 
crack growth resistance has been studied by Tvergaard and Hutchinson [I] for mode 1 crack growth under 
conditions of small scale yielding, using a cohesive zone model to represent the fracture process at the crack 
tip. Also the effect of a T-stress on mode 1 crack growth resistance has been studied by this method [2]. 

The analyses [1,2] show that with a peak stress 6 in the traction-separation law representing the frac- 
ture process, and an initial yield stress oy , the predicted fracture toughness depends strongly on the ratio 
6/oY . For a low value of the ratio &/cry, plasticity does not amplify the crack growth resistance, whereas for 
a larger value the macroscopic work of fracture can be increased by a factor 10 or more. But the value of &/oy 
can be so large that the peak stress during blunting of astationary crack does not reach the level 5, so that no 
crack advance is predicted. However, in cases where void growth to coalescence is part of the crack growth 
mechanism, the intense deformations near the tip amplify the void growth and may also lead to nucleation of 
new voids, effectively lowering the peak separation stress. To incorporate such effects, Tvergaard and 
Hutchinson [3] and Tvergaard [4] have used a modified traction- separation law so that plastic straining gives 
a reduction of the peak stress for separation (see also Tvergaard [5,6]). This modified model allows for a better 
representation of very tough materials with a high value of the tearing modulus defined in [7]. Since plastic 
straining near the tip is sensitive to the element size, this modified model displays some mesh dependence. 

For a crack growing along an interface joining an elastic-plastic solid to a solid that does not yield plas- 
tically a number of experiments have shown a strong dependence on the mode of loading, such that the near- 
mode 2 toughness can be as much as a factor of 10 higher than the near mode 1 toughness (Cao and Evans [8], 
Liechti and Chai [9], Thouless [lo], O'Dowd et al. [ll]). In an analysis of interface crack growth, using a 
cohesive zone model analogous to that in [1,2] to represent the fracture process, Tvergaard and Hutchinson 
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[12] have shown that the strong dependence of interface toughness on the relative proportion of mode 2 to 
mode 1 is directly predicted as a result of plastic yielding in the ductile solid on one side of the interface. 

In the present paper, the effect of the plastic strain dependent cohesive zone model is investigated for the 
case of interface crack growth. The elastic substrate is approximated as rigid, and thus the elastic fields used as 
remote boundary conditions in the small scale yielding analysis must account for anon standard bi-material 
interface singularity. Mixed mode loading conditions are considered, and the computed interface toughness is 
related to the local mode mixity at a point near the edge of the plastic zone surrounding the crack tip. The 
results are related to those found in [12], but the main interest here is in considering cases where the initial 
peak stress 6 in the traction-separation law is so high that subsequent reductions due to plastic strainingplay 
an important role. 

2. SMALL-SCALE YIELDING FORMULATION AND NUMERICAL METHOD 

The plane strain interface crack problem is solved for conditions of small-scale yielding with mixed mode 
loading, as in [12]. Thus, on an outer boundary with radius A,, , measured from the initial crack tip, displace- 
ments are specified corresponding to the elastic crack tip fields. 

The elastic crack tip singularity field (Rice [13]) governing the remote field of a semi-infinite interface 
crack has tractions acting on the interface which are given in terms of the two stress intensity factor compo- 
nents, K1 and K 2 ,  by 

a,, + ia12 = (K1 + i ~ ~ ) ( 2 n r ) - " ~ r - ' ~  

Here, r is the distance from the tip, i = f i  , E is the oscillation index 

and p is the second Dundurs' parameter 

with p = E/(2(1 + v)) and p, = E,/(2(1 + v,)) , where E, , v, are the elastic constants for the elastic 
substrate, and E , v are the elastic constants for the elastic-plastic material. The relation between the energy 
release rate and the magnitude IKI of stress intensity factors is 

With a reference length L chosen to characterize the remote field an L-dependent measure of mode 
mixity I) is defined by 

1m[(K1 + ~K~)L 'E]  
tanq = 

R~[(K,  + ~K,)L"] 

which reduces to the more familiar measure, tanq = K2/KI ,when E = 0 .  By using (2.1) in (2.5) is is seen 
that tan$ = o12/a2, at r = L on the interface. Thus, I) measures the relative proportion of shear to 
normal stress on the interface adistance L from the tip, as predicted by the elastic solution. The displacement 
components associated with the singularity field in the upper half-space (8 > 0) are given by 



Fig. 1. Traction-generalized displacement relation used for interface separation. 

where $ depends on r according to 

The expression for the components in the lower half-space is similar in form. 
In specifying the small-scale yielding problem, the displacement components u, and u2 given by 

(2.6) are imposed remotely on a boundary at r = A. , where A. is typically several times L . The remote 
loading is thus specified by IKI , .IC, and L . 

A model of Needleman [14] describing debonding under purely normal separation was extended by 
Tvergaard [15] to also account for tangential separation, and aversion of this extended model was applied by 
Tvergaard and Hutchinson [12] to represent the interface fracture process. As illustrated in Fig. 1, 6, and 6, 
are the normal and tangential components of the relative displacements of the crack faces across the interface. 
Critical values of these displacement components are denoted 6: and 6: , and a nondimensional crack sepa- 
ration measure is defined as 

such that the tractions drop to zero when h = 1 . With a(h) displayed in Fig. 1, and a traction potential 
defined [12] as 

the normal and tangential components of the traction acting on the interface in the fracture process zone can be 
written as 

d@ - d h )  a n  T =----  , T a@ - OW 61. at 

" as, h 6; - ast h 6; 6; 

The traction law under a pure normal separation (6, = 0) is T, = o(h) where h = 6,/6: ; while under a 
pure tangential displacement (6, = 0) , Tt = (6:/6:)a(h) where h = 6J6: . The peak normal traction 
under pure normal separation is 3 and the peak shear traction is (6~,/636 in a pure tangential displacement. 
The work of separation per unit area of interface To is given by (2.9) with h = 1 . For the relation o(h) 
specified in Fig. 1 
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It has been found in [I] that the resistance curve behaviour is rather insensitive to variations of the shape of 
o(h) , for given values of 6 and To . 

A modification of this traction-separation law to incorporate an effect of plastic straining on the failure 
mechanism is introduced here in a manner analogous to that employed in 131. With this modification the peak 
stress & in the traction-separation relation of Fig. 1 is gradually reduced when the effective plastic strain E: 

along the crack path has exceeded a critical value E, 

, for E: 5 E, 

6O - A~(E:  - E ~ ) / A E  , for E, < E: < ec + AE (2.12) 

, for E: 2 E, + AE 

Thus, with (2.12) the cohesive zone model accounts for a reduction of the material strength, which could 
result from plastic strain controlled nucleation of voids at the interface or from accelerated void growth near 
the crack tip. 

By using (2.4) a reference stress intensity is defined as 

Thus, KO represents the value of IKI needed to advance the interface crack in the absence of any plasticity. A 
reference length Ro , which scales with the size of the plastic zone (when IKI = KO) , is defined as 

Since Ro also scales with the fracture process zone length, it is natural to define another measure of mixity, 
q o ,  based on the reference length Ro rather than L in (2.5). By (2.7), Q and qo are related by 

In the numerical analyses finite strains are accounted for, using a convected coordinate, Lagrangian 
formulation of the field equations, in which gij and Gij are metric tensors in the reference configuration and 
the current configuration, respectively, with determinants g and G , and qij = 1 / 2 ( ~ , ,  - gij) is the Lagran- 
gian strain tensor. The contravariant components zij of the Kirchhoff stress tensor on the current base vectors 
are related to the components of the Cauchy stress tensor oij by zij = moij . Then, in the finite-strain 
generalization of J2-flow theory discussed by Hutchinson [16], an incremental stress-strain relationship is 
obtained of the form i" = ~ ~ j ~ $ ~ ,  . The value of the tangent modulus at a given stress level is determined 
from the uniaxial true stress-logarithmic strain curve, which is taken to be specified by the power law 

[o/E , for o I cry 

= y / ~ o / o y l ' N  , for o t cry 

Here, oy is the initial yield stress, E is Young's modulus, and N is the strain hardening exponent. 
The computations here are carried out for the case of a rigid lower half-space (Es + w ) , so that only 

the upper half-space needs to be analysed numerically. With the plastic strain dependent cohesive zone model 
considered here there is an interest in more crack growth, relative to Ro , than that considered in [12], and thus 
a relatively long uniform mesh region is needed in front of the initial crack tip. The mesh used is illustrated in 
Fig. 2, with outer radius A. and with the element size A. in the uniform mesh region. The results to be shown 



1 initial crack t ip . / I 0  

(b) 

Fig. 2. Finite element mesh used to analyse interface crack growth. (a) Region analysed numerically. (b) Refined mesh along the 
crack line. 

here are obtained for A. = 8000Ao , with the value of Ao/Ro ranging from 0.116 to 0.103 . Apart from the 
different mesh, the analyses are carriedout as described in [I, 121. Thus, for achosen value of the amplitude 
IKI of the displacements on the outer edge are increased incrementally, and a special Rayleigh-Ritz finite 
element method is employed to control nodal displacements within the fracture process zone (see also [IS]). 

The elastic-plastic material above the interface (for x2 > 0) is taken to be characterized by the values 
oy/E = 0.003 , v = 113 and N = 0.1 . Then, with the rigid lower half-space the values of the parameters 
defined by (2.3) and (2.2) are P = - 114 and r = 0.0813. Thus, with a non-zero value of E the expression 
(2.10) does give a shift between 9 and qo . 

For the cohesive zone model (2.8)-(2.12) the parameter values used in the computations are 
6:/6C, = 1 , h,  = 0.15 , h, = 0.5 and 8C, = 0.05Ao. Furthermore, in (2.12) various values of the critical 
strain r ,  are considered, with AE = 0.05 and (ire - ~ 6 ) / o ~  = 1.0 . The value of the effective plastic 
strain E: in (2.12) is calculated as the average over the quadrilateral element adjacent to the point considered 
in the debonding region. 

3. RESULTS 

The analyses of interface crack growth in [12] focussed on values of 60/oy ranging from 1.4 to 3.0. For 
bO/oy = 1.4 the steady-state interface toughness [KISS was found identical to KO in a range of 9, values 
between about -20° and 20' , so that here plastic yielding does not contribute to the fracture toughness. For 
60/oY = 2.0 the value of IKlsS/Ko corresponding to qO = 0' is only slightly above unity, while for 
60/oy = 3.0 this value of lKlsS/Ko is about 2.1 . For all values of 6,/oY it was found that the predicted 
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4 0.03, or larger 

Fig. 3. Interface crack growth resistance curves for &,/ay = 3.4 and q,, = -1.88" 

Fig. 4. Interface crack growth resistance curves for &,,/ay = 3.4 and 6, = 0.02. 

fracture toughness increases significantly with increasing proportion of mode 2 to mode 1 , i.e. for increasing 
values of lqol . This trend had also been found experimentally [8,9,10,11]. 

Here, similar results are computed, taking into account the modification (2.12) of the traction-separa- 
tion law to incorporate an effect of plastic straining on the failure mechanism. Fig. 3 shows resistance curves 
computed for GO/oY = 3.4 , with qo = -1.88' . The solid curve is predicted using the traction-separation 
law also used in [12], with no effect of plastic straining, and this resistance curve is indistinguishable from that 
obtained by using (2.12), with E ,  = 0.03 . The dashed curves, predicted for E ,  = 0.02 and E ,  = 0.01 , 
show that the effect of plasticity on interface failure tends to reduce the fracture toughness, analogous to the 
results found in [3,4] for the case of mode 1 crack growth in a homogeneous material. 

In Fig. 4 resistance curves for different values of the mode mixity parameter qo are compared, come- 
sponding to fixed values of the material parameters in the traction-separation law, &O/oY = 3.4 and 
E ,  = 0.02 , etc. Thus, the curve for I& = -1.88' in Fig. 4 is identical to that for E ,  = 0.02 in Fig. 3. It is 
seen in Fig. 4 that lowest fracture toughness predicted is found for q,-, = -1.88', while for smaller or larger 



Fig. 5. Steady-state interface toughness as a function of the local rnixity measure t),, 

values of qo, i.e. an increasing proportion of mode 2 to mode 1 , the resistance curves show higher tough- 
ness. 

Results of many resistance curve analyses, including those illustrated in Figs. 3 and 4, are shown in Fig. 
5. Here, the steady-state toughnesses lKlss/Ko are plotted as a function of qo, with each curve representing a 
particular set of parameters in the modified traction-separation relation (2.12). The solid curve for 
& O / ~ Y  = 3.0 and large was also shown in [12], but has been recomputed here, using the mesh in Fig. 2. 
For comparison with this curve a set of computations have been carried out with a rather low value, 
E ,  = 0.01 , of the critical strain for failure. The comparison shows that for all values of Vo considered the 
fracture toughness is reduced by the effect of plastic straining in (2.12), and the trend found in [12] is main- 
tained that the lowest fracture toughness occurs at a value of qo near 0°, while mixed mode conditions near 
the crack tip gives higher fracture toughness. This picture starts to break down at Vo = -25' , where the 
curve shows a maximum, so that the toughness starts to decay for larger negative values of q o .  AS was also 
emphasized in [12], curves as those shown in Fig. 5 are not symmetric, but it should be mentioned that the 
dashed curve for AO/oy = 3.0 has also a maximum for positive values of Qo , in the range not shown in the 
figure (mound 40') . These maxima indicate that plastic yielding is getting dominated by shear along the 
interface, so that the modification (2.12) of the traction-separation relation is less realistic, as will be further 
discussed below. 

The four curves for &o/oy = 3.4 in Fig. 5 are those also illustrated by the resistance curves in Figs. 3 
and 4. The dashed curve for E ,  = 0.03 is not distinguishable from the solid curve in Fig. 3, but it seen in Fig. 
5 that this curve drops slightly below the corresponding solid curve as the value of qo differs increasingly 
from 0'. The curves for E ,  = 0.02 or E ,  = 0.01 illustrate that an effect of plastic straining on the failure 
mechanism can give a significant reduction of the fracture toughness. If similar computations were carried 
out for much higher values of bO/oy than 3.4 , a steady-state fracture toughness for large E ,  , as that illus- 
trated by the solid curves in Fig. 5, would not be available for comparison; but based on the mode 1 results 
obtained in [3] it is expected that a steady state fracture toughness would be predicted when the plastic strain 
dependent failure mechanism is accounted for. It is noted that crack growth predictions based on the modified 
traction-separation relation (2.12) will display some mesh dependence, since the plastic strain near the tip is 
sensitive to the size of the finite elements along the line of the crack. 

The predicted maxima on the two curves for E ,  = 0.01 in Fig. 5, at values of I), around -20° to 
-25' , may be better understood by looking at crack growth predictions, which are directly based on models 
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for the nucleation and growth of voids (e.g. Needleman and Tvergaard [17,18], Rousselier [19], and Xia et al. 
[20]). Clearly, voids grow with plastic straining, but the rate of growth is strongly amplified by increasing 
levels of the mean stress om , which is not accounted for in (2.12). To incorporate some of this effect in the 
cohesive zone model E! in (2.12) could be replaced by F , where F = G: c om/oy with a material parame- 
ter C , and F = F dt . In the present paper, where further modifications of (2.12) along these lines have not 
been investigate d , the model predictions are expected to be reasonable as long as the proportion of mode 2 to 
mode 1 is moderate. 
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