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Slow relaxation processes in supercooled liquids 

L. SJOGREN 

Institute of Theoretical Physics, Chalmers University of Technology, 412 96 Goteborg, Sweden 

The properties of the a- and P-processes as described within the mode-coupling theory for the dynamics of 

supercooled liquids are reviewed. These slow relaxation processes are ruled by generic properties of underlying 

bifurcation singularities in the nonlinear equations of motion. The singularities belong to the cuspoid family Ak 

with k 2 2, and lead to various scaling laws for the dynamics. 

Les propribtbs des processus a et P, comme dbcrites dans la theorie de "mod~coupling" pour la dynamique 

des liquides super-rbfrig&rees, sont rksumees. Ces prosessus lents de rblaxation sont determines par les proprietes 

gknkiques des singularites de bifurcation dans les equations non-linbaires de mouvement. Les singularites sont dans 

la famille cuspoide Ah avec k 2 2, et mkne & plusieurs lois d'echelle pour la dynamique. 

1. Introduction 

When a liquid is supercooled below the melting point Tm structural rearrangements of the atoms or 
molecules becomes increasingly more difficult. This leads to a rapid slowing down of the relaxation 
processes, and the appearence of low frequency peaks in various susceptibility spectra, the so 
called a-peaks. The position wma, of the spectral maximum defines a time scale T~ = 27r/wmax for 
the relaxation process. A transition to a glassy state occurs when the structural relaxation time 
T~ becomes of the same order as the experimental time-scale, so that structural rearrangements 
no longer can be observed. Conventionally the glass transition temperature Tg is defined as the 
temperature where the shear viscosity 7 oc l/ra reaches about 1013 poise. 

Susceptibility spectra of supercooled liquids quite often exhibit additional resonances that are 
located at a frequency above the a-peaks, but below the band of typical microscopic excitations. 
In many cases one can relate these resonances to reorientational motions of molecules or of side 
groups of the constituents. However such resonances appear also in simple glass formers, where 
they cannot be attributed to specialities of the microscopic structure. It was argued by Goldstein 
and Johari [I] and Johari [2] that these resonances referred to as P-peaks are genuine features of 
the glass transition, and reflects the motion of mobile clusters in a frozen environment. 

The a- and @-processes can be observed by various experimental techniques like dielectric- and 
mechanical relaxation measurements or neutron and light scattering. From these measurements 
one can extract valuable information about their temperature and frequency dependencies. An 
outstanding feature of a- as well as @-relaxation is stretching of the dynamics over frequency- 
windows which are several decades wide. Recent mode-coupling theories (MCT) [3, 41 (see also [5] 
and [6] for recent reviews) make detailed predictions for many properties of the P- and a-processes. 
Here some of these results will be summarised. 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1993111

http://www.edpsciences.org
http://dx.doi.org/10.1051/jp4:1993111


JOURNAL DE PHYSIQUE IV 

2. Basic theory 

The rapid increase of the structural relaxation time T, near Tg implies that rearrangements of 
the atoms between various configurations becomes slower and slower upon supercooling. These 
rearrangements can be expressed as fluctuations in the local density of the system. Detailed 
information about the time-dependence of structural rearrangements is therefore contained in the 
density-density correlation function: 

Here ~ ( ~ . t )  denotes a microscopic density fluctuation of wavevector q and Sq = (ISp(g12) denotes 
the static structure factor. The density correlation function can be expressed in terms of a 
generalized longitudinal viscosity Mg(z) 

where dq(z) denotes the Laplace-transform 

For real z = w (3) defines a reactive part $b(w) and a loss spectrum $:(W). The latter function 
is of central importance for experiments, since the dynarnical structure factor S(q, w) = Sqq5y(w) 
determine the cross section for neutron- and light scattering measurements, and the corresponding 
susceptibility xy(w) cc w~;(w)  is obtained in loss measurements. 

The characteristic frequency Rq = ( q 2 / ~ m ~ q ) 1 / 2 ,  with /3 = l / k ~ T ,  defines the scale for the 
microscopic dynamics. It is of the same order 10-13 - 10-14s-1 as in the corresponding crystalline 
solids. The generalised viscosity can be calculated within a kinetic theory or field theoretic approach 
[7-91. The resut is: 

Here vq(z) describes the details of the liquid dynamics on the scale Rq. This part reflects essentially 
short ranged binary uncorrelated collisions. For low frequencies of interest here it provides just 
a white noise spectral background, wq(z) = iwq. The nontrivial parts of the relaxation kernel are 
the terms m,(z) and Sq(z). The former part represent the cooperative motions of any particle and 
its surrounding. In a dense liquid this motion is dominated by the so called cage effect, where 
any atom is to some extent trapped by the surrounding atoms for some time. When the liquid is 
supercooled this trapping mechanism becomes stronger and may lead to a localization of a cluster 
of atoms for a long time. The resulting increase of the viscosity Mq(z) leads to a slowing down of 
density fluctuations, and therefore to an additional enhancement of the cage effect. So there is an 
inherent feedback mechanism which tend to slow down particle rearrangements. 

The cage effect is accounted for by products of density correlation functions. The resulting 
equation for the viscosity reads 

mq(t) = 3 q  (V, 4k(t)) , ( 5 )  

where. 



The mode coupling functional Fq is a quadratic expression in its variables fk. It can be generalized 
by including higher order terms without complications. The coupling constants V(q, I c ,  p )  are non- 
negative symmetric functions of k, p, and are given in terms of the structure factor Sq. 

The second kernel Sq(z) is an additional backflow term which induces hopping over barriers. It 
is clear from (4) that this term will dominate the transport when the trapping mechanism in m4(z) 
becomes sufficiently large. For Sq(z) one derives a similar mode-coupling expression as in (6), where 
now also longitudinal and transversal current correlation functions enter. Since currents always 
decay to zero for long times due to exchange of momentum between particles, Sq(z) will exhibit a 
regular frequency variation for small z. We may therefore make the simplification Sq(z) M iSq ,where 

Here tB is a cutoff time which should be chosen sufficiently large to avoid contributions already 
included in the term [vq(z) + mq(z)]. The coupling constants U(q, k, p) contain the contributions 
from the transverse currents, while the longitudinal currents have been expressed in terms of 
(d/dt)mq(t). The fluctuations which contribute to (7) can be expressed in terms of the dynamical 
compressibility xq(t) = -/3(d/&)~$~ (t), and may be interpreted as volume fluctuations. To allow 
for an atom to eventually escape from its surrounding cage such fluctuations must obviously be 
included. Through the contribution mq(z) in ( 5 )  and (6) one accounts only for an average cage 
around any atom built from the density of surrounding atoms. 

The equations above represent a closed set of equations for the density propagator qbq(t), which 
depend on the parameters V(q ,  k, p) and U(q, k, p). We will treat the wave vectors q,  k ,  etc. as 
members of a finite set of labels { q l ,  . . . , q ~ ) ,  which implies that there is a finite number, say 
N, of coupling coefficients. They will be combined to the vectors V E K: and U E K' in some 
parameter spaces K and K:'. 

In the supercooled liquid and near the glass transition the nonlinear feedback mechanism 
described above implies that mq(z) becomes very large for small frequencies. Compared with 
mq(z E 0) one can neglect the regular term (z + 52; vq(z)) for small values of z. Then the relation 
(2) between correlator and kernel simplifies to 

Equation (8) is the basis of all the asymptotic results on the glass transition singularities, both 
in the a and p-relaxation regions. The theory studies the long time properties of mq(t) or the 
low frequency behaviour of the spectra qb;(w) and corresponding susceptibilities $(w) in their 
dependence on the parameter vector X = (V, U)  E K x K' = R. 

3. Nonergodicity parameter 

With Sq = 0 in (8) one gets an ideal glass transition which is characterized by a change in dynamics 
from ergodic to nonergodic behaviour if the control parameter vector V crosses some hypersurface 
Sc in parameter space K. On one side of S, correlations decay to zero for large times, i.e. 
dq(t -+ m )  = 0. On the other side of Sc correlations do not relax to zero for large times and 
dq(t -+ m )  = fq > 0. The former case implies that an intial disturbance in the medium will decay 
with time and the system returns to the equilibrium state. In the latter case however, a disturbance 
will be arrested, and does not decay with time. Due to the strong interaction between the particles 
the system has become localized. We refer to this as an ideal glassy state, and it is characterized by 
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the appearence of a nonergodicity pole dq(z) -+ - fq/z for z -+ 0. The corresponding spectrum has 
an elastic line contribution +;(W M 0) = x fqS(u) in addition to a continuum. In the real case with 
Sq # 0 this elastic peak will be smeared due to hopping over barriers. There is no longer any strict 
nonergidicity pole for z = 0. Nevertheless for Sq sufficiently small, the underlying ideal transition 
will show up as a plateau region in dq(t), around the value fq, corresponding to a metastable 
state, which can exist for a very long time. The corresponding elastic peak will be broadened to 
a quasielastic one, which is the structural relaxation or ol peak. The nonergodicity parameter fq  

then appears as the area under this peak. 
The parameter fq  of the underlying ideal transition enter in an essential way even when S, # 0. 

From (8) with Sq = 0 it follows that fq(V)  is a solution of 

We notice that fq depends on the parameters V E K defining the system. Let fq(V) denote the 
non-ergodicity parameter for point V provided it is non-zero. From (6) and (9) it is clear, that in 
general f,(V) > 0, unless f q  = 0 for all q. Equation (9) may have other solutions besides fq = 0 
and fq  = fq(V)  [Ill. It can be proved that the glass form factor fq(V) is the largest of all solutions 
of (9), which may exist for a given V [ 5 ] .  

We can also show that the space K has a strong coupling region Dm, such that for V E D, 
there is a non-zero glass form factor fq(V), which is analytic in V and behaves asymptotically like 

Similarly it is possible to define a weak coupling region Do in K where the only solution is fq(V) = 0 
if V E Do. Therefore the parameter space IC splits into disjoint regions. The set of liquid states 
DL, which is the set of points V with fq(V) = 0. The set of ideal glassy states DG, which is 
the set of points V where fq(V) > 0, and the boundary Sc separating DL and DG. The points 
V c  E Sc, the set of glass transition singularities, are the singularities of function f q ( V )  They 
are those special bifurcation singularities of (9), which appear as limits of the correlation function. 
The liquid states contain the weak coupling region introduced above DL > DO. Similarly there is 
a strong coupling region of glass states VG > V,. 

The coupling coefficients V depends implicitly on temperature through the static correlation 
functions. When the temperature is changed the parameter point V(T) describes a curve C in 
parameter space K. This curve starts in Do and runs to D,. So there must be a smallest T, to 
be denoted by T,, with the property: V(T) E VL for T > T, and V(Tc) = Vc E S,. 

Let us consider a solution of (9) for a parameter point close to the critical one V,. All M 
dimensional vectors fq  are restricted by 0 < fq < 1. To analyze other solutions near the specified 
one, the parameter vector shall be measured relative to V, 

The deviation of fq  from f: can be written in terms of a vector gq: 

The mode coupling polynomial can be rearranged to one in gq by a straightforward Taylor 
expansion. The critical points V, appear for parameter points where one or more eigenvalues 
to the stability matrix Cqk becomes one. Here Cqk is given by 



From (6) it follows that Cqk has only positive elements so there is a largest nondegenerate eigenvalue 
Eo > 0 , such that lEi 1 < Eo, i = 1,2 . .  . [12]. The corresponding right and left eigenvectors eq 
and iq can be chosen as positive and defined up to a constant. These eigenvectors define a singular 
direction in parameter space k: and to leading order in the separation from the critical points we 
have gq = egg, where the single parameter g satisfies the equation: 

The various coefficients Sk are given by certain wave-vector integrals over the coupling constants 
in (6) [5]. 

Equation (14) generates the cuspoid family of singularities Ak with k 2 2 [13,14]. At the critical 
points V = V, we must have Sg = St = 0. For parameter points such that 6: # 0 we obtain an Az 
or fold singularity. If in addition 6: = 0 but 6: # 0 we obtain an A3 or CUSP singularity and so on. 

It is well known that (14) can be transformed into a canonical form for every cuspoid singularity. 
For the fold singularity we obtain 

a - (1 - X)g2 = 0 (15) 

where a = So (V,  f") is a canonical mathematical control parameter which we refer to as the 
separat ion  parameter ,  and X = 1 + 62 < 1 is the exponent  parameter  which plays a crucial role for 
the dynamics. For the nonergodicity parameter this gives the singular behaviour 

and fq  = 0 for a < 0. Here h, = (1 - fi)2eq is a critical amplitude. So near a fold singularity the 
nonergodicity parameter has a discontinous jump followed by a square root increase, and it depends 
essentially only on one relevant parameter, namely the mathematical separation parameter a. The 
separation parameter u depends smoothly on the physical separation parameter E = (T, - T)/T, 
and one finds a K e2 (type A) or a K E (type B). In the following only the case a K E will be 
considered. This implies that a < 0 for T > T, and a > 0 for T < T,, and the transition point is 
located where a = 0. 

Equation (16) can be generalized straightforwardly to the general cuspoid Ak which has a 
canonical representation with k - 1 relevant parameters So,. . . , [5], but these results are not 
needed here. 

4. P-relaxation process 

The P-process exists on mesoscopic time-scales between the microscopic and a-regions. This region 
is characterized by a plateau region in 4q(t) around the value fq  provided the parameter point X 
is sufficiently close to a singularity V , .  In addition that the separation parameter a is sufficiently 
small this also requires that 6, is small in some sense. In analogy to (12) we may introduce a more 
regular function Gq(t) as 

= f," + [I - f,"I2 Gq(t) (17) 

Following arguments which lead to (14) we End that in leading order Gq(t) = e,G(t) [15], and 
therefore 

dq(t) = f," + hq G(t), (18) 

valid in the time region to << t << r,, where to is a microscopic time. The whole relaxation pattern 
in the P-region is therefore described by one single function G(t)  only. Similar relations hold 
for correlation functions $xy(qt) of any variables X and Y with a nonzero overlap with density 
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fluctuations. For instance with X and Y representing the microscopic dipole-moment we find for 
the dielectric function [16] 

~ ( z )  = fe  + h,zG(z) (19) 

Similar result holds for other susceptibilities. 
The function G(t) satisfies the equation [9, 17, 181 

- So/z 4- iS/z2 + SlG(z) + zG2(z) + (1 + S2)LT [~ ' ( t ) ]  (z) 

+ [S3 + 731 LT [G3(t)] (2) - y3z2G3(z) + . . . = 0 , (20) 

The parameters Sk were introduced above, and yk are also given by certain wave-vector integrals. 
Similarly S is given by an integral over Sp. This equation has a structure similar to the static one 
in (14). The latter is in fact just a special case of (20) if we take S = 0 and look for solutions 
G(z) = -g/z. Due to a S # 0 the solutions to (20) contain no constant part or l / z  pole, but will 
always decay. 

Near the bifurcation points V, however, there is an additional subtle low frequency singularity 
in G(z), apart from any l/z-pole. This singularity depends sensitively on the parameters 
6, So, S1, Sz etc., and can therefore be classified according to the corresponding cuspoid Ak. In 
the present paper we will only consider the fold singularity A2 which is completely specified by the 
separation parameter a = So, the hopping rate S and the exponent parameter X = 1 - 62, while 
cubic and higher order terms in (20) only gives small corrections to the leading order results. 

4.1. Critical spectrum 

Of particular interset is the solution of (20) at the critical points X ,  = (V, ,  0) .  This implies 
So = S = S1 = 0 in (20), while 62 # 0 or A < 1. The equation for the critical spectrum reduces to 
zG2(z) + ALT [G2(t)] (z) = 0. This equation is solved by a power law 

where to must be determined by matching to the microscopic region. The exponent a is determined 
from the exponent parameter through the equation 

A positive spectrum requires 0 < a < 1/2. A second solution b = -a to (22) with 0 < b < 1 also 
exist and appears below. 

4.2. Scaling law 

For parameter points X close to the transition surface S, the function G(t) is given by various 
scaling laws. Near a fold singularity we find the solution in terms of a two parameter scaling law 

[9, 191 
G(t) = cfi g(i, 6,  d) . P3a) 

where t" = tR/to, 6 = a/RZa and C? = Sto/R1+2a are rescaled variables. The solution depends, 
through the correlation scale cn = Ra and the dimensionless frequency scale R, crucially on 



the distance from the transition point which is reached along a scaling line when fi -+ 0. The 
masterfunctions g satisfy the equation [19] 

The function g is determined by the equilibrium structure, which enter in (23b) only through the 
parameter A. The hopping rate S introduces a natural scale for the separation parameter [9]: 

The three regimes a << -oo,lal < a 0  and a >> a 0  exhibit spectra, which are qualitative quite 
different [19]. These details will not be considered here, but we will restrict our attention to the 
ideal transition. 

The ideal glass transition is obtained with S = 0 in (23b). In this case one can choose 
R = la1i/2a, i.e 8 = f 1, and with g*(fl = g(t^, f 1 , O )  one gets a conventional scaling law 

Here f refers to a 2 0  respectively. The correlation scale becomes c, = and the /?-relaxation 
time scale is t ,  = t o / ( ~ ( ' / ~ " .  The scaling functions g* can be obtained for any value of X [20]. For 
short times we obtain the critical decay in (21), g*(t^ < 1) = ll?'. For long rescaled times one can 
also find explicit expressions 

g+(E >> 1) = 1 / m ,  ( 2 5 ~ )  

where B > 0. The exponents b are given by the second solution to (22) with 0 < b < 1. Equation 
(25b) gives the von Schweidler law 

which also describes the initial decay of the &-process. The new time scale tb = t,/la11/2b is the 
predicted scale for the or-relaxation process, which will be discussed more fully in next section. 

For the susceptibility or the dielectric loss these results give the scaling function 

where w, cx llt,. In the liquid state with a < 0 the critical decay in (21) implies a decrease of 
x!(w) cx wa with decreasing frequency, while the von Schweidler law (26) implies a subsequent 
increase X'i(w) cc w - ~ .  Hence for T > Tc the /?-decay process can be detected as a minimum 
in the susceptibility x!(w) located above the or-peak at some frequency wmin. The scaling law 
in (27) implies that the position of the minimum w,i,, and the value of X: at the minimum 
xkin = xC(wmin) are described by 

xkin cx c,, = I a ~ l / ~ ,  ( 2 8 ~ )  

In the ideal glass state below Tc the susceptibility is given by 
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Figure 1. (a) Experimental values from [21] of x:;,,' (squares, right scale) and Xt2 x lo5 (triangles, left 

scale) plotted versus temperature T. The straight lines are the best fit through the data points, and indicate 

the theoretical prediction in (28a) and (30a). The intersection with the abscissa gives the critical temperature 

Tc. (b) Squares show w Z n  (left scale), triangles show ~2~ (left scale) and circles w k ' ~  (right scale) versus 

temperature as obtained from experimental data. The full lines are the best fits through the respective data 

points, and gives the theoretical predictions in (28b) (30b) and (31). The intersection gives again the critical 

temperature Tc. 

Therefore in the ideal glass state there exists a crossover for xi;(w) from white noise X; cc w to a 
fractal behaviour X; cc wa. If the crossover point is denoted as we and X: = x$(we), we find 

From (26) we also find the predicted variation of the positions of the a-peak maximum, wma, 

Recently susceptibility spectra for the molten salt Ca0.4K0.6(N03)1.4 were obtained through 
light scattering by Cummins and coworkers [21]. These results exhibits the complete dynamical 
pattern with a microscopic band around 4 THz, an a-peak which rapidly moves down in frequency 
with decreasing temperature, and the P-spectrum in between. These results are also the first where 
properties both abow and below Tc could be tested. The results for the various amplitudes and 

2 frequencies are shown in figures l a  and l b  respectively. In figure l a  we show xki, (squares) and 
X:2 (triangles) versus temperature T. According to (28a) and (30a) the data should fall on straight 
lines, which is approximately the case as shown by the full lines. Similarly we show in figure l b  
wZn (squares), ~ , 2 ~  (triangles) and w;& (circles) versus T. The data fall again on straight lines 
indicated by the full lines, and this supports the results in (28b) (30b) and (31). All data are 
consistent with a critical temperature Tc x 105" C.  Previous dielectric loss measurements on the 
polymeric systems polyethylene therephthalate (PET) and polyethylene oxybenzoate (PEOB) 1221 
were also sucessfully analysed within the MCT [16, 231. 

The scaling functions gi(@ can be calculated directly from (23b) and the results can be 
compared with photon correlation measurements, neutron spin echo measurements and molecular 



dynamics simulations. A comparison with light scattering measurements on a hard sphere colloidal 
system [24] gave a quantitative agreement between experiments and theory [25,26]. There are also 
extensive molecular dynamics results on simple two component systems [27]. A similar analysis for 
three correlators describing relaxation with wave vector at the structure factor peak [28] produced 
reasonable agreement between data and MCT within the relevant intermediate time window [26]. 

5. a-relaxation process 

An understanding of the a-peaks, i.e. an explanation of the temperature variation of the scale T,, 

of the a-peak strength and, in general, of the a-peak shape is essential for the explanation of the 
liquid to glass transition. From the basic equations (5-8) properties of the a-relaxation process 
can be extracted. In this section the various results will be presented. 

5.1. Scaling behaviour 

With Sq = 0 equation (8) is scale invariant, i.e. if 4, is a solution, the same holds for the correlators 
with rescaled times @, where 

with any y > 0. With a finite 6, this scale-invariance is lost since the hopping rate 6, itself 
determines the scale for sufficiently long times or small frequencies. In any case the solution to (8) 
in the a-relaxation region is given by a scaling law: 

Here the scaling function F is independent of temperature in leading order. The initial value fq 
determines the a-peak area. The temperature dependence of fq  is given in (16) for T < T,, while 
for T > T, one finds that the area is fixed at the constant value f;. These predictions by the 
theory have been observed experimentally in several systems by neutron scattering techniques. 
The behaviour in (16) has been found in simple organic glass formers [29], in polymeric systems 
[30] and a molten salt [31]. 

The shape of Fq(t) is not known precisely, but numerical solutions for various models have 
shown that it is very well approximated by a Kohlrausch law Fq(t) z exp(-tp). The well known 
stretching phenomena of the a-precess is therefore contained in the nonlinear equation (8). Some 
polymers exhibit a splitting of the low frequency susceptibility spectra into a' - a-peak pairs. 
The whole spectrum follows usually the scaling law (33) and therefore both peaks have to be 
considered as parts of one and the same a-process. Such double-peak patterns can indeed be 
obtained as generic results of the MCT. They occur if V is close to corners of the bifurcation 
hypersurface, which arises from self crossings of parts of S, [32]. These double peak structure show 
that the shape of Fq(t) cannot in general be parametrized by a simple formula. 

The origin of the stretching in the scaling function Fq can be understood from the short time 
expansion of (8), i.e. for times t 5 T,. In this region (8) can be solved analytically, and the result 
is given by the von Schweidler law [5] 

where f = t/ra. The exponent 6 is the same as in (26). For the ideal transition the von Schweidler 
law holds only for T > T,, where it signals the instability of the localized structure. For T < T, 
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Figure 2. The high frequency wing of dielectric loss data for polyvinylacetat taken from Ishida et d [33]. 

The full line has slope 0.40 

the function 4,(t) would stay at the initial value f,. The effect of a nonzero 6, is to extend the 
validity of (33) to temperatures T < T,, and this explains why stretching in real systems is seen 
down to Tg . 

The von Schweidler behaviour in (34) can be observed in the high frequency wing of the a-peak. 
This is illusteated in Fig. 2 for dielectric loss data obtained by Ishida et a1 [33] for polyvinylacetat. 
With the susceptibility $(w) K w~;(w) rescaled according to (33) the behaviour in (34) implies 
a l / w b  behaviour, which on a log-log plot gives a straight line. This behaviour is clearly seen in 
Fig. 2 for a frequency interval of three decades. Jonscher has shown similar plots for many other 
disordered systems where the exponent b range from 0.2 to 0.8 1341. 

5.2. a-relaxation scale 

It follows from (26) that the von Schweidler law in (34) describes the long time dynamics for the 
P-relaxation with scale t ,  as well as the short time dynamics for the a-region with scale T,. The 
von Schweidler region describes the overlap between these two processes. The scale T, in (34) can 
therefore be obtained by matching the two processes in the relevant time window. In the ideal case 
with Sp = 0 this gives an algebraic divergence of T, 

We notice that as T + Tc r,/t, + a. SO the overlapping von Schweidler region defined by 
t ,  << t <( T ,  expands when approaching Tc. We notice that the scale T ,  depends on the two 
exponents a and b. The former is related to the critical decay for t << t ,  in (21). So there exist 
an intimate and nontrivial relation between the relaxation law for the ,f?-process and the scale for 
a-relaxation. The theory also predicts the relaxation time for all a-processes to be proportional to 
T ,  for T > Tc, i.e. there is an a-scale universality in this temperature region. In particular there 
should be an algebraic variation of the viscosity q K l / l u l Y .  This prediction was tested by Taborek 
et al for many different glassformers [35]. Their results showed that q increased as in (35) up 



to viscosities around 100 - 1000 poise, whereafter there was a crossover to a different behaviour. 
From this observation they anticipated the existence of a crossover temperature T, in the liquid. 

The most important effect of the coupling to the currents, which introduce a Sq # 0, is the 
elimination of the divergency in (35) for T + T,+. It also changes an associated ideal elastic 
line for T < T, into a quasielastic a-peak. As in the ideal case the scale rm near and below T, is 
determined by the dynamics of the ,B-process. There appears now an interplay between the motion 
on microscopic wave-lengths and the long wave-length motion. As a result one gets [lo] 

This implies an activated behaviour for the viscosity. The activation energy E is predicted to 
depend on the compressibility of the system E K l/nT, which induces a slight temperature 
dependence. 

6. Conclusions 

The mode-coupling equations (5-8) represent a set of closed nonlinear equations for the density 
correlation function 4q(t), which describe the structural relaxations in a supercooled liquid or a 
glass near the glass transition. Many features of the self-consistent solution of these equations are 
in general agreement with those found in real systems near the glass transition. Results for higher 
order cuspoids has also been obtained [18], and the results has sucessfully been compared with 
experimental results on polymeric systems [16, 361. In this case the susceptibility spectra can be 
obtained from properties of elliptic functions. 
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