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Rhsumk - Nous presentons les propri6tCs atomiques calculables B l'aide du programme 
SUPERSTRUCTURE, principalement les energies des ktats liks en couplage LS et couplage 
intermkdiaire ainsi que les donnkes radiatives associkes L ces ktats. Le code permet 
kgalement d'kvaluer les coefficients de couplage entre termes et les donnkes radiatives in- 
cluant les effets de cascade. Nous prksentons quelques rksultats relatifs principalement L - .  - - 

la skrie isdlectronique du Be, pour dkmontrer les capacitks du programme et son domaine 
d'application. Les autres examples concernent les transitions dites interdites dans quelques 
ions de la skrie iso6lectronique de N et de He. 

Abstract - We summarize the properties of the atomic structure code SUPERSTRUCTURE, 
which yields bound state energies in LS coupling and intermediate coupling as well as asso- 
ciated radiative data. Other data that can be computed include term coupling coefficients 
and radiative data with allowance for cascading. Results are given, mainly for members 
of the Be isoelectronic sequence, to  demonstrate the power and range of the code. Other 
examples deal with 'forbidden' transitions in N-like and He-like ions. 

1 Introduction 
The techniques underlying the computer programs SUPERSTRUCTURE, over the past 15 years among the 
widely used general purpose atomic structure codes, has been described in great detail by Eissner et 
al. (1974). The code evolved from a fully automatic non-relativistic structure program by Eissner and 
Nussbaumer (1969). At that time the advent of fast electronic computers made i t  tempting to apply the 
old Slater state approach (see Condon and Shortley 1951, in particular section 1') in building up states 
for general N-electron atomic systems, with full allowance for configuration mixing. The second feature of 
the approach are radial functions that approximate the Coulomb interaction with the other N-1 electrons 
by a scaled Thomas-Fermi-Dirac-Amaldi potential (GombLs 1956); the scaling factors are variationally 
determined. 

Jones (1970, 1971) extended the code to intermediate coupling using the low-Z Breit-Pauli hamil- 
tonian. Term coupling coefficients derived from this extension were soon to be used for approximating 
electron-ion transitions between finestructure levels from collisional data obtained in LS coupling (Saraph 
1972). A number of additional features were incorporated subsequently. Moreover the program was soon 
reformulated in pre-processable form, allowing for quick changes of array sizes as a function of primary 
parameters such as maximum number of configurations or number of closed shell or open shell electrons; 
similarly double precision or short word length statements and other facilities can be globally activated. 

Part of the original design - and so very much in the spirit of Layzer's (1959) concept of a complex 
of configurations - is the loop structure: to compute data for any number of members of an isoelectronic 
sequence, which is specified by a set of N-electron configurations - spectroscopic plus merely correla- 
tional; in such a loop one may also want to vary the conditions for an element specified by the electric 
charge number 2, e. g. for different forms of the variational functional or a different number of variational 
parameters. 

The paper is laid out as follows. Section 2 addresses the general approach, and two subsections deal 
with the non-relativistic case of LS coupling and with intermediate coupling in Breit-Pauli approximation, 
backed by results for Be-like ions. Electric and magnetic radiative transitions are the topic of section 3. 
In a short section 4 additional facilities are sketched, and section 5 summarizes future developments. 
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2 Atomic structure calculations 

For an ion with N electrons a set of configurations 

where CQ' = N ,  
' 

defines a trial solution P(. . .) to a suitable hamiltonian H - for electric charge number Z - in the form 
of a multiconfigurational sum 

where z; stands for position and spin 2; of an electron labelled i ,  while quantum numbers other than 
C, will relate to the eigenstates of a particular hamiltonian. The form (1) implies that the function @ 

whith suitable vector coupling coefficients (C, . . . Inlllmlpl,. . . n ~ l ~ m ~ f i ~ ) ,  is composed of N-fold prod- 
ucts of one-electron wave functions 

/ 
(.Id) = Pnl(r), (l'llm) = q,(#, cp), and spin functions (0 I +, p) .  ( 5 )  

Antisymmetrization A in (3) yields 'Slater determinants'. Using Slater state techniques and basic angular 
momentum algebra we evaluate their algebraic left-hand sides, along with the coupling coefficients that 
reflect the angular symmetries of the respective hamiltonians. Wigner-Eckart reduced angular coefficients 
required for radiative transitions are also stored ahead of dealing with particular ions - which does not 
happen before specifying Z and solving the 'radial problem.' 

Thus a set C, specifies a number of bound states within an iso-electronic sequence, usually the ground 
state and a fairly small number of lowest excited states. This implies truncation of an infinite series (2). 
As an example we take the Be isoelelectronic sequence and consider selections among the configurations 

for brevity omitting the common core shell C = ls2, which is specified once and for all in input. 
In the high-Z limit up a sequence a simple rule states which configurations to  include along with one 

of interest. According to Layzer's (1959) scaling laws and his concept of a complex it  suffices in this 
hypothetical non-relativistic limit to permute electrons within each shell characterized by the principal 
quantum number n; as the Coulomb interaction is parity-conserving only configurations associated with 
the same parity need be considered simultaneously. Such configurations are sometimes called 'quasi- 
degenerate', as the behaviour of orbitals nl approaches that of scaled hydrogenic orbitals when z increases, 
and hydrogenic orbitals nl associated with the same value n belong the the same energy eigenvalue (which 
scales as Z2). The cases above account for both parities simultaneously. Thus the configurations Cl - C3 
describe the full complex for one valence electron up in the M-shell. In a recent paper Eissner and Tu11y 
(1990-91) show what can happen to two-electron transition probabilities of the array 2p2 - 3s3p when 
Cg has been forgotten: one of the transitions changes by a factor of thirty! 

At or near the neutral end inclusion of configurations beyond one complex becomes at least as im- 
portant, and their number grows prohibitively large if high accuracy is required. As the code allows only 



for trial functions of the form (4), which rules out explicit dependance upon the inter-electronic distance, 
only one way out is left: to simulate the missing portion of electron-electron correlation by configurations 
in part made up of artificial 'contracted' orbitals that strongly overlap with the ordinary or 'spectro- 
scopic' orbitals of interest; we denote such orbitals by a bar above n (which equals the number of nodes 
in the usual way). This approach is reminiscent of properties of bound-state solutions in a potential not 
behaving as l / r ,  e.g. nuclear shell model orbitals. In addition to the set (1) SUPERSTRUCTURE allows to 
specify a parameter KCUT, which singles out C, with r;. 2 KCUT as mere correlation configurations; they 
will be denoted by a star. Terms S L  not matched by any arising from the spectroscopic configurations 
are ignored. Configurations containing contracted orbitals should always be declared type C:. 

2.1 . . . in LS coupling 

The time-independent Schrodinger equation 

has solutions that are eigenvalues of total angular momentum L and spin S :  

In an antisymmetrized configurational expansion (1-5) equations (6-7) yield the Hartree-Fock equations 
for coupled orbital functions Pnr(r). 

For computational work one extracts pure number equations, choosing the most natural or convenient 
unit for one quantity of each canonical pair - and phase invariance settles the case for the canonical 
coniugate! Using ALGOL notation for brevity we define the following dimensionless quantities instead of 
length, energy and angular momentum, parenthetically adding redefinitions that follow from phase space 
requirements: 

r r := - ti 
where a0 = - /a  (= 0.529. lo-' cm) is the Bohr radius 

ao moc 
(hence wave numbers g transform as k := k . ao) 

E E := - a2 
where Ry = -moc2 (= 13.59eV) is the hydrogenic ground state energy 

RY 2 
(hence t := - 2ao where ro = - = 4.839 . 10-l7 sec) 

To CYC 

d d := - 
ti 

- since the uncertainty is Acp = 2?r for closed orbitals 

and the symbols have the ususal meaning of rest mass, electric charge, and finestructure constant 

e2 a = -  (% 1/137.0360). 
tic 

In tables though physical rather than reduced quantities will still be displayed for clarity. 
Then the Hartree-Fock equations for coupled radial functions assume the form 

the direct potential V is expanded in the usual way as spherical multipole potentials yx(nl,nlll;r), in 
the exchange term J W P  orbitals Pnl and Pj swap places, and the Lagrange sum with parameters An+l 
arises from orthogonality conditions imposed upon Pnc for algebraic convenience. 
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Table 1: Be-sequence: position of terms associated with the three lowest configurations 
Cl - C3 relative to the ground state. First entries: nonrelativistic calculation; 
second entries: in Breit-Pauli approximation. BEsss stands for the 15-configuration 
expansion by Berrington et al. (1987). For observed C 111 energies see Moore (1949). 
Appended rows show (i) ground state energy El of the N-electron system - indica- 
tive of the variational effort, (ii) scaling factors obtained on optimizing F of (14) 
with M = 6 ,  (iii) mean radii of the resulting orbitals - helpful for judging correlation 
due to overlap. 

SUPERSTRUCTURE uncouples (lo), approximating the unipole terms by a statistical model potential and 
numerically computing normalized radial functions Pn1(r) that are solutions to the eigenvalue equation 

i C , S L  
1 2s2 I S  

2 2s2p 3P 

3 ' P 

4 2 p 2 " P  

5 ID 

6 Is 

-El/Ry 

AS 
A, 
cb. 

(3dl T l3d) 
( 3 ~ 1 7  I ~ P )  
(3sl T 13s) 
( 2 ~ 1  T 1 2 ~ )  
(24 T 12s) 
( 4  T 11s) 

with boundary conditions 
lim ,w rl+ll lim T ( + 1 6 ) e - G r  
r-0 r-+m 

in a scaled statistical model (SM) potential vSM(r) = 2,a(X1 . T) . 
T 

lim ZeR(X{ . T) = 2, lim Zefl(XI . r )  = z -- Z - (N-1) - the residual charge. (13) r-0 r-OD 

The favourite choice among the functionals optimized on varying the scaling factors Xl is of the form 

C 111 

O ~ S .  C i - C &  Cl-C,*  C l - C 3  
0. 0. 0. 0. 

0.4763 0.4765 0.4860 
0.4777 0.4774 0.4778 0.4873 

0.9515 0.9537 1.0325 
0.9327 0.9528 0.9550 1.0337 

1.2585 1.2576 1.2673 
1.2528 1.2609 1.2605 1.2701 

1.3414 1.3427 1.4176 
1.3293 1.3438 1.3455 1.4205 

1.7017 1.7203 1.7794 
1.6633 1.7041 1.7230 1.7821 

72.9594 72.9475 72.9459 
72.9892 72.9772 72.9756 

seetext 1.3113 1.3080 
& BESSS 1.1489 1.1478 

(1987) 1.1040 - 

1.6283 1.6043 - 

1.3914 - - 
1.8895 - - 

1.2313 1.3554 1.3560 
1.4550 1.3543 1.3552 
0.2684 0.2695 0.2696 

A1 X 

C I - C 3  
0. 

1.4142 
1.4573 
2.8170 
2.8606 
3.6519 
3.7434 
4.1024 
4.1960 
5.0871 
5.1750 

383.5917 
384.4085 

1.3166 
1.1559 
- 
- 

- 

- 
0.4625 
0.5234 
0.1196 

Ca XVII 

C l - C 3  
0. 

2.3268 
2.5934 
4.5572 
4.8394 
6.0000 
6.5452 
6.7471 
7.3603 
8.3420 
8.9233 

939.2550 
944.1530 

1.3183 
1.1620 
- 
- 
- 
- 

0.2802 
0.3248 
.07676 

Fe XXIII 

C I - C 3  CI-C,*  
0. 0. 

3.1069 3.0985 
3.8949 3.8871 
6.0432 5.9583 
6.9396 6.8582 
8.0071 7.9978 
9.5257 9.5104 
9.0079 8.9466 

11.0130 10.9655 
11.1243 11.0630 
13.0138 12.9580 

1610.5416 1610.5443 
1624.9528 1624.9577 

1.3189 1.3202 
1.1650 1.1640 
- 1.8213 
- 0.2510 
- - 
- - 
0.2096 0.2096 
0.2451 0.2451 
.05873 .05873 



where i(= 7SL ,  see (7)) denotes a term SL - we use the 'dominant' configuration and perhaps a 
degeneracy parameter for label y. The sum runs over M eigenvalues of the matrix of expectation values 
(iIHmIil), 

(ilCPSL)(CPSLMsMLIHNIC'P'SLMsML)(C1P'SLli') = bii,Ei. (15) 

In most applications it is the M lowest lying terms one includes, preferably equally weighted, i.e. r) = 1.0. 
Over the years two features have been added to the original design: (i) use of different potentials for 
orbitals with the same quantum number I (Nussbaumer and Storey 1978) - paying for more flexibility 
by some degree of asymmetry when orthogonalizing subsequent orbitals to those with preceding values of 
n, as such sets have to be mutually orthogonal for algebraic reasons; (ii) correlation orbitals computed in 
a scaled Coulomb potential ZeE(Al . T )  = z*, usually and in all present applications marginally modified 
so as to meet cusp requirements in certain electron collision codes such as IMPACT (Crees et al. 1978): 

where Cnl is specified as -(I00 - n + A,[) in input, i.e. as a negative 'scaling factor' of value < -100; 
negative values > -100 are interpreted as effective charge [XI . Z - an early facility in the code, as 
A1 = -1.0 yields coefficients for expansions in powers of Z both for structure and for radiative transitions 
(for the latter see in particular the attempt by Smith and Wiese (1971) of a graphical compilation of f 
values versus 1/Z - and the last column in Table 3; see also Tully et a1 1990). 

Potential (13) can be a poor choice for contracted correlation orbitals, as (14) may poorly converge 
even for very large values of A; by contrast scaled Coulomb potentials like (16) work very well and have 
therefore been choosen for all applications in this paper. The parameter cr often converges to a value that 
implies an effective charge > Z, as can be seen in Table 1. 

The main aim of Table I is the presentation of term energies for Be-like ions in fairly simple expansions. 
For C 111 'target 2' of Berrington et al. 1987 has been reproduced with their parameters XI, = 1.3707, 
A,, = 0.9889, A,, = 1.4355, & = 0.9828, C3p = 1.1793 and Qa = 1.0852. For more extended calculations 
see Glass (1979a, b). 

2.2 . . . in intermediate coupling (IC) 

Moreover the lower terms entries in Table 1, from averaging over finestructure levels of the Sreit-Pauli 
calculation detailed in Table 2, demonstrate how relativistic effects take over as one moves up the sequence. 
Including effects of the Bohr magneton p~ = $2 along with a l l  the other terms of relative order a' as 
a perturbation leads to wave functions in intermediate coupling, 

which are eigenvectors to the Breit-Pauli matrix (klHBlsplkl) with eigenvalues Ek. We employ the low-Z 
Breit-Pauli approximation, which is valid as long as 

One obtains the BP hamiltonian by adding a relativistic correction operator H,, - with the usual 
abbreviations for  onta tact], d[arwin], m[ass], o[rbit] and  pin], and a prime indicating 'other' - to the 
non-relativistic hamiltonian (6): 

N . N 

While accounting for all the one-body terms, 
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among the BP two-body operators only the finestructure (FS) terms are retained here: 

where ej = - 5. There is little point worrying about the omitted 2-body terms as long as one 
has not pushed ordinary configuration expansion (CI) - since interelectron correlation scales as 1/Z - 
sufficiently far for BP terms to matter. 

Having written a CjZi rather than in the two-body sum - a difference of no great account as 
long as one deals with indistinguishable particles - smoothes the way towards the following verifying 
discussion. If one takes particle j for the 'fixed' nucleus then the mutual spin-orbit term gjj(so) equals 
the one-body f;(so) on changing electric charge sign and magnitude (while center-of-mass considerations 
take care of factors two). Since we assume the 'nucleus' j be at rest i experiences no other orbit and 
gij(sol) vanishes. So does the companion term gj;(so) = 0 ,  whereas spin-other-orbit term yj;(sol) - 
on changing p~ to protonic pp or in general to the magnetic moment of the nucleus - becomes the 
magnetic contribution to the hyperfine structure (HFS). However HFS effects have not been incorporated 
in SUPERSTRUCTURE. 

The all-important scaling laws follow at a glance, on observing that the length r scales inversely 
with Z :  consider the hydrogenic radial equation in p = Zr,  i. e. after absorbing Z. Hence all the one-body 
BP terms scale as a2Z4 and - a feature familiar from H ,  - the two-body contributions one power 
less in Z.  This has obvious repercussions on the scaling of the BP components in IC wavefunctions 9: 
expand perturbatively, observing in particular that the expectation value of f(so) vanishes for half-filled 
subshells nl, and equally take note that the energy denominator will scale as Z rather than Z2 if there is 
no change in the principal quantum number for the dominant configurations. 

SUPERSTRUCTURE follows Blume and Watson (1962) in absorbing the effects of the core C into the 
unscreened spin-orbit parameters = ( n l l ( l / ~ ) ~ l n l )  that arise from f;(so) in (20); closed shells behave 
like an effective screening and yield reduced parameters Other savings can be made on specifying 
an input parameter KUTSS, which defaults to KCUT: for configurations C, with tc 2 KUTSS the two-body 
terms (21) may often be ignored as unimportant. 

Table 2: Be-se 

k C, SLJ 
1 2s2 IS0 
2 2s2p " 0  

3 3P1 

3 Radiative transitions 

pence in intermediate coupling: level positions (in BP approximation). NBS 

rom Fuhr et al. (1981). 

For transition arrays arising from (1 )  SUPERSTRUCTURE computes Einstein coefficients and associated 
quantities for multipole transitions of low multipolarity, first of all for electric dipole (El) radiation. 

Fe XXIII 
Cl -Ci  Cl - C;, NBS 

0. 0. 0. 
3.1801 3.1723 
3.4594 3.4594 3.4549 
4.2851 4.3217 
6.8582 6.9002 6.8604 
8.7219 8.7280 
9.3540 9.3966 
9.7619 9.8108 

10.9655 11.0320 
12.9580 13.0128 

C 111 
Cl - CT5 

0. 
0.4769 
0.4771 
0.4776 
0.9528 
1.2605 
1.2607 
1.2611 
1.3438 
1.7041 

A1 X 

Cl - Cg 
0. 

1.0168 
1.4320 
1.4651 
2.7767 
3.7027 
3.7202 
3.7489 
4.1312 
5.1144 

Ne V 
Cl - Ci 

0. 
1.4170 
1.0210 
1.0301 
1.9950 
2.6558 
2.6558 
2.6637 
2.9246 
3.6507 

S XI11 
C1 - Cg 

0. 
1.8183 
1.8574 
1.9455 
3.5876 
4.7843 
4.8344 
4.9974 
5.4053 
6.6414 

CaXVII 

Cl - Cg 
0. 

2.3577 
2.4593 
2.7065 
4.7560 
6.2949 
6.4526 
6.6320 
7.3017 
8.8640 



Electric quadrupole (E2) and magnetic dipole (MI) transitions come into their own only in intermediate 
coupling, even though electric multipole transitions formally exist already in L S  coupling. Moreover it 
turns out that variants of the familiar electric dipole (El)  operator are also affected. As IC wavefunctions 
contain admixtures of order a2 radiative operators must also be expanded up to  BP order. We add them 
in M 1  transitions but in the velocity formulation, where such terms also arise in the Coulomb gauge, the 
current code still omits them. 

Table 3: Length (upper entries) and velocity (lower entries) g f-values in LS-coupling. 
The 'Coul.' column provides the slope when plotting gf versus 112. 

3.1 Electric dipole transitions 

In the long wavelength low intensity approximation the probability for spontaneous emisssion by E l  

Coul. 
Z = 10 
0.3169 
0 

1.1013 
0 

0.3868 
0 

0.2409 
0 

transition 
i -  f 

2s2 'S -2s2p 'Po 
- 

2s2p3P0 - 2p2 3P 
- 

'Po - 'D 
- 
- 'S 
- 

radiation, 

may be expressed in terms of the line strength 

C 111 
C1 - C;, C; - C,' Cl - C3 
.761 .786 .787 
.794 .850 .646 
2.511 2.556 2.785 
2.702 2.752 2.040 
.550 .537 .763 
.555 .713 2.298 
.472 .443 .614 
.541 .429 .055 

where the linestrength amplitude (i'll~[llllilis Wigner-Eckart reduced from matrix element (illR,li), R, 
being any spherical tensor component e', . R (with polarization 'direction' e',) of 

Subscript L indicates 'length'. On replacing 

in the radial length integrals (n1l'lrjlnl) that contribute to (illlRlli) one obtains the velocity form Sv(i, i'). 
Applying hypervirial relations once more leads to the acceleration form, and so forth. 

Fe XXIII 
Cl - C3 C1 - C; 
.I33 .I33 
.I27 .I60 
.464 .457 
.384 .522 
.I56 .I51 
.353 .I71 
.lo2 .096 
.013 .088 

CI - C3 

We also consider oscillator strengths fabs or f""'; so as to avoid the need to  distinguish between the 
absorption and emission oscillator strength one often prefers the symmetric (gf) value, by multiplying 
with the statistical weight g of the initial state: 

A1 VIII 

.293 

.269 
1.021 
.821 
.326 
.794 
.224 
.026 

Turning to  the operator problems we note that (20) is based on the coillmutator for a nonrelativistic 
llamiltonian (2) with spherical components T": thus such an operator can give the same radiative results 
as the length operator only in LS coupling, and this only for exact wave functions (1); approxirnate wave 
fllnctions yield differences depending upon the choice of gauge for the electromagnetic four-potential A. 

Ca XVII 

.I78 

.I68 

.620 

.510 

.205 

.475 

.I36 

.017 
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Table 4: Length (L) and velocity (lower entries, V) g f-values in BP approximation. NBS 
values for carbon from Wiese et  al., for iron from Fbhr et al. 

3.2 Magnetic dipole transitions 

In order to compute M1 transition probabilities 

 AM^ f i  - - 3.5644 - lo4 . sec-' (Ei - Ef)3 . SUL(~,  f )  
9i 

transition 

i -  f 
2s2 Iso - 2 ~ 2 ~  3 ~ 1 0  

- L 
- V 
- 'PI0 
- L 
- V 

~ S ~ ~ ~ P O O  - 2p"Pl 
- 

3P10 - 3P0 
- 

- 3P1 
- 

- 3 ~ z  
- 

- 'Dz 
- 
- 'So 
- 

3 ~ z 0  - "Pi  
- 
- 3Pz 
- 
- 'Dz 
- 

lP1° -  PO 
- 

- 3 ~ 1  
- 

- 3 ~ z  
- 

- 'Dz 
- 

- 'So 
- 

- 

one constructs the reduced matrix element that makes up the line strength 

sfi = I (~ I IQ /PBI IQ~~  

in the usual manner from spherical tensor operator components e', . Q of 

C 111 
NBS C1- C,', C l  - C; 

1910.06 1908.23 
- 1.43(-7) 1.79(-7) 

2.45(-7) 1.15(-6) 
977.03 956.42 954.16 

.81 .762 .788 
D .793 348  

.26 .279 .285 
D .300 305 

.261 .279 .285 
D .300 .305 

.I95 .209 .214 
D .225 .229 
.33 .349 .356 
D .375 .381 
- 3.41(-6) 3.38(-6) 

5.49(-6) 4.27(-6) 
- 1.90(-7) 1.40(-7) 

1.71(7) 1.07(-7) 
.325 .349 .356 

D .375 .382 
1.0 1.05 1.067 
D 1.12 1.140 
- 2.29(-5) 2.18(-5) 

2.12(-5) 1.86(-5) 
- 2.67(-7) 2.23(-7) 

1.66(-7) 1.99(-7) 
- 5.24(-8) 5.20(-8) 

7.04(-7) 6.58(-7) 
- 6.79(-6) 6.31(-6) 

8.55(-6) 1.36(-5) 
1.41 .551 .539 
D(!) .554 .710 

1247.37 1212.85 1186.65 
.27 .472 .444 
D .541 .429 

Fe XXIII 
Cl- C; C1- C:, NBS 
263.42 263.42 263.76A 
.0016 .0016 .0015 
.0008 .0007 D 
132.87 132.06 132.83A 
.I59 .I53 .I55 
.I29 .lo4 B 

.0641 .0628 .0643 

.0458 .0373 B 

.0560 .0542 .056 

.0538 .0303 B 

.0448 .0438 .0547 

.0352 .0287 B 

.0831 .0821 .085 

.0504 .0426 B 
5.27(-3) 5.20(-3) .DO48 
5.40(-3) 6.95(-3) D 
2.69(4) 2.78(-4) - 
7.60(-5) 1.12(-4) 

.0657 .0064 .065 

.0699 .0057 B 
.I59 .I54 .I58 
.I45 .I28 B 
.0663 .0674 .068 
.0406 .0466 C 

8.27(-4) 7.96(4) 8.4(-4) 
2.69(-4) 1.30(4) E 
4.76(-4) 4.93(4) 4.5(4) 
2.08(-4) 1.83(-4) E 

.0271 .0271 .027 

.0263 .0122 D 
.I65 .I621 .I69 
.lo3 .0883 B 

149.39 149.08 [149]A 
.lo3 .lo2 .lo9 
.079 .092 B 

Cl 
Ne v 

892.55 
692(-6) 
4.56(-5) 
456.77 

.407 

.458 

.I52 

.I65 

.I51 

.I66 

.I14 

.I24 

.I90 

.206 
3.14(-5) 
5.18(-5) 
3.54(-6) 
2.32(-6) 

.I88 

.208 

.567 

.622 
3.92(4) 
3.18(4) 
8.16(-6) 
1.57(-5) 
2.00(-6) 
1.44(-5) 
1.23(4) 
2.37(-4) 

.388 

.457 
550.38 

.264 

.245 

- C; 
Ca XVII 
370.53 

4.22(-4) 
2.33(-3) 
191.61 
.I94 
.I94 

.0754 

.0688 

.0710 

.0734 

.0549 

.0527 

.0962 

.0821 
1.56(-3) 
2.18(-3) 
1.23(-4) 
5.86(-5) 

.0862 

.0941 
.253 
.252 
.0209 
.0151 

3.64(-4) 
8.85(4) 
1.24(-4) 
6.62(-4) 
8.04(-3) 
1.04(-2) 

.213 

.I86 
221.83 
.I30 
.I12 



Table 5: Transitions from the two levels of the first excited term to the ground state of N-like ions: 
Cl = ls22s22p3, C2 = l ~ ~ 2 ~ ~ ,  C i  = 1 ~ ' 2 ~ 2 ~ ~ 9 d ,  Cq+ = 1 ~ ~ 2 ~ ~ 9 d ~ ,  C; = 1s22s22p9d2; scaling 
factors XI and Q at A4 = 4. In addition to transition probabilities A observed and calculated 
finestructure splittings for the excited 2D are given - rather sensitive as ordinary spin-orbit 
coupling vanishes! BP: with (30-31)' TEC: all A's term energy corrected; for r(m) see (32). 

Drake's (1971) one- and two-body parts can be written with Eissner and Zeippen (1981) as 

ls22s22p3 
2D5/2 +*S3/2 O ~ S .  

calc. 
AE2.sec 
AM1.sec 

BP 

2D3/2 +4S3/2 AX/A 
C ~ C .  

AE2.sec 
AM' .set 

BP 

.(m) BP 
TEC 

As 

A, 
6 

where E is essentially the photon energy. 
In half-filled shells nl the one- and two-body-BP terms in (29) compete in (28) to the same orders in 

(Y and Z with components due to the ordinary (I + 29 ,  which can lead to destructive interference in the 
transition amplitudes. This affects the calibration when using line intensity ratios r(&) of such ions for 
electron density diagnostics. Table 5 shows for a number of nitrogen-like ions how radiative corrections 
of Breit-Pauli order change transition probabilities. For a long time the ratio 

NI 011 New MgVI S X  FeXX 
5200A 3 7 2 9 ~  2424A 1847A 
4605A 3458A 2320A 1749A 1170A 563.8A 
l.2(-5) 5.3(-5) 5.1(-4) 23-4)  3.5(-2) 3.5 
9.9(-7) 7.1(-6) 123-5) 2.9(-3) 0.323 1196 
1.7(-7) 1.6(-6) 7.3(-5) 1.7(-3) 0.274 1165 

-2.7 -2.7 -3.1 -1.0 
-2.5 -2.8 -2.7 -0.8 +15.7 t150.2 

7.8(-6) 3.41-5) 3.3(-4) 1.8(-3) 2.2(-2) .77 
1.7(-5) 1.4(4) 5.1(-3) 0.1126 14.92 15190 
1.9(-5) 1.5(4) 5.4(-3) 0.115 14.98 15120 

0.81 0.52 0.188 0.042 0.036 0.119 
0.70 0.43 0.152 0.026 0.031 0.116 
0.56 0.36 0.119 0.055 0.030 0.115 

1.2249 1.2320 1.2430 1.2494 1.2559 1.2616 
1.1314 1.1332 1.1372 1.1403 1.1446 1.1503 
0.8682 1.0088 1.2041 1.3379 1.5117 1.7229 

of the high electron density limit remained a mystery. At the time Eissner and Zeippen incorporated 
corrective terms of Breit-Pauli order into SUPERSTRUCTURE it was known form work by Zeippen et al. 
(1977) that such terms would be only part of necessary corrections: term energy corrections (TEC) must 
account for deficiencies in the truncated trial function expansion. This is also borne out in Table 5. 
The whole problem has been revisited several times, so by Zeippen (1982) and by Mendoza and Zeippen 
(1982). For 0 11 there is now consistent agreement with the observed r(m) o 0.35. 

A much older riddle and its solution by Drake (1971) provides an independent-check on part of the 
Breit-Pauli correction. The first excited state of He-like ions decays exclusively via Q I. For the transition 
ls2s3S1-+ 1sZ1S the matrix element of the 'ordinary' M1 operator of order a0 vanishes, because this term 
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in (30) is purely angular and the state lls21S) - while orthogonal to lls2s3S1) - is entirely isotropic. 
Two-body effects do not contribute either. Therefore (28) remains the sole cause for the ls2s3S1 decay 
in He-like ions; in fact they give rise to 14 distinct radial integrals. The transition therefore scales as 
2'': 6 powers coming from the energy factor and 4 from N T - ~  in (26) when squaring. Table 6 sum- 
marizes results in a number of approaches. While showing good results further down the table when 
only modestly complex configuration expansions involving pure SM orbitals are employed, it comes not 
unexpectedly that neutral helium requires a much greater effort. The label 'ID' in the trailing comment 
column marks a special approach, in which collision type bound orbitals Is, 2s and 2p have been included 
in a 28-configution expansion; these orbitals have been obtained in runs of the electron collision code fM- 
PACT (Crees et al. 1978): building up the He atom from He+ orbitals, which provides 'frozen cores', and 
the IMPACT orbitals. For comparison Table 6 contains a second entry for neutral He: 28 configurations 
composed entirely of ordinary SM orbitals still give a poor result. For all ions correlation configurations 
had been included. 

Table 6:  M1 decay of He-like ls2s3S1 - the first excited level! 
ex: extrapolated to the non-relativistic hydrogenic limit A(23~1) + Z1° x 1.7346. 
106/sec; Marrus and Mohr (1978) expand further, including the non-relativistic 
0(1/Z) due to configuration mixing as well as terms 0(a2Z2)  of Breit-Pauli order. 

4 Other facilities 

ls2s3S1 
decay 
Z 

He 

4 Be 
8 0 

14 Si 
16 S 
18 Ar 
22 Cr 
23 V 
26 Fe 

36 Kr 

Orbital functions can be supplied numerically in a format as specified for the electron-ion collision code 
IMPACT (Crees et al. 1978) or as Slater type orbitals (STO's) on specifying the parameters as for the 
collision code RMATRIX (Berrington et al. 1978). Conversely radial output in IMPACT format can be 
generated as a card image file. 

Of interest for excitation by electron impact are term coupling coefficients. They are always printed 
and optionally generated as an output file in a format processable by program JAJOM (Saraph 1972). 
A completely optional feature is the calculation of cascading data to electric dipole transitions. 

5 Future additions 

observed 

rlsec 

3(+3) 

7.06f .86(-7) 
2.02f .20(-7) 
2.58f .13(-8) 
1.69f .07(-8) 
4.8f .6(-9) 

1.70(-10) 

Publication of the entire code in Computer Physics Communications is overdue. One reason for the delay 
is the lack of provisions in the Standard version for inclusion of all radiative corrections of Breit-Pauli 
order - those existing are currently held on a module that can be linked into the standard version (such 
technical details need not be addressed here, as they may not be the last word). Most urgent is the 

Hata and 
Grant 1981 

rlsec 

8.88(+3) 

7.00(-7) 
2.08(-7) 
2.66(-8) 
1.69(-8) 
4.81(-9) 

1.71(-10) 

SSTRUCT Drake 1971 

AM1 

1.272(-4) 

5.618(-1) 
1.044(3) 
3.563(5) 
1.408(6) 
4.709(6) 
3.656(7) 
5.751(7) 
2.002(8) 

rlsec 
8.53(+3) 
1.61(4) 

2.47 
l.lO(-3) 
2.98(-6) 
7.41(-7) 
2.18(-7) 
2.73(-8) 
1.72(-8) 
4.85(-8) 

1.65(-10) 

ID 
sM 
SM 
SM 
SM 
SM 
SM 
SM 
SM 
SM 
SM 
ex 

AM1*sec 
1'172(-4) 
6.208(3) 
4.141(-1) 
9.104(2) 
3.358(5) 
1.349(6) 
4.581(6) 
3.661(7) 
5.799(7) 
2.062(8) 
6.049(9) 
6.342(9) 



incorporation of correction terms of relative order a2 in the velocity form of the electric dipole operator 
so as to make comparison of lenghth with velocity results in intermediate coupling for highly ionized 
species more meaningful than at present. 
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