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Abstract. In the continuum limit, the velocity of a Newtonian fluid should vanish at a solid wall.

This condition is studied for the FCHC lattice Boltzmann model with rest particles. This goal is

achieved by expanding the mean populations up to the second order in terms of the ratio
e

between

the lattice unit and a characteristic overall size of the medium. This expansion is applied to two

extreme flow situations. In Poiseuille flow, the second eigenvalue of the collision matrix can be

chosen so that velocity vanishes at the solid walls with errors smaller than e~
j however the choice

depends on the angle between the channel walls and the axes of the lattice. In a plane stagnation

flow~ the tangential and normal velocities do not vanish at the same point, except for particular
choices of the parameters of the model this point does not coincide with the solid wall. It is

concluded that the boundary conditions are as a matter of fact imposed with errors of second order.

1. Introduction.

Lattice-gas and lattice Boltzmann models have been recently introduced (see Ii as some of the

first contributions to the topic) to simulate macroscopic fluid mechanics. The particular
application we have in mind in using these methods is porous media which are characterized by
complex and random shapes [2]. In such an application~ it is crucial to be able to discretize the

porous medium by a numerical mesh as large as possible and to impose the usual no slip

condition for velocity at the solid walls.

The major purpose of this work is to study this no slip condition both from a numerical and a

theoretical standpoint in simple geometries. At lattice nodes close to the surface, bounce back

conditions are usually used (and sometimes specular reflections). Problems on the location of

the solid boundaries were already apparent in earlier papers [3, 4], but they were directly

addressed in a recent publication [5].

This paper is organized as follows. Section 2 is devoted to a
general exposition of the face

centered hypercubic (hereafter referred to as FCHC) lattice Boltzmann model with rest

particles on which our numerical computations are based. It does not provide any new feature

since it was already developed [6], but it provides all the necessary background for future

developments. However, it should be mentioned that we could determine all the eigenvalues

and eigenvectors of the collision matrix analytically. The classical bounce back condition is

used at nodes close to the solid wall.
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The general analytical method that we use is the following. The lattice unit is assumed to be

very small when compared to the characteristic overall size of the porous medium. This

enables us to introduce the small parameter F
which is the ratio between these two quantities.

The mean populations can then be expanded in terms of
F.

Constitutive relations are necessary

to express the populations of various orders as linear functions of the main macroscopic
quantities and of their derivatives. Finally, the Boltzmann equation is used to calculate the

coefficients of these constitutive relations.

In section 3, the first order terms are addressed. They can be decomposed into two pans. The

latter depends upon the extemal force and the former does not. This latter term induces a

modification in the determination of the macroscopic velocity.
Section 4 is devoted to the second order terms which were not addressed before to the best of

our knowledge. The form of these terms is obtained from invariance considerations. The

coefficients of the constitutive relations are expressed as functions of the eigenvalues of the

collision matrix.

These developments are applied to the analysis of flow close to solid boundaries and in

particular to the classical no slip condition on velocity. Plane Poiseuille flow provides the

simplest example of a flow field and it is analysed in section 5. Two situations were

investigated ; in the first one~ the solid walls are perpendicular to one of the axes of the FCHC

lattice i in the second situation> they make an angle of 45~ with it. In both cases, it can be

shown that up to the second order in e, the velocity vanishes exactly in the middle between two

lattice points for a particular choice of the second eigenvalue of the collision matrix. However,

this value depends on the angle.

The more difficult case of a stagnation flow is dealt with in section 6. The same condition as

previously is obtained for the velocity component parallel to the wall, a result which might
have been expected on physical basis only. This is also true for the normal velocity component

when density fluctuations are negligible. When these fluctuations are not negligible, it is

shown how the model parameters are to be taken into account so that it is true.

However, these developments do not hold in general. In the final section, some perspectives

are given on the use of mixed bounce back and specular reflections at the boundary in order

that the no slip condition is fulfilled at the same point for all the velocity components.

2. General.

Let us briefly present the FCHC lattice Boltzmann model with rest panicles on which are based

our numerical simulations. This model has also been developed by Gustensen and

Rothman [6]. A similar model with B~ rest particles of different masses has been introduced by
d'Humibres and Lallemand [7]. This section starts by the basic equations and conditions which

govern the collisions. The mean populations are then expressed in terms of the density p and

the velocity u.
The Navier-Stokes equations are derived by an expansion in the small parameter

F. Finally a Boltzmann model with a linear collision operator is presented.

BASIC EQUATIONS, Consider a FCHC lattice in a space of D=4 dimensions.

b~ particles of unit mass per node are moving with velocities c, (j
=

I,
..,

b~). The

component a
(a

=

I,
,

D of these velocities is denoted by c,~. The norm ii c i is denoted by

c.

M~ particles of unit mass and with zero velocity are also present at each node of the FCHC

lattice. The number M~ is arbitrary.

Let N, (r, t) (I
=

I>
...,

b~) denote the mean population of moving particles at the node r

and time t. The mean population of each rest particle is denoted by No (r, t its index I is thus
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equal to 0. These panicles move and collide on the lattice. This process can be expressed
formally by the equation

N~(r+c~, t+ I)=

=
N~ (r, t + A,~[Nj (r, t),

,

N~ jr, t ), M~ No (r, t )], I
=

0, 1, b~ (1)

This relation enables us to calculate the mean populations as time t + I, provided that the

functions A,~ are known.

These functions are restricted by the physical conditions that the mass and the momentum

must be conserved at each node for any time

b~ b~

jj N, (r + c,, t + I + M~ Noir, t + I
=

z N, (r, t) + M~ No(r, t) (2a)

,=1 <=1

b~ b~

z N,(r + c,, t + I c, =

z N, jr, t) c, (2b)

,=1 <=1

Macroscopic quantities such as the density p and the momentum pu are related to these mean

populations by the relations

p (r, t)
=

(
N, (r, ti + M~ No (r, t) (3a)

b~

purr, t)
=

z N,(r, t) c, (3b)

, =1

At equilibrium, it can be shown that the mean populations are given by a Fermi Dirac

distribution [9]

N)(r, t)
=

[I + exp(h + q c, )]~ (4)

wh~ere the superscript ° refers to equilibrium. The functions h and q depend upon p and u.

EXPANSIONS OF THE MEAN POPULATIONS IN TERMS OF DENSITY AND VELOCITY. The mean

populations can be expressed in terms of p and u for small values of u in the following way.

The unknown functions h and q can be expanded as a Taylor series around u =
0, The

coefficients of this series are unknown and depend upon p. It is a simple matter to expand (4)

in terms of u. Finally, these various expressions of N) must verify the relations (3). These

conditions enable us to determine the unknown coefficients.

The results obtained in our situation with rest particles of unit mass is a trivial modification

of the ones derived by d'Humibres and Lallemand [71 and have been already derived by

Noullez [8]

N)(r, t
=

d + d'pu c, + dG(p ) u~ (Q, + (c~/D c)) I)
u

,

I
=

I,
,

b~

N((r, t)
=

d[I c) G(p v
vi, j5)

where

d
=

p/b, b
=

b~ + M~, d'
=

D/ (b~ c~ ), c)
=

[d' hi '

,

G (p )
=

(1 2 d j2 (1 d c~ cj i~ ', Q~
= c, c~

Ic~/D (6)
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ExPANsioNs OF THE MEAN POPULATIONS IN TERMS OF F. The usual last step in these models

consists in the derivation of the macrodynamic equations, in other words of the Navier~stokes

equations. In the previous step, the velocity was assumed to be small ; here the size I of the

unit cell is assumed to be very small when compared to the size L of the whole fluid domain.

Let F
be the value of this ratio

F =

I/L«1. (7)

One would like to derive the macroscopic equations which govem the macroscopic quantities p

and u. Thi~ operation, which is an upscaling from the lattice unit to the macroscopic scales can

be performed in the ioiiowing way. MacToscopic variables denoted by a pTime are introduced

r'
= Fr, t(

=
Et, ii

=

F~ t. (8)

The scaling of the space variable is clear. The two times t( and t( correspond to the propagation

of density perturbations and to diffusive effects, respectively. They are introduced by the

standard Chapman-Enskog procedure which is used to derive the macrodynamical equations

from the microscopical ones.

The derivation operators can be written as [8]

%~ " F%~> + F~%~> j V~
fi

~V~, (9)

The mean population N,(r, t) can be expanded in terms of this small parameter ~

N~ (r, t )
=

Njir,
t ) + ~Nj (r, t ) +

e~Nj(r, t) + (10)

Note that the term of order zero
N) corresponds to the equilibrium term given in (5).

The macrodynamic equations are obtained by using the differential operators (9) in the

expression of the mean populations N~ jr + c,, t + I ). The corresponding relations are then

introduced into the equations (2) and the usual macrodynamic equations are readily derived.

An expansion to order O(E~) combined with the results to order
~

yields

%,P + V (pu)
=

o ii la)

»,(pu) + v p
=

v jp(p)v(pu)i + vjjp(pi (D 2)/D + ii v (pu)i i'ib)

where the momentum flux P is expressed as

P
=

PC( (I g(p ) u~/c~[1 + 0.5 (D <.~/c( j] I)
+ g(p ) pu u ii 2)

The so-called Galilean factor is given by

g(P)
=

lDb(1 2 dl]/[(D ~ 2) b~(I d)]. (13aj

The kinematic shear viscosity
v and the bulk viscosity f may be written as

b~ c~ ~,i
~

D (D + 2)
~'

2 (D + 2)
(13b)

~~~ ~ ~~ (13c)

The coefficients ~ and X are in principle derived from the expression of the functions

At (cf. (iii once the collision rules are established, and their derivation will be detailed in

section 4.
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BOLTzMANN MODEL wiTH A LINEAR coLLisioN OPERATOR. It should be emphasized that the

previous developments are perfectly general and apply whatever the precise collision model is.

Let us now present a Boltzmann model with a linear collision operator A. In other words, it

means that the general relation (I) is replaced by the linearized equation

b~

N, (r + c~, t + I
=

N, (r, t) + z A,~ (N~ (r, t
N)(r, t )) W~ I

=

0, I,
,

b~

j =o

W~ =

~' J ~ ~ (14)
MC, j

"

0

Such a simplified model with rest particles has been studied previously [6].

The collision matrix A may be decomposed as follows

<.° b° b° b° ~
~o

(A,~ =

b° A [ (1 5

~o

The matrix A'corresponds to collisions between moving particles. The unknown coefficients

b° and c° correspond to collisions between moving/rest particles and rest/rest particles,
respectively.

Because space is isotropic, the coefficients of A can only depend on the angle between the

two velocity vectors c, and c~. On an FCHC lattice, it is easy to show that only 5 angles are

possible hence A' and A only depend on 5 coefficients &v.hich are unknown

~0, ~60, ~90, ~120, ~180 ~~~)

The subscript corresponds to the angle expressed in degrees between the two velocity vectors.

To these five unknowns the two additional unknowns b°, <.° should be added.

Because of the linear character of the collision operator, many progress can be made

analytically. The coefficients of A should be such that the mass and momentum conservation

equation (2) are verified. The eigenvalues and the eigenvectors of A can be calculated. For

sake of clarity, all these usefull relations are gathered in Appendix A. It should be emphasized

that seven unknown coefficients appear in A ; their choice is discussed in Appendix A [10].

BOUNDARY coNDiTioN AT A soLiD WALL. It should be noticed that the lattice nodes are

staggered with respect to the solid walls, I-e- that the minimal distance between a lattice node

and a solid wall is approximately half a lattice unit. This is illustrated in figure I in the simple

case of a Poiseuille flow.

Consider a node ro which is located in the gas phase, but which is close to a solid wall. More

precisely, assume that the node ro + c,
~

is located inside the solid phase c,
~

denotes one of

the 24 elementary velocities c,.

The population N,
~

(ro + c~
~,

t + I ) left the node r~ at time t with velocity c,
~

and would

arrive at the node r~ + c,
~

at time t + I if ro + c,
~

were located in the gas phase. This

population N,
~

(ro + c,
~,

t + I ) is assumed to bounce back to the node r~ with a reverse

velocity c,
=

c,
~

This condition, which is called the bounce back condition, may be summarized by the

~~~~~'°~~
Ni (~0, ~ + ~'

+
~~° ~ ~~ ~'

~

( l 7)
C, = c,

+



196 JOURNAL DE PHYSIQUE II N° 2

3. Addition of a body force and first~order expansion of the mean populations.

For Boltzmann models, it was proposed [10] to implement a body force F by adding to the

mean population N, (r, t) at each time step the quantity

AN,
=

d'pf c,, I
=

I,
,

b~. (18)

The mass conservation equation (2,a) is not modified by this addition. However, the

momentum conservation equation (2.b) is now modified as

bm b~

z N~(r + c~, t + I ) c~ =

z N, (r, t c, + pF (19)

=1 =1

where the following identity has been used

b~

£
c~ c~ =

d'~ I (20)

=1

We shall now derive the macrodynamical equations when such terms are included. Inter

alia, it will be shown that the expansion of the mean populations is modified by these terms.

This section follows closely the derivation of the macrodynamical equations by Frisch

et al. [9] (their Sect. 5).

First the body force F is assumed to be of order
~

F
=

~f. (211

Hence the addition of this force does not disturb the equilibrium populations, I-e- the zeroth

order terms
N°(r,

t j.

The mean populations N~ (r, t can be expanded in terms of e
(cf. lo)). The first order term

N)(r, t) can be split into two pans, the forrner for a zero external force, the latter for an

extemal force f. It seems natural to assume that this last term is proportional to f. This can be

expressed by

Following Frisch et al. [9] the first order term N )° should not contribute to the local values of

density and momentum (cf. (3)) ; hence,

bm b~
z N)°(r, t) + M~ N(°(r, t)

=

0, z N)°(r,
t c~ =

0. (23)

=1
,

The terms K, pf have a different effect ; they do not modify the density, but the momentum

balance

bm bmjj N) f(r, ii + M~ N(f(r, 11
=

0, jj N) f(r, t) c, =

&pf. (24)

=1 =1

The momentum change is proportional to f, 8 being an unknown constant.

The derivation of the macrodynamical equations parallels the work of Frisch et al. [9]

summarized in section 2 after equation (7). Expansion of the mass conservation (2a) implies
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two equations. The first one to order
~

is the usual continuity equation

d,.p + V' (pu°)
=

0 (25a)

where V' stands for V~. and (see (3b))

b~~

pu°
=

z N)(r,
t c, (25b)

,

The second equation to ~~ contains extra terms due to the body force f

»,jp
=

(& o.5 v' (pf) (26)

where an anticipated use of (28a) is made. In order to avoid artificial creation or destruction of

mass, it is legitimate to choose

8
=

0.5. (27)

Expansion of the modified momentum equation (19) yields terms of order
~

d, (pu° ) + v' P
=

pf (28a)

where the leading order approximation of the momentum flux tensor is

b,~

P
=

z N)(r, t) c, c,. (28b)

,

The expansion of equation (19) to order ~~
can be made along the same lines as [9]. The

terms N~° (cf. (22)) are linear functions of the gradients vp and v(pu°) since these functions

are invariant under the isometry group L of the lattice, this relation should be of the form

N)°(r,
t j

=

(v/Q, + xi j :
v'(pu°), I

=
i,

,

h~. (29)

The constants ~ and X will be computed in the next section by means of the collision matrix A.

The same property of invariance will be requested for the terms N) f(r,
t in (22). Since any

set of I-dependent vectors is of the form Ac, (cf. property P2 in [9]), one may assume

N) f(r,
t )

=
pf. c,, I

=
I.

,

b~. (30)

The constant A is determined by means of (24) and (27) ; hence, the first order correction to

the mean populations can be expressed as

N) f(r,
t

=

0.5 d'pf c,
,

=
I,

,

b~. (31)

The corresponding corrections for the rest particles N(° and N(/
can be derived from the

mass conservation (23) and (24)

N(°(r,
t

=
b~~/M~ x v'. (pu°), N(f(r,

t
=

0. (32)

With these preliminary relations, it is not difficult to expand the momentum equation to

order s~. The results of the expansion to order ~
and F~ must be combined to yield the full set of
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macrodynamical equations [9], including the dissipation term

%,p
=

V (pu° )
=

8 0.5 V (pF (33a)

j (pu°)
+ v P

=

pF + v [v (p v(pu°)]
+

+ vi (v(p (D 21/D + f) v (pu°)]

ed~,(pF) (8 0.5 F~ v'.
(

N) ' (r, t c, c, (33b)

,=i

Except for the inclusion of the external force, these equations reduce to equations (11)

because of the values of 8 and N)f hence they may be written as

d,p + v (pu°)
=

0 (34a)

b,(PU°) + V P
=

PF + v iv (p j v(pu°)j
+ vjjp (p ) (D 2)/D + ii v ipu°)j (34b)

4. Second~order expansion of the Boltzmann equation.

The purpose of this section is twofold. First we want to derive the previous relations by a

different route. Second we want to extend the previous results to second-order as indicated by

the expansion lo).

BAsic EQUATION. The basic equation is obtained in the following way. The expansion ( lo)

is inserted in the Boltzmann equation (14). The left hand side of equation (14), I-e-

N, (r + c~, t + I is expanded in a Taylor series. In a straightforward manner, one obtains with

the addition (18) to the mean population

e(d,jN) + c,
v'N))

+

+ F~(d~,N) + 0.5 d~, d~jN) + 0.5 c, c~ : v' v'N)

+ ci
v~ a~iNl + a~iNl + c, v>Nl

b~

=

£ (FA,~ N)(r,11
~ F~A~~

N)(r, t))
W~ ~ Fd'pf. c~, I

=

0,
,

b~. (35)

j=o

This compact equation can be discussed as follows. All the N( are taken at point r and time

t. The last term on the right-hand side is not included in the equation I
=

0 by using the

convention co
=

0.

FIRST-ORDER EQUATION. Let us consider the terms of order e in (35) in order to verify the

consistency of the developments made in the previous section. They should verify

b~

d,. N)
+ c,

v'N)
=

jj A,~ N) (r, t W~ + d' pf c, I
=

I, b~ (36a)

, =<i

b~ b~

~, N(
=

jj
Ao~ N( jr, t W~ =

c° M~ N((r, t) ~ b° jj N( (r, 11. (36b)

, =n j =1
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The second equation is modified as follows. The left hand side is evaluated with the help of

(5) and (25a). The right-hand side is calculated with (29) and (30). One obtains

b~' v' (pu°)
=

b° b~ X (1 ~ b~/M~ v'.(pu°) (37)

from which the value of X easily follows when flow is compressible (I,e, vi (Pu°) ~ 0)

X =
M~ [b~ b° b~ ]~ (38)

The equation (36a) can be handled in very much the same way. The various quantities can be

expressed with the help of the previous developments. Finally, one obtains

b~

M~[b~ b]~ ' v'(pu°)
~ d'Q,

:
v'(pu°)

=

z A,~ N) (r, t W~, I
=

I,
,

b~.

j =o

The expressions (29), (31), (32), (38) are used to evaluate the right-hand side of this equation.
When one takes into account the fact that Q, is an eigenvector of A, the previous relation is

verified provided that ~ is related to the eigenvalue A~ by the relation (A.4b).

SECOND-ORDER EQUATION. The second-order terms can be readily derived from (35) and

they may be expressed as

d,~
N)

+ 0.5
%,j

~~ N)
+ 0.5 c, c~ v~ V'N)

+ c
i

v'
%,j

N)
+

%,j
N,' + c, v'N)

=

>,~

=

z A,~
N)(r,

t W~
,

=
0,

,

b~ (39)

j =u

The second~order corrections N)
are so far unknown. However, these terms are not expected to

contribute to the local values of density and momentum (cf. the same argument (23) as for the

first-order terms) ; hence,

bm bm

z N)(r, t) W,
=

0, z N)(r, t)
c~ =

0. (40)

o
i =1

One can now proceed in two ways since the N)
are unknown. The first method consists of

the expansion of the left hand side of (39) ; from the terms which appear in this expansion, one

can guess the general form of the unknown corrections N) in the right hand side of (39) ; note

that since A is not invertible, N) is not uniquely defined. The second method consists in

mhking an a priori guess on the general form of N)
as it was done for N) (cf. (29) and (30)).

This is the one which will be used here. It seems natural to demand that N) be a linear function

of the higher order gradients v' v'p, v' v'(pu) and v'(pf) as a straightforward extension of

(29) and (30). Hence, one should have

N)(r,
t )

= « S, : v'v'p + «i S, : v'(pf) + TT~ v'v'(pu ),
=

I,
,

b~

N((r, t)
=

«)So. v'v'p +
«)So. v'(pf) + T°To

:
v'v'(pu) (41)

where the tensors S and T are second- and third-order tensors, respectively. These tensors

should be invariant under the isometry group L of the lattice and verify the conservation

conditions (40) ; they are given in Appendix B within a multiplicative constant (cf. (B. I) and

(B.4)).
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The coefficients « i,
«),

«i,
«) and T,

T°
are obtained by inserting the relations (41) into the

second order equation (39). They are given by (B.6).

APPLICATION To PARTICULAR FLow FIELDS. The theoretical material is now ready to be

applied to various flow fields. Essentially, the second order expansion (41) will be used in

conjunction with the bounce back condition (17) and the solution for velocity deduced from the

Navier-Stokes equations. The exact location where the velocity vanishes will be derived for

Poiseuille and stagnation flows.

S. Localization of boundaries for Poiseuille flow.

Poiseuille flow is the simplest possible physical situation and it is addressed in this section.

Detailed calculations are given when the solid boundarie~ are parallel to the (x, j, )-plane of the

FCHC lattice ; an extension to inclined solid boundalies is proposed and discussed. These two

cases are called horizontal and inclined channels, respectively.

BASIC EQUATIONS FOR AN HORIZONTAL CHANNEL. Consider a
Poiseuille flow in a plane

channel where the two walls are separated by a distance 2 h. The flow is along the x-direction

triggered by the action of a constant external force f
=

~f~, 0, 0) which plays the role of a

constant pressure gradient. The physical situation is depicted in figure la.

The Navier-Stokes equations (of the general form (28a)) reduce to the iollowing simple form

because the flow is along straight lines parallel to the x-axis

0=f~+vv~u(, -hwzwh (42)

real
,

j~ "

boundary ~~~§~,' ,'
_ _ _ _ _ _ _ - - - - - - - -.

~° '
,

A h '
,,'

,

'
~T

'

'

F
,

'

'

'
'

,
'

'
,

'

U~(Z)
~ ,

~~
o~

>

a
b

Fig. I. Poiseuille flow. a) horizontal channel ; the solid walls are located at z =
t h b) inclined

channel.



N° 2 BOUNDARY CONDITION FOR LATTICE BOLTZMANN MODEL 201

whose solution is

u((z)
=

uo(z~ h~),
No =

0.5 f/v (43)

When the lattice Boltzmann model is used to calculate the flow, the calculations take place
at the nodes of the staggered mesh which was described in section 2. Let ± zo be the z-

coordinate of the nodes close to the solid wall.

For the steady state, because inertial terms vanish identically independently of the Galilean

factor g(p ) (cf. (13a)), it is not necessary to take into account rest panicles in the Boltzmann

model. Therefore, when (42) is used in the expressions (5), (29), (30) and (B.5) for the various

terms of the mean populations, one obtains

N, (r, t )
=

Ni(r,
t + d' P IA Q,u »za[ °.5 f~ Ci, +

+ vii %~ %~uj(c,~ 3 c~~ c)~ )) (44)

This expression is introduced into the bounce back condition (17) at z =
± zo ; hence when

(42) is used, one has for c,
~

= c~

lt(C.,-x+ A~~QI-,»zU(-°.5f,Ci-<-Ai~f<(c,-, -3c,-<C,-z2)
=

=1<(<.,+x+A~~Q,+u»zU]-°.5f<C,+<-Ai'f~(c,+<-3C,+~Ci+z2). (45)

Let us restrict ourselves to the upper plane and assume that the velocity vanishes at

c = zo + A this amounts to replace (43) by

u((zj
= No (z~ (zo + A )~) (46)

This expression is substituted into (45) and A is a solution of the equation

(zo + A)~
=

z( + zo + 0.5 + v + ii 4 vii (47)

When zo is assumed to be large, the solution to this equation can be approximated by

~=0.5(1+?j~[0.25+ v+A~~-4 vAj']+. ). (48)

This equation is very imponant for several reasons. First, it shows the importance of the

second-order terms. Even in the simplest case of a Poiseuille flow, the second derivatives of

the velocity displace the point where velocity vanishes. This is an extension of previous
results [5 ]. Second, the error which is made, is of the order I /zo I.e. of order

F
if the eigenvalues

of the matrix are chosen without any particular care as described after the relations (A.4).
However, the error can be reduced if ii is chosen in such a way as to cancel the second-

order term in (48). The expression (A.4b) of the viscosity can be used (together with

c~/(D
+ 2) =1/3 for the FCHC lattice). Some elementary algebra yields the critical value

ii
c

Ai~
=

8(A~ + 2)/(A~ + 8), (49)

Am0.5 if ii =Ai~.

If is interesting to note that when A
~

varies in the allowed interval (- 2, 0), ii varies also

from 0 to 2. Hence, no extra condition is imposed by the interval of variation. Whatever

A~, ii can be chosen in such a way as to cancel the second-order term in (48).
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NUMERICAL TEST FOR A HORIZONTAL CHANNEL. Numerical calculations were done for

Poiseuille flow in order to check the predictions of equations (48) and (49). The routine

corresponds to the one described at the end of section 2 it is based on the linearized

Boltzmann equation (14) and the bounce back conditions (17). There is no rest particle. The

numerical parameters of the routine are the following

A~= -o.5~v =0.5

2 h
=

3, 4, 16
~ zo =

I, 1.5, 7.5

f~
=

2 x lo ~~, ii
=

(50)

The eigenvalue Ai varies between 2 and 0.2. According to (49), the critical value

11
~

is equal to

Aic
=

8/5 (51)

Two kinds of comparisons were made. First, overall comparisons were made between the

computed profiles and parabolic profiles such as (46) where A is given by equation (47). Some

comparisons are reponed in figure 2 and the agreement is seen to be excellent.

The second comparison was done close to the solid walls. One can interpolate the numerical

velocities in order to calculate the exact location zo + 3 where the velocity vanishes and

compare it to the analytical prediction zo + A where A is given by (47). The interpretation is

made by means of a Taylor expansion around the point zo. 3 is given by the equation

uj(zo) + 3 %~u)(zo) + 0.5 3~
%~ %~u( =

0 (52a)

where the two first derivatives are deduced from the numerical results within errors of order
I/z(

as

~~uj(?o)
=

0.5 j3 uj(zo) 4 uj(zo I + uj(zo 211 (52b)

%~ %~u( =

u((zo) 2 u)(zo I + u((zo 2 (52c)

w.,
U .;~ '*,,

X A=0.95~,
~ .,

d '«

5.oE-5

z

Fig. 2. Comparison between computed IA, .) and analytical (---------, -) parabolic profiles.
Data are for : (---------), A (2 h

=
19, A~

=

0.5. A~ =

1.6, 6
=

0.5), (- -) . j2 h 19,

A~ 0.5, A~ 0.2, 6
=

0.949874).
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2.0
,,"

~g=1,6

_~
jg'

,,'

1.0
~$,T"'

,,"

~
~~~w===-~=Zl)~'~---*~~~*~

~~~

-o.5

Fig. 3. Numerical (x) and analytical (broken Iine~j predictions of the location of the solid boundary in

a Poiseuille flow as a function of the eigenvalue A,. Data are for : (2h 3),. (2h
=

4j,
(2 h

=
16 j.

3 can be determined from the equations (52) for various values of the parameters
ii and zo. In figure 3, 3 is compared to the analytical predictions (47). The agreement between

3 and A is seen to be excellent even for very low values of zo. The critical value

11
~

is extremely well verified.

Hence, there is a complete agreement between analytical and numerical predictions.

EXTENSION TO INCLINED CHANNELS. The same calculations can be penormed for inclined

channels, when the solid walls are not parallel to the (x, j~ )-plane of the FCHC lattice (cf. Fig.
lb). This inclination, measured by the angle «, does not change the continuum analysis with

the Navier-Stokes equations and the parabolic profile (43) is still obtained.

The analytical calculations can be easily made when the angle
«

is equal to 45° since all the

nodes close to the wall play the same role. For sake of brevity, only the results are given here.

Consider a channel whose characteristic vertical dimension is given by 2 h (Fig, lb) ; its width

in the usual sense is equal to 2 h cos «. It can be shown that the distance A' between the last

lattice node z( and the plane where the velocity vanishes is given by the relation (cf. Fig. lb)

j

~, ,

(~ l
v

j~
2 jj~~~Zo+zo + , -j +/ (53)

,,
-Zi o~ 2

where

z'= -xsin « +zcos «.

The actual width of the channel is thus 2 h cos «
if

A'
=

,5/4.

According to (53), this condition implies that

I
(1 +

~
=

(54a)
2 A2c 8
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or, equivalently

A(~
=

4(A
~ + 2)/(4 A ~). (54b)

This new value of the second eigenvalue of A differs from the value (49) obtained for

horizontal channels except when A~ is equal to -2. It is interesting to notice that

ii
~

varies in the interval (- 2, 0) when A
~

varies also from 0 to 2. Needless to say, the

results (53), (54b) were confirmed by the numerical solutions in the inclined channels with

« =

45°.

In view of this result, it can be expected that the right choice of Ai is a function of the

inclination angle «.
It is equivalent to say that for a given value of ii, the location of the plane

where the actual velocity vanishes depends on «.

6. Localization of boundaries in stagnation flow.

BAsic EQUATIONS. Stagnation flow can be considered in some sense as the exact opposite to

Poiseuille flow. In the former case, the flow is as perpendicular as possible to the wall, while in

the latter it is parallel to it.

The physical situation is depicted in figure 4. The flow is assumed to be two-dimensional a

plane potential flow arrives along the y-axis and impinges on a flat wall placed at

y =

0 ; the flow divides into two streams on the wall. One wishes to study the region close to

the wall where flow separation occurs, I-e- close to the origin. The solution was first devised by
Hiemenz (cf. [I ii). The solution is supposed to be of the form

u =

xf'ly ). u
=

fly ), po p =

0.5 pa~[x~
+ Fly (55)

po denotes the stagnation pressure, a is a constant. The unknown functions f and F must satisfy
the Navier-Stokes equations. More precisely, when the calculations are made by means of the

lattice gas, one has to verify the equations (11)

g (Po) lf'~ ff"i
=

a~
+ Pf"' (56a)

g (po ff'
=

0,5 a~ F'
v

f" (56b)

v

~6
'

x

Fig. 4. Stagnation in plane flow (cf. [ll]).
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where g(po) is the Galilean factor (13a) and po denotes the density at the stagnation point.
The no slip condition at the wall implies that

f(o)
=

f'(o)
=

o ; (57a)

F (0)
=

0. (57b)

Far away from the wall, the flow is frictionless and the velocity should be of the form

u = ax hence

f'
= a, v =

oJ (57c)

Finally, it is assumed that the fluid can be considered as incompressible, I-e- the velocity of

the fluid is very small when compared to the speed of sound c~.

DETERMINATION OF THE PoiNTs OF ZERO vELociTY. The same development as for

Poiseuille flow applies, except that rest particles are included in the model in order to have a

Galilean factor equal to I. Detailed calculations are given in Appendix C, and only the major
steps and final results are given below.

First the mean population N, jr) is evaluated up to the second order in
F.

Before this

expansion is used in the bounce back conditions, it is worth considering a node of ordinate

yo close to a wall in the FCHC lattice (cf. Fig. 5) it turns out that it is more efficient to write

down the bounce back conditions in linear combinations of populations such as N
~

N
~ ~

and

N~
i

+ N~
i.

The 6 conditions, which can be written for the 6 virtual nodes located in the solid,

are equivalent to three independent relations (cf. (C.5)). These equations are linear functions of

the three first derivatives of fat the point yo, namely f'(yo), f "(yo ), f"'(yo ). This linear system

can be easily solved and one obtains the explicit expressions (C. lo) for f'(yo), f"~yo) and

f"'~yo). Finally, it is a simple matter to express the two no slip conditions (57a) on the

components a and v by means of a Taylor expansion around yo. These conditions read as

0
=

3 (1 + f P
~

+ l P~,) yolk + 0.5 A~ y)k~ (58a)

0
=

3 (1 + f P
~,

) j,o 0.5 (1 P
~

) y(/k A~ yll (6 k~ ) (58b)

y

-1

z

Fig. 5. A node
_vn

of the FCHC lattice close to the solid ~urface W. The coordinate system is the one of

the stagnation flow. The virtual nodes + to + 6 belong to the solid. The nodes t 5 and t 6 have a

nonzero component in the fourth dimension.
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where

1
=

va~/f(vo), P
~

=

P~/12 f(yo)i, A-
=

(6 k + I (I P~ + 6 ki (59)

P(, and k are given by (C.7) and (C.8), respectively.

Let us first consider the condition (58a) which is relative to the component u. This quadratic

equation in yo can easily be solved. Hence, the continuous solution yo~ where u is equal to zero

may be expressed by

yo~(k, f, P~,)
=

Aj~ (- k(I -P~~) + ~/[(k~(I P~)~ 6 k~(I
+ f P~)A~)]) (60)

One can see that

yo,, =

0.5 if k
=

0.25 (61)

for any P~,, f ; consequently, ii has the value 11
~

given by (49).

This remarkable property of the solution to the equation (58a) is a consequence of the

following relations if the second derivative g " ~yo of some function g ~, can be obtained from

the equation

2 #(yo) #'~.o) k#"(vo)
=

o (62)

(cf. (C.5a) for stagnation flow, (45) for Poiseuille flow), then the Taylor expansion around

Yo

#(Yo) #'(Yo) Yo + 0.5 #"~yo) Y(
~

0 (63)

has a solution yo =

0.5 if k
=

0.25, independently of the value #'~yo)/#(yo).

Moreover, it is quite natural that the no slip condition for the velocity component parallel to

the wall is obtained for the same value as in horizontal Poiseuille flow.

Let us now look at the no slip condition v =0. The solution yo~ to (58b) up to

O(y() with the relations (C.5a), (C.5b) is the same as for Poiseuille flow (61) only if

P(,,=0, a~=0.

Thus, when the density fluctuations (C.6) are talien into account, one should look for the

common solution j,( to the equations (58b), (60)

Y~ ~ You ~ YOL
(64a)

This means that for each fixed value of P~, one can look for pairs (k, f which satisfy the

equations (58b), (60) equivalently, since (58bl is a cubic equation in yo, it is easier to look for

the numerical solution

f
"

f~ (k. P ~~). (64b)

Such a solution numerically exists only if k obeys to the condition

k
~

ko(P~).

The functions y( [L-, P,,, f
=

f'~ (k, P,, )], f" (k. P ~,,) are represented in figures 6 and 7. It

will be shown later (cf. (65)-(67))) that when the physical parameters a~ and Pare given, one
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Yo ,,,
0.60 ",,,

~~

'~,~~ _~

0.55

".__~
"~',,

y~~=o,1

,.,~j~jj0.(~~

0. '"..,~~ "'

0. '"".

0.2 k

Fig. 6. Common solution ii' to the two no slip conditions for stagnation flows as a function of the

parameters k, P
~.,

f
=

f" (k, P~~).

j
0j"j~~'

[j~~
'

O-1
~~~;"

~~~""'

D-O

"'

~ ~ ~

Fig. 7. Solution f~'
as a function of the parameters k, P

~

for stagnation flows. It yields the common

solution yo =

y/

can try to find the gas parameters M~, b°, g(po ), and k to satisfy simultaneously the equations

(64b) for f and P~, the equations (67) for f and (65), (66) for P~~.
For example, in the case P~,

=

0, the inverse function k(f) (see Fig. 8) for small f has the

form

k(f)
=

0.373 + 0.916 f +

The solution j,[~ =

0.5 if k
=

0.25 can be reached for

f
=

f~~ (k
=

0.25, P
~,

=

0)
=

1/6

Thus, unfortunately, the common solution y[' cannot be equal to 0.5 only by choosing

k
=

0.25 as for Poiseuille flow (cf. (49), (61)). For instance, if the stagnation solution is

obtained by the Boltzmann model with k
=

0.25, the distance yo~ between the last lattice

node and the point u=0, defined by the equation (58b) may differ widely from

yo~ =

0.5. This is illustrated in figure 9.
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k ~~~~,,'

P =0
,,""""

1

Fig. 8. Inverse function k
=

k~~ (f) for P
~

=
0. Stagnation flow.

O.

k=-0.25

0.40

0.35

1

Fig. 9. Solution yo~ to no slip condition v =
0 as a function of the parameter f for k

=
0.25,

P~~ =
0. Stagnation flow.

Generally speaking, the previous analysis allows us to choose the parameters M~,
b°, g(po), ", k of the model as functions of the physical parameter a~ to obtain the equality
(64a). In this respect, it is interesting to note that in contrast with u, the condition on the

component u cannot be satisfied by choosing only the eigenvalues of the collision matrix A.

The parameter P(,,(vo) can be derived in terms of f(vo) from the relations (C.9), (C.10a)

Ply
=

27 Pg (Po) (a~ + f(Yol)~ + O (al
+ f~yo))~, E

=

o. (651

Then f(yo) may be evaluated by substituting (C.10) with (65) into the stagnation solution

(56a). The resulting expression for f ~yo) is rather long. Let us give a simplified form obtained

when the terms f(yo)~
as well as the ones of order O(a~)

are neglected

f(yo)
=

ka~(k
+ 6 v~)/ [v (18 ga~ k~ + (27 va~ ii (6 k + I )) ], E

=

0 (66)

The relation (66) for f(yo) or a more exact one can be introduced into (59) to express the

parameter fin terms of the parameters of the model and of the physical parameter
~i.

f
=

v~(18 ga~ k~ + (27 v~ a~ (6 k + ii) /k(k + 6 u~), E
=

0 (67)
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Hence, the parameters M~, b° if M~ ~ 0 and g(po), v, k can be chosen a priori to satisfy the

relation (64b) where the function f~~(k, P~~,) can be found numerically (see Fig. 7, for

example), and P~ can be evaluated by (59b), with (65), (66).

For example, one can try to find a numerical solution to the parameter k(A
i

to satisfy (64b),

(65-67) for chosen values g(po), v,
a~ if M~

=

0. Analogical equations can be obtained for

M~ ~ 0 (E ~ 0).

7. Concluding remarks.

From the previous analysis, it seems obvious that for an arbitrary flow, we have no grounds to

state that all the velocity components vanish at the same point when the bounce back condition

is used at the wall. Hence, the boundary conditions are imposed with an error of order

e~
as it can be seen from (48) for instance. This a serious problem because it means that the

precision of the overall scheme is of order F, and thus much less precise that usual finite

routines based on finite difference schemes with errors of order e~
or

F~ (see [12]). In three

dimensions, the three solutions yo~, yo~, yo~ are different even for the choice k
=

0.25.

An even more precise analysis of the population solutions lo) has been developed up to the

next order O (e~). For this purpose, the 4-order invariant tensor was determined. However, the

calculation of the coefficients of these terms is tedious. Let us only say that such an analysis
confirms the previous conclusions about the choice of the parameter k

=

0.25. The real

position of the solid walls imposed by the bounce-back reflection depends on the velocity field

close to the solid. Even for Poiseuille-like flows, the choice k
=

0.25 (or equivalently

ii
=

11 ~) is only valid for horizontal channels.

Hence a very fruitful path of research could be the determination of new boundary conditions

which would replace the classical bounce back conditions. It is important to note that a precise

analysis of solid boundary location is crucial for real porous media simulations.

One possible way to change momentum at the nodes close to the solid walls in order to

introduce the no slip conditions at the same distance yo is to use a combination of bounce-back

and specular reflections [5, 13]. The combination itself would be found numerically since it is

thought to depend upon the nearby velocity field. Such an investigation has recently been

started.
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Appendix A.

The linear collision operator.

The major well-known properties associated with a linear collision operator [lo, 6] are

summarized in this Appendix. The mass and momentum conservation equations (2) imply that

the coefficients of A verify

jjA,j
=

b°M~,
=

I, b~

b° b~
=

c° M~

zA,j
<.~~ =

0, I
=

1,
,

b~ ; « =

1,.
,

D (A.I)
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or equivalently, one obtains the three conditions

ao+8a~o+6a~o+8ajio+alga= -b°M~

ao+4a~o-4ajio-ajso
~

°

b° b~
=

<.° M~ (A.2)

One can show that the 24 +1 eigenvalues of A can be expressed as

lo
~

0
,

multiplicity 5

A
j =

1.5 ao + 6 a~o + ajgo + 12 b° M~/b~
,

multiplicity 2

ii
=

1.5 ao ajgo
,

multiplicity 8 (A.3)

A
~ = ao 2 a~o + aj go

,

multiplicity 9

A~ b°(M~ + b~/M~ )
,

multiplicity I

The eigenvectors corresponding to the eigenvalues A~ and A
~ can be shown to be

i~<j Qjap
"

1~ Q<ap
,

~", #, Q0
ap "

0

jjA,~ R~~p =
ii R~~p, Vu ~ p

with the eigenvector

R,~p
= c,~ (D + 2 ) c,~ c)p/c~ Ro

ap "

0. (A.4a)

Note that there is no summation on the Greek indices «, p.

The eigenvalue A
~

is related to the shear viscosity (13b) by

A
~ =

d'/V' (A.4b)

or equivalently,

v =

~~
+ (A.4c)

D + 2
~

2

In order to summarize this presentation, it can be said that among the seven unknown a's,

b°, <.°, three are fixed by (A.2). Four extra conditions can are imposed by the eigenvalues (A.3)

which are only requested to be in the interval (- 2, 0). Following [10], one can choose

A
=

ii
=

A
~

=
l and A

~ as close as possible to 2 in order to accelerate the relaxation to

equilibrium.
It is usually demanded that the Galilean factor g(p be equal to I (cf. (13a))

[Db(1- 2 d)]/[(D + 2) b~(I d)]
=

(A.5a)

In the FCHC lattice, since D
=

4, b~
=

24, the density d is equal to

do
=

(M~ 12)[2(M~ + 6)]~ ' (A.5b)

and because of (6)

po =
(M~ + 24) do. (A.5c)
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Appendix B.

Second~order terms for the FCHC lattice.

The general form of second-order tensors invariant under the isometry group L of the lattice

was given in [9] and it can be conveniently written in the form (cf. (29))

S, =E'QI+F'I. (B.la)

The extension of this property to third-order tensors is straightforward and can be written as

T,
=

Ac~ c, c, + Bc, I + DC, + D(Ic, )~ (B. lb)

where the transposed operator t acts on the last two indices.

However the general form of this tensor has to be restricted because of the conservation

conditions (40). The mass conservation is automatically verified since all the terms in (B. lb)

are odd powers of c~. The momentum condition yields some interesting consequences. Let us

consider the particular case where the two first indices of T~ are equal to « ; hence, without any
summatioi

on «, (40) implies that

bm bm

I T,
nap Ci& "

A I £')a C,p L',& + C I
£'<p Ci&

i , =1

Note that the first summation is restricted to the case where <.)~ is not zero. Hence, because of

(20),

b~

jj T,~~pc~~ =d'~~(Ac~/(D+2)+C) =0.

i=i

The same reasonning can be made for any couple of indices with the same result. The general

form of (B, lb) is restricted to

T,
=

C (-
c~ c, c, (D + 2 )/c~ + c, I + Ic, + (Ic~ )~) (B.2)

This tensor is automatically symmetric for its last two indices a possible antisymmetric

component on these last two indices would have been automatically cancelled by the

contraction with v'v'(pu).
This expression can be somewhat modified in order to use the eigenvectors of the matrix A

(cf. (A.4)), It is obvious from (B.2) that

l~apy
~

0
'

If
" ~ # ~ ?

' ~~ ~~
T,~~~

=

0
,

without summation

Hence the only components which are non zero are the ones where only two indices are

equal and different from the third. Hence, within a multiplicative constant, the components of

T~ may be written as linear combinations of the eigenvectors R~~p corresponding to

ii (cf. (A.4))

T,~p~
=

R,~p(I &~p) + R,p~(1- 3p~) + R,~~(l 3~~). (B.4)

Introduction of (B.la) and (B,4) into (41) yields the general expression N)(r, t). Because of

the future application of the collision equation(39), it is more convenient to use the

eigenvectors Q, and R, (cf. (B.la))
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N)(r, t)
= «j E'QI i v' v'p + «j F'v'. v'p + «i E'Q, i v'(pf) + «i F'v~ (pf) +

+
z R~~p [T %p, %p,(pu~ ) + 2

T %p, %~,(pup)] I
=

I,
,

b~ (B.5a)

«#fl

N((r,
t

=

b~ («j F' v' v'p + «i F' v' (pf))/M~ (B.5b)

This last formula for N( necessarily follows from the mass conservation (40).

The remaining calculations are now tedious but not difficult. The expressions (B.5) are

inserted into the left-hand side of the second-order equation (39). One takes into account the

eigenvalues and the eigenvectors of (A.4). Then the factors of the various gradients are

identified and the coefficients of (B.5 are determined. To illustrate the process, let us consider

the equation for I
=

0 in (39). It can be proved to be

(xbm/Mc + (2 b)- ) iv' (pf) cl v' v'p
=

=

(b~/M~+ I)b°b~(«IF'V" (pf)+«jf'v"V'p)

from which the values of «i F' and «j F' readily follow.

The same development can be applied to the terms
=

I,
,

b~ and one obtains

~l ~'
~ C~ ~2 ~'' ~2~'

~

~ ~' "~~
~'

«j F'
=

c) «i F' ; «i F'
=

(X/b° b + M~/ (2 b~ b° b~ )) ; (B.6)

T=d'v/A~; «)=-b~/M~«j; «~=-b~/M~«~,

Appendix C.

Bounce back conditions for stagnation flow.

First the mean population is evaluated up to the second-order in
e

thanks to (5). (29), (31),

(32), (B.5) with two components (a, u) of the velocity field

N~ (r
=

d + d'p (ac,~ + uc,~ +

+ G(p )(d' b )~ ' [a~ (Qi~x + (c~/D c))) + u~ (Q<y> + (c~/D c)))
+ 2 duo<»

+ A~ l»yu Q,xy + »xu Q,m + »>U Q,y>

+ vii Id> ~yu(c,< 3 ci~ c)j,) + 2 »x »>.a (ci> 3 c,> c)<)I

+ j 3 vd' c)[%~ %~p Q~~ +
%~ %~p

Q,~] + E V~p
,

No(r)
=

d [I G (p )(a~
+ u~) b~/M~ E V~p (C. I)

with E
= «~ F' (cf. (B.5), (B.6)).

Note that no extemal force f has been included in these mean populations.
Before we start considering the precise bounce back conditions, it might be useful to

consider a node close to a wall in the FCHC lattice as displayed in figure 5. The node

y~ is located, half a lattice unit above the wall there are 6 possible virtual nodes located half a

lattice unit below the wall two of them possess a velocity component c,~ along the x-axis ;

four of them do not have such a component. Let us number them from + I to + 6 as indicated

in figure 5. The real nodes which are connected to the node yo by the reverse velocities are

numbered from I to 6.
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When the node r is at y = yo and when the node ro + c~
~

belongs to the solid, the bounce

back condition (17) applies. Instead of considering N~j and N~i individually, it is more

physical and mathematically equivalent to consider N~
j

-N~i and N~ + N~i, which are

directly related to the components a and r of the velocity (cf. (3b)). In a steady state, this

condition reads as

N~j(ro, t) ±N~i(ro, t)
=

N~j(ro, t) ±N~i(ro, t) +

b~

+ z (A~
j~ ± A~i~ )jN~ (ro, t ) Nj(ro, t )i W~. (C.2)

j =o

This condition can be evaluated with the help of the expression (C.I) for N~(r, t). For

instance, the equation for the mean population difference yields for y = yo

UC-1
<

+ 2 G lp )(d' b)- ~12 alto-
xv

+ ii Q-
i t>

~vH + VA I (c-1
<

3 c- i <

c~
i j

by »,,a
=

=

ac~j~+2G(p)(d'b)~~ [211uQ+1<,1+ (Aj'
+ I)Q-i» %~a

+
v(Aj~+ I)(c~j~-3c~j~c~j,)~~,%~,a. (C.3)

This equation can be further simplified by using various properties of the flow field and one

obtains

(2a-%,a-2v(1+2Aj~)%~%~a)~yo)=0. (C.4a)

The same development can be made for the mean population sum N~
j

+ N~i it yields a

second condition

0= (2u-4v(1+2Aj')%~%~,ii+p~'[-3 v(I -c~/D)+Eb°b]V~(c)p'))(yo),

P'
= P Po (C.4b)

where the density fluctuations have been incorporated.
This completes the analysis for the populations N~j and N~i, I-e- with a non zero

c,~ component.
The analysis for the populations N~ and N

~ ~ can be made along the same lines. Because of

the translational symmetry along the z-axis, these two populations are equal and the difference

vanishes identically the same holds for N~~ and N~
~

because of the translational symmetry

along the fourth dimension. The sums of the mean populations N~
~ + N~4 and N~~ + N~~

yield the same equation which can be expressed as

0
=

(2 u %~u + 2
v

(1 + 2 ii '
%~ %~a + p [- 3

v
(I c~/D

+
Eb° hi v~(c) p') +

+ 3 VP b~ bx(C) P')) ~y0) (c.4C)

Hence the bounce back conditions (17) written for the 6 virtual nodes + I to + 6 are

equivalent to the three conditions (C.4). By the use of the function f (cf. (55)), the conditions

(C.4) can be simplified into the following expressions if square velocity squared terms are

neglected (cf. (C.6b), (12))

2 f'(yo) f"(Yo) kf"'b'o)
=

o (C.5a)

2 f(y~) + 2 kf"(y~) P[~,
=

o (C.5b)

2 f(yo) f'(Yo) kf"(vo) P$
+ 3 va~

=

o (C.5c)
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where with the use of (55)

%~
%~(c( p')

=

a~
p (C.6a)

v~(c( p')
=

[a~ + 0.5 a~ F "~y p (C.6b)

and we have denoted

P(~
=

[- 3
v

(I c~/D
+

Eb° hi v~ (c( p )/p
,

(C.7)

the constant k is defined as

k
=

2
v

(1 + 2 ii ' ), (C.8)

With equations (56) and (C.6b), the parameter P$ (C.7) can be represented in terms of

f'~Y)

P$
=

2 g(Po)lf'~)l~(- 3 v(1 c2/D)
+

Eb° hi (C.9)

Then one can solve the linear system (C.5) for the first derivatives of f(y); first

P(,/f~J.o) is considered as a parameter in the numerical solution of the equation (64a)

f'(vo)
=

3 (f(j~o) +
va~ 0.5 P(~) (C,10a)

f"(Yo)
=

k ' fo,~) o.5 P (~) (C, lob)

f"'~yo)
=

k~~ (6 k~f(yo) +
va~ 0.5 P(,]

+ [f~yo) 0.5 P(]) (C,10c)
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